PMORE: Exploiting Partial Packets in Opportunistic
Routing

Wei Hu, Jin Xie, Zhenghao Zhang
Computer Science Department
Florida State University
Tallahassee, FL 32306, USA

(©2011 IEEE. Personal use of this material is permittedeport the physical layer information, i.e., the confidenta

Permission from IEEE must be obtained for all other uses,

any current or future media, including reprinting/repabing
this material for advertising or promotional purposesatire
new collective works, for resale or redistribution to sesver

physical layer symbol, to the upper layer, and is not applea
to many of the existing hardware platforms.

In this paper, we introduce pMORE, software-onlyso-
lution that exploits partial packets in opportunistic liagt

lists, or reuse of any copyrighted component of this work iwithout requiring special hardware. pMORE is built as an

other works.

Abstract—Opportunistic routing improves the performance
of multi-hop wireless networks by exploiting the overhearng
opportunities. However, without special hardware support the
current opportunistic routing protocols cannot exploit partial
packets, i.e., packets with errors but still containing mud useful
information. In this paper, we present pMORE, a software-ony
opportunistic routing protocol capable of exploiting partial pack-
ets. pMORE performs random network coding at the granularity
of blocks and uses block checksum test to efficiently locat®ect
information in a partial packet and avoid the risk of propagating
errors. We design an algorithm to assemble packets with paial
packets to add maximum fresh information while maintaining
a low overhead. The experiment results from a 12-node indoor
wireless testbed show that pMORE achieves higher throughpu
than MORE with a median throughput gain of 1.34x.

I. INTRODUCTION

non-trivial extension of MORE [2], and inherits many of
the features of MORE [2] including random network coding.
The first challenge is that random network coding requires
the random mixing of packets and the errors in one partial
packet can potentiality spread to all packets which renders
the system useless. MIXIT [4] solves this problem by relying
on physical layer hints and only mixing the symbols that are
likely to be correct. pMORE, however, does not have access
to the physical layer and adopts a new solution. Basically,
we divides a packet intdlocks and adds a checksum for
each block; only the blocks that pass the checksum test can
be mixed with other blocks. In this way we ensure that all
data involved in the random network coding is correct and
prevent error propagation. The second challenge is that by
using partial packets, we also introduce more overhead per
packet as different blocks in a packet may use differentorect
for network coding where the size of a vector is non-trivial.

Opportunistic routing [1], [2], [4] has been proposed iffo this end, we develop a heuristic algorithm that attempts
recent years to improve the performance of wireless multi-hto minimize the overhead while exploiting as many available
networks by exploiting the broadcast nature of the wirele§docks as possible. We implement pMORE on top of the
medium: when a node transmits, many nodes can oppoode base of MORE at [10] and test pMORE with extensive
tunistically overhear, even the relatively far nodes. Exisexperiments on a 12-node indoor wireless testbed. We find
ing opportunistic routing protocols such as ExOR [1] anthat pMORE achieves higher performance than MORE with a
MORE [2], however, do not exploit the other property ofmedian throughput gain of.34x.
the wireless medium, namely the existence of partial packet The rest of the paper is organized as follows. Section Il
Partial packets are packets with errors but still contaircimudescribes the design of pMORE . Section Ill describes our
correct information, which can be seen very often in wirelegxperimental evaluation. Section IV discusses relatecksvor

transmissions [5], [15], [11]. The percentage of partiaikeds

Section V concludes the paper.

is higher for the longer links with higher loss ratios, which

opportunistic routing protocols attempt to exploit. Cuntig,

Il. PMORE DESIGN

protocols such as ExOR [1] and MORE [2] discard partial We discuss the design of pMORE in this section.

packets. As recent study [11] show that many corrupted)

packets just contain very few errors, it is clear that highd: Random Network Coding

performance can be achieved by exploiting partial packets i pMORE is based on MORE [2] and usendom network
opportunistic routing. Indeed, MIXIT [4] has been proposedoding briefly described as follows. Basically, with random
as an opportunistic routing protocol that uses partial ptck network coding, a node sends random linear combinations
which has shown significant gain over MORE [2]. Howevenf the received packets. The coefficients used in the linear
MIXIT [4] is built on special hardware where each node cacombination is called theode vectorand are transmitted

TABLE 1

DEFINITIONS USED IN THE PAPER whereBy; is thei'" data block in thej*" data packet and; is
a random coefficient chosen f@#;;. We call (¢, ..., cx) the
Term Definition code vectoof the block. A checksum is added for each coded
Data Block A data packet is divided intb data blocks. block and then attached to the pMORE header. All coded
Coded Block A transmitted packet contaifiscoded blocks. blocks sharing the same code vector belong wegmentlf

Also referred to simply as block. all L coded blocks in a packet belong to one segment, this

gOde Vector ;he vector of coefficients. ocke wiigy | Segment is called &ll segmentThe packets transmitted by
egment segment contains one or more blocks, whic H
share the same vector. The blocks in a segment SOUTCe always contain one full .seg_ment. The source _caﬁzulat
do not need to be adjacent. a list of forwarders for the destination, and adds the light®
Full Segment A segment with all corre&t blocks. PMORE header.
Partial Segment A segment with less tharblocks. 2) Forwarders: A forwarder listens to the channel. When-

ever it overhears a packet, including a partial packet, it
checks the pMORE header to determine whether it is in the
Prwarder list. If true, it checks the integrity of each cdde
ock by comparing the checksum in the pMORE header
ith the calculated checksum based on the received data. A
ed block that fails the checksum test is removed. Thus, a
segment could become artial segmentThe forwarder
performsinnovativeness check.e., checks the code
vector of each segment to determine whether it contains new
information according to the policies described in SectieD.
B. Overview of pMORE The forwarder stores thiannovative segmentahich passed
As mentioned earlier, the key difference between pMOR N |nnovat|venes'_s qheck, "’?”d d|scard_s oth_ers. Thg foeward
. . .also uses a heuristic algorithm described in Section II-E to
and MORE [2] is that pMORE accepts partial packets while . . -
. . . assemble an outgoing coded packet by creating a combination
MORE discards such packets. The main challenge in process- .
.) A of the buffered segments, and broadcasts it, when the MAC
ing partial packets for random network coding is that a pac

(\:(er permits. The packets sent by the forwarder will contai

.) a
may be mixed with many packets and an error may prOpag%%ultiple segments if it used partial segments when assambli

to many packets. To solve this problem, pMORE dlv'det%e packet.

ackets into blocks and sends checksums of the blocks alon N . . o
P %) Destination: For each packet it receives, the destination

ith th ket. A block fails the check test is di d
s e packe ocx 1ai's the checksum fest | discay e@};ers out the faulty coded blocks and does the innovatigene

thus pMORE does not propagate any errors. This, howev .)
may come at a cost of a higher overhead. We note at becaEFg(:k for every correctly received coded block. Foritfiedata

PMORE's network coding is at the granularity of blocks, gver ocks in the batch, if it has received linearly independent

block may potentially need a separate code vector, the sEizeC8ded blocks, it can recover the data blocks by solvitig

which is non-trivial. To address this challenge, we design!'g?ar equations. Once the destination decodes all dat&slo

packet assembling algorithm which attempts to use the sa%nghes decoding the whole batch. As long as it received

code vector for as many blocks as possible in a packet, wh Qough Z‘lformﬁt'%n t(.) dgcocée a(;jatahblgck, r:t.V\.""rfgr.t o
sending as much useful information as possible. The alyarit ecode. After the destination decodes the batch, itim _gha
is inspired by the greedy algorithm f&et Cover sends an ACK to the source. When the source receives the

ACK, it will clean its buffer and move to the next batch.

along with the packet. Other nodes, after received a suftici
number of such linear mixes, may recover the original pack
by solving linear equations. Roughly speaking, the mal
advantage of random network coding in multi-hop wireles¥
networks is that an upstream node does not need to kn

what packets its downstream nodes have received. By sen n
random mixes, the packets sent by the upstream node con{hl
useful information with high probability.

C. Preliminaries

pMORE forwards packets from tleurceto thedestination D- Innovativeness Check
with the assistance of a set fifrwarders Table 1 gives the | the following, for simplicity, we sometimes refer to catle
definitions of the terms used in the paper. We begin with thggcks simply as blocks; data blocks are still always referr
source. to as data blocks. When a forwarder receives a new packet,
1) Source: The source divides data intbatchesof K it performs innovativeness check. Since each segment in a
packets and transmits batch by batch. Each data packepigket has its own code vectors, innovativeness check ie don
divided into . data blocksof equal size, padded if necessanper segment. In pMORE, for simplicity, we consider a segment
PMORE's network code works at the granularity of block§nnovative if its code vector is linearly independent of toele
The i*" coded blockin an outgoing packet is denoted & vectors of the previously received full segments. We apply
and is generated by a linear combination of ttfedata blocks Gaussian elimination [13] to check the linear independence
in the K' data packets in the same batch: Only the full segments are checked against, because the
K number of full segments is bounded by the batch size, while
B = Z ¢;Bji, the number of partial segments can be potentially very large
i=1 and may lead to excessive CPU usage.

All the innovative segments, full or partial, will be stored « T denotes a subset of bits titmask which is obtained
the buffer. As full segments are always preferable overigdart by a “bitwise and” ofbitmask with the bitmap of the
segments as they lead to less overhead, we also implement partial segment which has the most number of common
a replacement policy. Basically, when the forwarder rezeiv bits with bitmask.

a new innovative_z full segment, it will remove all the partialy partial segment idlaggedif it has been added te in the

segments from its buffer whose code vectors are no longgk; jteration of thewhile loop when calling Algorithm 1, and

linearly independent of the code vectors of the full segmenis maintained in the subsequent calls. It can be seen that in

Thus, when a forwarder received innovative full segments, each jteration of thevhile loop, we basically attempt to find

the forwarder will no longer need to store the partial segsieny get of partial segments that share the same set of blocks
_ indicated by the bit pattern &f while attempting to find &

E. Packet Assembling with maximum number of ‘1’s. This is inspired by the greedy

One of the major challenges of pMORE is how to assembfdgorithm for Se_t Cover, because we attempt to use a minimum
the packets. On one hand, we want to send as much nléwber of partial segments to cover all plocks; _also, migltip
information as possible, which means that we want to use R@tial segments can all be used without increasing the sumb
many innovative segments as possible when assembling @igegments in the packet if they cover the same set of blocks.
packet. On the other hand, the segments are often not on fhfiagged partial segment is not evaluated in the first iterai
same block locations and mixing the segments almost alwafshe while loop because such segments may have been used
leads to a packet with many segments and an increased amdug@rlier calls to Algorithm 1 and without this heuristicextk
of overhead as each segment has a unique code vectsr othe .algorlthm will produce the same packet over and over
bytes that must be transmitted in the pMORE header. TR82IN-:

algorithm, therefore, must achieve a tradeoff between -inno

vativeness and overhead. This is further complicated by tidgorithm 1 Assembling an outgoing packet at a forwarder.

fact that a forwarder does not know which blocks have been: P,,; <— a random combination of the full segments
received at the downstream, and the fact that the algorithre: if W < 0 then

must be light weight. 3 bitmask «— 21 — 1
We therefore adopt a heuristic algorithm. Basically, we4: while bitmask # 0 do

first useonly the full segments when assembling the packet5: T

All such packets will still be a full-segment packet. This 6: T<0

guarantees that we never introduce more overhead than tfie
original MORE when we do not have to, and avoids increasing:

for i=1to R do
if (PS; is flagged) andiitmask == 2 —1) then

the number of segments in the outgoing packets. If the numbér continue
of full segment isF, a total of F full-segment packets 10: end if
can be transmitted. AfteF full-segment packets has beenil: if | bitmap(PS;)&bitmask |>| T | then
transmitted, when a new packet needs to be assembled, e T 0.
look into the partial segments and attempt to find a set 48 T « bitmap(PS;)&bitmask.
partial segments that covers all blocks yet leads to a mimimul4: end if
number of segments in the transmitted packet. The packet if bitmap(PS;)&bitmask == T then
generated by the partial segments is still combined with ¥: T —mUPS;.
random combination of the full segments, as this does ndt: end if
incur additional overhead and yet can carry the informaition 18: end for
the full segments. 19: if T'==0 then
bitmask «— 0

To be more specific, we maintain a count®r, the number 20:
of full-segment packets that can be transmitted. Whenevé&¥
received a full segmenty/ is incremented by 1; whenever 22:
a full-segment packet is transmitteld; is decremented by 1.

We useR to denote the number of partial segments and ug8:
PS; to denote partial segment All partial segments in the 24
buffer is associated with a bitmap indicating the blockshis t 25:
segment. Whenever the node needs to assemble a packet2fhe
algorithm described in Algorithm 1 is called which returng7:
P,,:. In the algorithm, 28:

« | x| denotes the number of ‘1’s in binary vectoy
« bitmask denotes the current bitmask,

else
P,: «— P,.:® a random combination of the
segments inr for blocks within bitmapl’
if bitmask == 2F — 1 then
set all segments in flagged
end if
bitmask «— bitmask&—T
end if

end while
29: end if
30: return P,

« 7 denotes the set of partial segments found in the current
iteration of thewhile loop,

The outer loop is executed at makttimes and the inner

/5 ll+&} Z\
LT T T 1 B = Mac Header
st I T T 1V Vi + v bigd
e[1 T [| ‘71 — ~ 5| 'S ZT\ P SRC_IP | SRC_IP pMORE
s 2w —— 1 ! Flow ID | Batch ID
Kg aVs + (r"{l + //l/z Bitmap Segment # CRC for Each
s4 | | | I | V, | | | [| Py Code Vector Segment Info 1 Block
S5 ¥ I S
| | | | | 5 BV + o'V + 1V Segment Info 2 CRC2
L1 1T 1T | B :
. N N .
'V +0"Vi+p"Vo BVa+Va+0"Vi+p' Vs Forwarder List
Encoded Data
Fig. 1. Assembling coded packets with partial segments: ftinarder
received 5 segments with code vecidr to V5 respectively. Last 3 segments

contain corrupted blocks shown as shaded areas.

. . . . Fig. 2. Packet format. The shaded fields are mandatory, Sotirer optional.
loop is executedR times. Therefore, Algorithm 1 requires g y P

O(LR) operations.
1) An Example of Packet Assemblgonsider a simple G. packet Format
example in Figure 1 wheré = 4. A node has received
segments among whichare full segments. At first, the node
will assemble two packet, and P; with the full segments.

pPMORE inserts a variable length header in each packet, as
shown in Figure 2. After the MAC header are the pMORE
. : . header, CRC for each block, CRC2 and the Encoded Data.
After_that, I h_as to c_reate a p(_:lle& with pgmal segments._m the pMORE header, the type field indicates whether the
A naive solution which combines all partial segments will .)
) . e ; packet contains encoded data. It is followed by the source
result in a packet witht segments. The heuristic algorithm, o
; . T) and destination IP addresses, the flow ID, and the batch ID.
however, will selectSs in the first iteration and generate th

.) s — — eEach segment information field contains the code vector of
first segment with a code vector @¥3+0'V; +p' V5, wherea, 9

o’ andy’ are random coefficients. This segment covers blocg;se segment and a bitmap indicating the block locations of
By, By, andB,. Meanwhile.S; will be flagged andss will be e segment. CRC2 is the checksum of the pMORE header. A

selected in the second iteration. The algorithm ignoreskslo packet failed CRC2 will be discarded.

B; andBj in S5; the second segment has one blaBk, with I1l. | MPLEMENTATION AND EVALUATION

BVs +0'Vi + 1V, as the code vector. As a consequence, theyye jmplemented pMORE with the code base at [10] and

assembled packet will havzgseg_ments. _If thg noc_ie wants to.4n, experiments to evaluate its performance.

create another coded packgt, in the first iteration of the

while loop, the algorithm does not evaluate because it has A. Testbed

been flagged, and choosss instead.S; coversBi, B and \We employ a 12-node indoor testbed. The nodes are dis-

Bs, and in the next iteration3, in both S3 and Sy will be tributed in several locations in an indoor environment. HEac

used by the algorithm. The assembled packet still has onlyhdde uses the Cisco Aironet 802.11a/b/g wireless cardbus

segments and their code vectors afé; +o”"Vi + 1”"Va and - adapter [9] and runs the open source Madwifi driver [8] at

B'Vs +Va+0"Vi + "V, whereo!, 3', v, 0", andp” are 1 Mbps'. We set the Madwifi driver in the monitor mode to

random coefficients. allow the raw data frames to be delivered to pMORE. We

modified the link measurement code of MORE to measure the

block loss ratig and use it as the input to the path calculation

algorithm of MORE. The forwarder list contains 1 to 6 nodes
PMORE also adoptiterleaving Basically, every block in and the average loss ratio48%. In all the experiments, the

the outgoing packet is relocated to a random block locatidvatch size is 32 for both MORE and pMORE and the packet

according to a random permutation of blocks, and evesyze is 1500 bytes.

received packet will undergdeinterleavingin which every : :

block is mapped to its original location according to theB' Throughput Comparison and Analysis

reverse of the random permutation. This is because bits inWe wish to verify whether pMORE improves throughput

a data packet do not share the same fate [11]; blocks near Byeexploiting partial packets. We first run the link measure-

header of the packet are less likely to be corrupted tharkblodnent program and calculate the routes for both MORE and

towards the end. Without interleaving, it could happen th@MORE. In each experiment, we randomly choose source and

all blocks are decoded except the last block. The intentgpvi | _
The reason why we choose 1 Mbps is because we have several slow

procesjur-e. spreads the CorrUpted b|O.C.kS evenly in each pa(}kgchines in our testbed and their CPU speeds cannot catclittuthes higher
and significantly reduces the probability of such events. data rates in the wireless link when running random netwoding.

F. Interleaving

destination pairs in our testbed and run each protocol for 1

seconds. We repeat the experiment three times and obtain
average throughput. -% 08]
Figure 3 shows the scattered plot of the throughpu
achieved by pMORE and MORE for the same source al _% 0.6 |
destination pair. Figure 4 shows the CDF of the throughp &
taken over 124 source and destination pairs. The resukegrex @ 4 1
that pMORE does outperform MORE: pMORE’s mediai &
throughput is 34% higher than MORE. % 0.2]
70 R — 0 (0,5 (5,15] (15,25 -(256 35] (35, 50]
§ col . . L2 Average Partial(%)
%507 .y *,;*'; | Fig. 5. The percentage of gain v.s. the average partial paake.
g. " ** * /*/
40 . S
£ 30l o3 “%:i/,/ | C. Overhead
- Boawx ¥ pPMORE’s overhead is largely determined by the number
w 207 " ¥ n 1 .
% * H:;gfy of segments in a packet. As packets travel further down the
S 10] ﬁ;;i] path, more packets will be corrupted and more segments may
< 01 L ‘ ‘ ‘ ‘ ‘ be introduced. pMORE relies on Algorithm 1 to suppress the
0O 10 20 30 40 50 60 70 number of segments. We collect data to verify how the number
MORE Throuthput [pkt/s] of segments increases as packets get further away from the

source. Figure 6 shows the average number of segments in a

Fig. 3. Scatter plot of overall throughput. Each point repres the transmitted packet at each hop. The result suggests that the
throughput of a particular source destination pair for MO&#&l pMORE. average number of segments increases miIdIy.

A point in the 45 degree line represents a source desting@nfor which

the two protocols have the same throughput.

N

=
3
T
\

|

Fraction
o
Sy

Average segment number

(=]
=
o
[y
N -

3
Hops

% 10 20 30 20 50 60 70 Fig. 6. The average number of segments in a transmitted patkach hop
FLOW Throuthput [pkt/s] along the path.

Fig. 4. CDF of the throughput of MORE and pMORE. IV. RELATED WORKS
To verify the source of the gain, we show in Figure 5 the ExOR [1] first introduced the opportunistic multi-hop rout-
relation of the gain over MORE and the partial packet ratiing for wireless networks. Since several nodes may receive
where the partial packet ratio is the average partial packbe same packet, ExXOR attempts to arrive at an agreement on
ratio of all nodes participate in packet forwarding. We cachoosing the “best” node to forward the packet. ExXOR sends
see that a larger partial packet ratio leads to a larger gaiackets based on batches; for each batch, the source adds a
over MORE, which verifies that pMORE achieves a betterandidate forwarder list in front of each packet. After tiogles
performance by exploiting partial packets. The gain flattemeceive the batch of packets, they will wait for their turps t
as the partial packet ratio further increases, which ishlikesend packets which have not been acknowledged by the higher
because when the partial packet ratio is too high, many packgriority nodes. Although this strict scheduling can redthe
are erased and cannot be exploited. duplicate transmission, it discourages spatial reuse. IR

is a MAC-independent opportunistic routing protocol. It-im [2]
proves ExOR [1] by utilizing random network coding to reduce
packet duplication and to enhance spatial reuse. MORE algg
sends packets in batches, for each batch, it mixes the gackeq]
randomly before transmission. The randomness removes the
need of the scheduling because every packet contains useLrsdl
information with high probability. pPMORE builds on MORE’s [6]
foundation but introduces methods to exploit partial pteke 7

MIXIT [4] realizes that opportunistic routing cannot exjlo
long, lossy links without being able to exploit partial patk [8]
It proposes a new opportunistic routing architecture which?)
is based on the correctly received symbols. MIXIT uses thg,
physical layer information to distinguish the correct syisb [11]
to broadcast clean symbols. For each decoded symbol, the
physical layer computes a confidence value based on whijg
a symbol is marked clean or faulty. However, it could still
happen that a faulty symbol is marked as clean and which Iei%?
to error propagation. Using the physical layer informatio
also needs a collaboration of physical layer and upper Jayg#]
which limits its application to other platforms. On the athe 5
hand, instead of using symbol level information, pMORI[:l]
divides a packet into blocks, and sends packet based on
correctly received blocks. pMORE does not need physidaf!
layer information and is a software-only approach, thewefo
it can be applied directly on top of any platform.

Exploiting partial packets has been studied extensively in
recent years. For example, ZipTx [5], Maranello [15] and
FRJ [16] have been proposed for single-hop wireless LANS.
We note that pMORE is different because it is a multi-hop
network protocol. Seda [14] has been implemented for wire-
less sensor networks which recovers errors by retransiitti
only the corrupted blocks instead of the entire packet. We
note that although also identifies correct information with
block checksums, pMORE is fundamentally different from
Seda because pMORE forwards packet according to random
network coding while Seda forwards packets according to the
traditional protocol without exploiting overhearing inreiess
networks.

V. CONCLUSIONS

In this paper, we propose pMORE, a software-only oppor-
tunistic routing protocol capable of exploiting partialchats.
Our main contributions include the following. First, we pro
pose to use block checksum test to efficiently locate correct
information in a partial packet and use them free of the risk o
propagating errors. Second, we design protocol and affgorit
to efficiently assemble packets from full or partial segrent
of received data, maximizing the fresh information senti® t
downstream while maintaining low overhead. We implement
PMORE and test it on a 12-node indoor wireless testbed. Our
experiments show that pMORE achieves a significant better
performance than the original MORE.

REFERENCES

[1] S. Biswas and R. Morris. Opportunistic routing in muitp wireless
networks. InNSIGCOMM 2005.

S. Chachulski, M. Jennings, S. Katti, D. Katabi. Tradistgucture for
randomness in wireless opportunistic routing.SIGCOMM 2007.

S. Katti and D. Katabi. MIXIT: The network meets the wiesk channel.
In HotNets 2007.

S. Katti, D. Katabi, H. Balakrishnan and M. Medard. Syrilavel
network coding for wireless mesh networks. StGCOMM, 2008

K. Lin, N. Kushman, and D. Katabi. ZipTx: Harnessing paripackets
in 802.11 networks, IMOBICOM, 2008

K. Jamieson and H. Balakrishnan. Ppr: Partial packebvery for
wireless networks. I'8SIGCOMM 2007.

A. Miu and H. Balakrishnan, and C. E. Koksal. Improving#resilience
with multi-ratio diversity in wireless networks. IkobiCom 2005.
http://madwifi-project.org/

Cisco Aironet 802.11a/blg
http://www.cisco.com/.
http://people.csail.mit.edu/szym/more/README.html

B. Han, L. Ji, S. Lee, B. Bhattacharjee, and R. Miller] Bits are not
equal A study of IEEE 802.11 communication bit errorsiNiFOCOM,
2008

wireless cardbus

'z] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. Aghri

throughput path metric for multi-hop wireless routing. MOBICOM,
2003

R. Koetter and M. Medard. An algebraic approach to netwmding.
In IEEE/ACM Trans. on Networking, 2003

R. K. Ganti, P. Jayachandran, H. Luo, and T. F. Abdelzabatalink
streaming in wireless sensor networks.3anSys, 2006

B. Han, A, Schulman, F. Gringoli, N. Spring, B. Bhattagee, L. Nava,
L. Ji, S. Lee, and R. Miller. Maranello: Practical partiakckeat recovery
for 802.11. inNSDI, 2010

A. Padmanabha lyer, G. Deshpande, E. Rozner, A. Bhatid L. Qiu,
Fast resilient jumbo frames in wireless LANSs. IBEE IWQoS, 2009
Charleston, SC, June 2009.

adapter,

