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Abstract—Opportunistic routing improves the performance
of multi-hop wireless networks by exploiting the overhearing
opportunities. However, without special hardware support, the
current opportunistic routing protocols cannot exploit partial
packets, i.e., packets with errors but still containing much useful
information. In this paper, we present pMORE, a software-only
opportunistic routing protocol capable of exploiting partial pack-
ets. pMORE performs random network coding at the granularity
of blocks and uses block checksum test to efficiently locate correct
information in a partial packet and avoid the risk of propagating
errors. We design an algorithm to assemble packets with partial
packets to add maximum fresh information while maintaining
a low overhead. The experiment results from a 12-node indoor
wireless testbed show that pMORE achieves higher throughput
than MORE with a median throughput gain of 1.34×.

I. I NTRODUCTION

Opportunistic routing [1], [2], [4] has been proposed in
recent years to improve the performance of wireless multi-hop
networks by exploiting the broadcast nature of the wireless
medium: when a node transmits, many nodes can oppor-
tunistically overhear, even the relatively far nodes. Exist-
ing opportunistic routing protocols such as ExOR [1] and
MORE [2], however, do not exploit the other property of
the wireless medium, namely the existence of partial packets.
Partial packets are packets with errors but still contain much
correct information, which can be seen very often in wireless
transmissions [5], [15], [11]. The percentage of partial packets
is higher for the longer links with higher loss ratios, which
opportunistic routing protocols attempt to exploit. Currently,
protocols such as ExOR [1] and MORE [2] discard partial
packets. As recent study [11] show that many corrupted
packets just contain very few errors, it is clear that higher
performance can be achieved by exploiting partial packets in
opportunistic routing. Indeed, MIXIT [4] has been proposed
as an opportunistic routing protocol that uses partial packets
which has shown significant gain over MORE [2]. However,
MIXIT [4] is built on special hardware where each node can

report the physical layer information, i.e., the confidenceof a
physical layer symbol, to the upper layer, and is not applicable
to many of the existing hardware platforms.

In this paper, we introduce pMORE, asoftware-onlyso-
lution that exploits partial packets in opportunistic routing
without requiring special hardware. pMORE is built as an
non-trivial extension of MORE [2], and inherits many of
the features of MORE [2] including random network coding.
The first challenge is that random network coding requires
the random mixing of packets and the errors in one partial
packet can potentiality spread to all packets which renders
the system useless. MIXIT [4] solves this problem by relying
on physical layer hints and only mixing the symbols that are
likely to be correct. pMORE, however, does not have access
to the physical layer and adopts a new solution. Basically,
we divides a packet intoblocks and adds a checksum for
each block; only the blocks that pass the checksum test can
be mixed with other blocks. In this way we ensure that all
data involved in the random network coding is correct and
prevent error propagation. The second challenge is that by
using partial packets, we also introduce more overhead per
packet as different blocks in a packet may use different vectors
for network coding where the size of a vector is non-trivial.
To this end, we develop a heuristic algorithm that attempts
to minimize the overhead while exploiting as many available
blocks as possible. We implement pMORE on top of the
code base of MORE at [10] and test pMORE with extensive
experiments on a 12-node indoor wireless testbed. We find
that pMORE achieves higher performance than MORE with a
median throughput gain of1.34×.

The rest of the paper is organized as follows. Section II
describes the design of pMORE . Section III describes our
experimental evaluation. Section IV discusses related works.
Section V concludes the paper.

II. PMORE DESIGN

We discuss the design of pMORE in this section.

A. Random Network Coding

pMORE is based on MORE [2] and usesrandom network
coding, briefly described as follows. Basically, with random
network coding, a node sends random linear combinations
of the received packets. The coefficients used in the linear
combination is called thecode vectorand are transmitted



TABLE 1
DEFINITIONS USED IN THE PAPER.

Term Definition

Data Block A data packet is divided intoL data blocks.

Coded Block A transmitted packet containsL coded blocks.
Also referred to simply as block.

Code Vector The vector of coefficients.

Segment A segment contains one or more blocks, which
share the same vector. The blocks in a segment
do not need to be adjacent.

Full Segment A segment with all correctL blocks.

Partial Segment A segment with less thanL blocks.

along with the packet. Other nodes, after received a sufficient
number of such linear mixes, may recover the original packets
by solving linear equations. Roughly speaking, the main
advantage of random network coding in multi-hop wireless
networks is that an upstream node does not need to know
what packets its downstream nodes have received. By sending
random mixes, the packets sent by the upstream node contain
useful information with high probability.

B. Overview of pMORE

As mentioned earlier, the key difference between pMORE
and MORE [2] is that pMORE accepts partial packets while
MORE discards such packets. The main challenge in process-
ing partial packets for random network coding is that a packet
may be mixed with many packets and an error may propagate
to many packets. To solve this problem, pMORE divides
packets into blocks and sends checksums of the blocks along
with the packet. A block fails the checksum test is discarded,
thus pMORE does not propagate any errors. This, however,
may come at a cost of a higher overhead. We note at because
pMORE’s network coding is at the granularity of blocks, every
block may potentially need a separate code vector, the size of
which is non-trivial. To address this challenge, we design a
packet assembling algorithm which attempts to use the same
code vector for as many blocks as possible in a packet, while
sending as much useful information as possible. The algorithm
is inspired by the greedy algorithm forSet Cover.

C. Preliminaries

pMORE forwards packets from thesourceto thedestination
with the assistance of a set offorwarders. Table 1 gives the
definitions of the terms used in the paper. We begin with the
source.

1) Source: The source divides data intobatchesof K

packets and transmits batch by batch. Each data packet is
divided intoL data blocksof equal size, padded if necessary.
pMORE’s network code works at the granularity of blocks.
The ith coded blockin an outgoing packet is denoted asB′

i

and is generated by a linear combination of theith data blocks
in the K data packets in the same batch:

B′

i =

K∑

j=1

cjBji,

whereBji is theith data block in thejth data packet andcj is
a random coefficient chosen forBji. We call (c1, ..., cK) the
code vectorof the block. A checksum is added for each coded
block and then attached to the pMORE header. All coded
blocks sharing the same code vector belong to asegment. If
all L coded blocks in a packet belong to one segment, this
segment is called afull segment. The packets transmitted by
source always contain one full segment. The source calculates
a list of forwarders for the destination, and adds the list tothe
pMORE header.

2) Forwarders: A forwarder listens to the channel. When-
ever it overhears a packet, including a partial packet, it
checks the pMORE header to determine whether it is in the
forwarder list. If true, it checks the integrity of each coded
block by comparing the checksum in the pMORE header
with the calculated checksum based on the received data. A
coded block that fails the checksum test is removed. Thus, a
full segment could become apartial segment. The forwarder
then performsinnovativeness check, i.e., checks the code
vector of each segment to determine whether it contains new
information according to the policies described in SectionII-D.
The forwarder stores theinnovative segmentswhich passed
the innovativeness check, and discards others. The forwarder
also uses a heuristic algorithm described in Section II-E to
assemble an outgoing coded packet by creating a combination
of the buffered segments, and broadcasts it, when the MAC
layer permits. The packets sent by the forwarder will contain
multiple segments if it used partial segments when assembling
the packet.

3) Destination:For each packet it receives, the destination
filters out the faulty coded blocks and does the innovativeness
check for every correctly received coded block. For theith data
blocks in the batch, if it has receivedK linearly independent
coded blocks, it can recover the data blocks by solvingK

linear equations. Once the destination decodes all data blocks,
it finishes decoding the whole batch. As long as it received
enough information to decode a data block, it will start to
decode. After the destination decodes the batch, it immediately
sends an ACK to the source. When the source receives the
ACK, it will clean its buffer and move to the next batch.

D. Innovativeness Check

In the following, for simplicity, we sometimes refer to coded
blocks simply as blocks; data blocks are still always referred
to as data blocks. When a forwarder receives a new packet,
it performs innovativeness check. Since each segment in a
packet has its own code vectors, innovativeness check is done
per segment. In pMORE, for simplicity, we consider a segment
innovative if its code vector is linearly independent of thecode
vectors of the previously received full segments. We apply
Gaussian elimination [13] to check the linear independence.
Only the full segments are checked against, because the
number of full segments is bounded by the batch size, while
the number of partial segments can be potentially very large
and may lead to excessive CPU usage.



All the innovative segments, full or partial, will be storedin
the buffer. As full segments are always preferable over partial
segments as they lead to less overhead, we also implement
a replacement policy. Basically, when the forwarder receives
a new innovative full segment, it will remove all the partial
segments from its buffer whose code vectors are no longer
linearly independent of the code vectors of the full segments.
Thus, when a forwarder receivedK innovative full segments,
the forwarder will no longer need to store the partial segments.

E. Packet Assembling

One of the major challenges of pMORE is how to assemble
the packets. On one hand, we want to send as much new
information as possible, which means that we want to use as
many innovative segments as possible when assembling the
packet. On the other hand, the segments are often not on the
same block locations and mixing the segments almost always
leads to a packet with many segments and an increased amount
of overhead as each segment has a unique code vector ofK

bytes that must be transmitted in the pMORE header. The
algorithm, therefore, must achieve a tradeoff between inno-
vativeness and overhead. This is further complicated by the
fact that a forwarder does not know which blocks have been
received at the downstream, and the fact that the algorithm
must be light weight.

We therefore adopt a heuristic algorithm. Basically, we
first useonly the full segments when assembling the packet.
All such packets will still be a full-segment packet. This
guarantees that we never introduce more overhead than the
original MORE when we do not have to, and avoids increasing
the number of segments in the outgoing packets. If the number
of full segment is F , a total of F full-segment packets
can be transmitted. AfterF full-segment packets has been
transmitted, when a new packet needs to be assembled, we
look into the partial segments and attempt to find a set of
partial segments that covers all blocks yet leads to a minimum
number of segments in the transmitted packet. The packet
generated by the partial segments is still combined with a
random combination of the full segments, as this does not
incur additional overhead and yet can carry the informationin
the full segments.

To be more specific, we maintain a counterW , the number
of full-segment packets that can be transmitted. Whenever
received a full segment,W is incremented by 1; whenever
a full-segment packet is transmitted,W is decremented by 1.
We useR to denote the number of partial segments and use
PSi to denote partial segmenti. All partial segments in the
buffer is associated with a bitmap indicating the blocks in this
segment. Whenever the node needs to assemble a packet, the
algorithm described in Algorithm 1 is called which returns
Pout. In the algorithm,

• | x | denotes the number of ‘1’s in binary vectorx,
• bitmask denotes the current bitmask,
• π denotes the set of partial segments found in the current

iteration of thewhile loop,

• T denotes a subset of bits inbitmask which is obtained
by a “bitwise and” ofbitmask with the bitmap of the
partial segment which has the most number of common
bits with bitmask.

A partial segment isflaggedif it has been added toπ in the
first iteration of thewhile loop when calling Algorithm 1, and
is maintained in the subsequent calls. It can be seen that in
each iteration of thewhile loop, we basically attempt to find
a set of partial segments that share the same set of blocks
indicated by the bit pattern ofT while attempting to find aT
with maximum number of ‘1’s. This is inspired by the greedy
algorithm for Set Cover, because we attempt to use a minimum
number of partial segments to cover all blocks; also, multiple
partial segments can all be used without increasing the number
of segments in the packet if they cover the same set of blocks.
A flagged partial segment is not evaluated in the first iteration
of the while loop because such segments may have been used
in earlier calls to Algorithm 1 and without this heuristic check
the algorithm will produce the same packet over and over
again.

Algorithm 1 Assembling an outgoing packet at a forwarder.
1: Pout ← a random combination of the full segments
2: if W ≤ 0 then
3: bitmask← 2L − 1
4: while bitmask 6= 0 do
5: π ← ∅
6: T ← 0
7: for i = 1 to R do
8: if (PSi is flagged) and (bitmask == 2L−1) then
9: continue

10: end if
11: if | bitmap(PSi)&bitmask |>| T | then
12: π ← ∅.
13: T ← bitmap(PSi)&bitmask.
14: end if
15: if bitmap(PSi)&bitmask == T then
16: π ← π ∪ PSi.
17: end if
18: end for
19: if T == 0 then
20: bitmask← 0
21: else
22: Pout ← Pout⊕ a random combination of the

segments inπ for blocks within bitmapT
23: if bitmask == 2L − 1 then
24: set all segments inπ flagged
25: end if
26: bitmask← bitmask&¬T
27: end if
28: end while
29: end if
30: return Pout

The outer loop is executed at mostL times and the inner
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Fig. 1. Assembling coded packets with partial segments: theforwarder
received 5 segments with code vector~V1 to ~V5 respectively. Last 3 segments
contain corrupted blocks shown as shaded areas.

loop is executedR times. Therefore, Algorithm 1 requires
O(LR) operations.

1) An Example of Packet Assembly:Consider a simple
example in Figure 1 whereL = 4. A node has received5
segments among which2 are full segments. At first, the node
will assemble two packetsP0 andP1 with the full segments.
After that, it has to create a packetP2 with partial segments.
A naive solution which combines all partial segments will
result in a packet with4 segments. The heuristic algorithm,
however, will selectS3 in the first iteration and generate the
first segment with a code vector ofα~V3+σ′~V1+µ′~V2, whereα,
σ′ andµ′ are random coefficients. This segment covers blocks
B1, B3, andB4. Meanwhile,S3 will be flagged andS5 will be
selected in the second iteration. The algorithm ignores blocks
B1 andB3 in S5; the second segment has one block,B2, with
β~V5 + σ′~V1 + µ′~V2 as the code vector. As a consequence, the
assembled packet will have2 segments. If the node wants to
create another coded packetP3, in the first iteration of the
while loop, the algorithm does not evaluateS3 because it has
been flagged, and choosesS5 instead.S5 coversB1, B2 and
B3, and in the next iteration,B4 in both S3 and S4 will be
used by the algorithm. The assembled packet still has only 2
segments and their code vectors areα′~V5 + σ′′~V1 + µ′′~V2 and
β′~V3 + γ~V4 + σ′′~V1 + µ′′~V2, whereα′, β′, γ, σ′′, andµ′′ are
random coefficients.

F. Interleaving

pMORE also adoptsinterleaving. Basically, every block in
the outgoing packet is relocated to a random block location
according to a random permutation of blocks, and every
received packet will undergodeinterleavingin which every
block is mapped to its original location according to the
reverse of the random permutation. This is because bits in
a data packet do not share the same fate [11]; blocks near the
header of the packet are less likely to be corrupted than blocks
towards the end. Without interleaving, it could happen that
all blocks are decoded except the last block. The interleaving
procedure spreads the corrupted blocks evenly in each packet
and significantly reduces the probability of such events.
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Fig. 2. Packet format. The shaded fields are mandatory, others are optional.

G. Packet Format

pMORE inserts a variable length header in each packet, as
shown in Figure 2. After the MAC header are the pMORE
header, CRC for each block, CRC2 and the Encoded Data.
In the pMORE header, the type field indicates whether the
packet contains encoded data. It is followed by the source
and destination IP addresses, the flow ID, and the batch ID.
Each segment information field contains the code vector of
the segment and a bitmap indicating the block locations of
the segment. CRC2 is the checksum of the pMORE header. A
packet failed CRC2 will be discarded.

III. I MPLEMENTATION AND EVALUATION

We implemented pMORE with the code base at [10] and
ran experiments to evaluate its performance.

A. Testbed

We employ a 12-node indoor testbed. The nodes are dis-
tributed in several locations in an indoor environment. Each
node uses the Cisco Aironet 802.11a/b/g wireless cardbus
adapter [9] and runs the open source Madwifi driver [8] at
1 Mbps1. We set the Madwifi driver in the monitor mode to
allow the raw data frames to be delivered to pMORE. We
modified the link measurement code of MORE to measure the
block loss ratio, and use it as the input to the path calculation
algorithm of MORE. The forwarder list contains 1 to 6 nodes
and the average loss ratio is48%. In all the experiments, the
batch size is 32 for both MORE and pMORE and the packet
size is 1500 bytes.

B. Throughput Comparison and Analysis

We wish to verify whether pMORE improves throughput
by exploiting partial packets. We first run the link measure-
ment program and calculate the routes for both MORE and
pMORE. In each experiment, we randomly choose source and

1The reason why we choose 1 Mbps is because we have several slow
machines in our testbed and their CPU speeds cannot catch up with the higher
data rates in the wireless link when running random network coding.



destination pairs in our testbed and run each protocol for 60
seconds. We repeat the experiment three times and obtain the
average throughput.

Figure 3 shows the scattered plot of the throughputs
achieved by pMORE and MORE for the same source and
destination pair. Figure 4 shows the CDF of the throughput
taken over 124 source and destination pairs. The results reveal
that pMORE does outperform MORE: pMORE’s median
throughput is 34% higher than MORE.
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Fig. 3. Scatter plot of overall throughput. Each point represents the
throughput of a particular source destination pair for MOREand pMORE.
A point in the 45 degree line represents a source destinationpair for which
the two protocols have the same throughput.
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Fig. 4. CDF of the throughput of MORE and pMORE.

To verify the source of the gain, we show in Figure 5 the
relation of the gain over MORE and the partial packet ratio,
where the partial packet ratio is the average partial packet
ratio of all nodes participate in packet forwarding. We can
see that a larger partial packet ratio leads to a larger gain
over MORE, which verifies that pMORE achieves a better
performance by exploiting partial packets. The gain flattens
as the partial packet ratio further increases, which is likely
because when the partial packet ratio is too high, many packets
are erased and cannot be exploited.
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Fig. 5. The percentage of gain v.s. the average partial packet ratio.

C. Overhead

pMORE’s overhead is largely determined by the number
of segments in a packet. As packets travel further down the
path, more packets will be corrupted and more segments may
be introduced. pMORE relies on Algorithm 1 to suppress the
number of segments. We collect data to verify how the number
of segments increases as packets get further away from the
source. Figure 6 shows the average number of segments in a
transmitted packet at each hop. The result suggests that the
average number of segments increases mildly.
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Fig. 6. The average number of segments in a transmitted packet at each hop
along the path.

IV. RELATED WORKS

ExOR [1] first introduced the opportunistic multi-hop rout-
ing for wireless networks. Since several nodes may receive
the same packet, ExOR attempts to arrive at an agreement on
choosing the “best” node to forward the packet. ExOR sends
packets based on batches; for each batch, the source adds a
candidate forwarder list in front of each packet. After the nodes
receive the batch of packets, they will wait for their turns to
send packets which have not been acknowledged by the higher
priority nodes. Although this strict scheduling can reducethe
duplicate transmission, it discourages spatial reuse. MORE [2]



is a MAC-independent opportunistic routing protocol. It im-
proves ExOR [1] by utilizing random network coding to reduce
packet duplication and to enhance spatial reuse. MORE also
sends packets in batches, for each batch, it mixes the packets
randomly before transmission. The randomness removes the
need of the scheduling because every packet contains useful
information with high probability. pMORE builds on MORE’s
foundation but introduces methods to exploit partial packets.

MIXIT [4] realizes that opportunistic routing cannot exploit
long, lossy links without being able to exploit partial packets.
It proposes a new opportunistic routing architecture which
is based on the correctly received symbols. MIXIT uses the
physical layer information to distinguish the correct symbols
to broadcast clean symbols. For each decoded symbol, the
physical layer computes a confidence value based on which
a symbol is marked clean or faulty. However, it could still
happen that a faulty symbol is marked as clean and which leads
to error propagation. Using the physical layer information
also needs a collaboration of physical layer and upper layer,
which limits its application to other platforms. On the other
hand, instead of using symbol level information, pMORE
divides a packet into blocks, and sends packet based on
correctly received blocks. pMORE does not need physical
layer information and is a software-only approach, therefore
it can be applied directly on top of any platform.

Exploiting partial packets has been studied extensively in
recent years. For example, ZipTx [5], Maranello [15] and
FRJ [16] have been proposed for single-hop wireless LANs.
We note that pMORE is different because it is a multi-hop
network protocol. Seda [14] has been implemented for wire-
less sensor networks which recovers errors by retransmitting
only the corrupted blocks instead of the entire packet. We
note that although also identifies correct information with
block checksums, pMORE is fundamentally different from
Seda because pMORE forwards packet according to random
network coding while Seda forwards packets according to the
traditional protocol without exploiting overhearing in wireless
networks.

V. CONCLUSIONS

In this paper, we propose pMORE, a software-only oppor-
tunistic routing protocol capable of exploiting partial packets.
Our main contributions include the following. First, we pro-
pose to use block checksum test to efficiently locate correct
information in a partial packet and use them free of the risk of
propagating errors. Second, we design protocol and algorithm
to efficiently assemble packets from full or partial segments
of received data, maximizing the fresh information sent to the
downstream while maintaining low overhead. We implement
pMORE and test it on a 12-node indoor wireless testbed. Our
experiments show that pMORE achieves a significant better
performance than the original MORE.
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