
Origin-sensitive Control Flow Integrity

Mustakimur Rahman Khandaker
Florida State University

mrk15e@my.fsu.edu

Wenqing Liu
Florida State University

wl16c@my.fsu.edu

Abu Naser
Florida State University

an16e@my.fsu.edu

Zhi Wang
Florida State University

zwang@cs.fsu.edu

Jie Yang
Florida State University

jyang@cs.fsu.edu

Abstract
CFI is an effective, generic defense against control-flow hijack-
ing attacks, especially for C/C++ programs. However, most
previous CFI systems have poor security as demonstrated by
their large equivalence class (EC) sizes. An EC is a set of
targets that are indistinguishable from each other in the CFI
policy; i.e., an attacker can “bend” the control flow within an
EC without being detected. As such, the large ECs denote the
weakest link in a CFI system and should be broken down in
order to improve security.
An approach to improve the security of CFI is to use

contextual information, such as the last branches taken, to
refine the CFI policy, the so-called context-sensitive CFI.
However, contexts based on the recent execution history are
often inadequate in breaking down large ECs due to the limited
number of incoming execution paths to an indirect control
transfer instruction (ICT).1
In this paper, we propose a new context for CFI, origin

sensitivity, that can effectively break down large ECs and
reduce the average and largest EC size. Origin-sensitive CFI
(OS-CFI) takes the origin of the code pointer called by an
ICT as the context and constrains the targets of the ICT with
this context. It supports both C-style indirect calls and C++
virtual calls. Additionally, we leverage common hardware
features in the commodity Intel processors (MPX and TSX)
to improve both security and performance of OS-CFI. Our
evaluation shows that OS-CFI can substantially reduce the
largest and average EC sizes (by 98% in some cases) and has
strong performance – 7.6% overhead on average for all C/C++
benchmarks of SPEC CPU2006 and NGINX.

1 Introduction

The foundation of our software stacks is built on top of the un-
safe C/C++ programming languages. C/C++ provides strong

1We use ICT to denote forward indirect control transfers, excluding returns.
An ICT can be either C-style indirect calls or virtual calls.

performance, direct access to resources, and rich legacy. How-
ever, they lack security and safety guarantees of more modern
programming languages, such as Rust and Go. Vulnerabilities
in C/C++ can lead to serious consequences, especially for
low-level software. Many defenses have been proposed to
retrofit security into C/C++ programs. Control-flow integrity
(CFI) is a generic defense against most, if not all, control-flow
hijacking attacks. It enforces the policy that run-time control
flows must follow valid paths in the program’s control-flow
graph (CFG). Since its introduction in the seminal work by
Abadi et al. [2], there has been a long stream of research in
CFI [1,3,6,9,11–14,16,17,21,25,28,29,31,38,40,41,43,44].
Many earlier systems aim at improving the performance by
trading security for efficiency [25, 41, 43, 44], making them
vulnerable to various attacks [6, 13, 15, 16]. Recent work
focuses more on improving the precision and security of
CFI [14, 17, 21, 38], which can roughly be quantified by the
average and largest equivalence class (EC) sizes [21]. An EC
is a set of targets indistinguishable from each other in the CFI
policy; i.e., CFI cannot detect control flow hijacking within an
EC. It has been demonstrated the control flow can be “bent”
within the ECs without being detected, compromising the
protection [6]. Therefore, there is a pressing need to further
constrain the leeway of such attacks by reducing the average
and largest EC sizes .

One way to improve the security of CFI is to refine the CFG
with contextual information, the so-called context-sensitive
CFI. Likewise, traditional CFI systems are context-insensitive
because they do not collect and use the context information
for validating the targets of an ICT. There are many choices
of the contextual information. Existing context-sensitive CFI
systems use the recent execution history as the context. For
example, PathArmor uses the last few branches recorded
by Intel processor’s Last Branch Record (LBR) [38]; while
PittyPat uses the detailed execution paths recorded by Intel
processor trace (PT) [14]. Both PathArmor and PittyPat are
said to be path-sensitive since they use execution paths as the
context. A path-sensitive CFI policy essentially specifies that
if the execution comes from this specific path, the ICT can

only go to that set of targets. There are often multiple paths
leading to an ICT. Consequently, the target set of the ICT can
be divided into smaller sets by those paths. Another common
choice of the context is the call stack [21]. Since the call stack
can be represented by its return addresses, such a system is
often called call-site sensitive. If the context consists of only
one level of return address, it is denoted as 1-call-site sensitive.
Similarly, 2-call-site sensitive CFI uses two levels of return
addresses as the context.
Execution history based context can substantially reduce

the average EC size, but is much less capable in reducing
the largest EC size. Unfortunately, the largest EC gives the
attacker most leeway in manipulating the control flow without
risking detection. For example, PittyPat reports the largest EC
size of 218 in SPEC CPU2006, even though it is equipped
with the detailed execution history [14]. The fundamental
weakness of such context is that most programs only have
a small number of execution paths that reach an ICT; i.e.,
the in-degree of a node (representing an ICT) in the CFG is
usually small. If an ICT has hundreds of possible targets, at
least one of the ECs will be relatively large. Therefore, such
context is more capable in handling small to medium-sized
ECs but insufficient for large ones. To address that, we need a
more distributed context that is not concentrated on the ICT.
In this paper, we propose a new type of context for CFI,

origin sensitivity. Origin-sensitive CFI (OS-CFI) takes the
origin of the code pointer called by an ICT as the context. It
supports both C-style indirect calls and C++ virtual calls with
slightly different definitions for them: the origin for the former
is the code location where the called function pointer is most
recently updated; that for the latter is the location where the
receiving object (i.e., the object forwhich the virtual function is
called) is created. As usual, returns are protected by the shadow
stack, implemented either in software [10,23] or hardware [19].
Our measurement shows that origin sensitivity is particularly
effective in breaking down large ECs. For example, it can
reduce the largest EC size of a SPEC CPU2006 benchmark
from 168 to 2, a reduction of 99% (see Table 1).
We have implemented a prototype of OS-CFI for C and

C++ programs. The prototype enforces an adaptive CFI policy
that automatically selects call-site or origin sensitivity to
protect an ICT in order to improve the system performance
without sacrificing security. Its CFG is built by piggybacking
on the analysis of a demand-driven, context-, flow-, and field-
sensitive static points-to analysis based on SVF (Static Value-
Flow Graph) [36]. Its reference monitors are implemented
securely and efficiently by leveraging the common hardware
features in the commodity Intel processors (MPX and TSX).
Our evaluation with SPEC CPU2006, NGINX, and a few
real-world exploits shows that the prototype can significantly
reduce the average and largest EC sizes, and incurs only a
small performance overhead: 7.6% on average for the SPEC
CPU2006 and NGINX benchmarks.

In summary, this paper makes the following contributions:

• We propose the concept of origin sensitivity that can sub-
stantially reduce both the average and largest EC sizes to
improve the security of CFI. Origin sensitivity is applicable
to both C-style ICTs and C++ virtual calls. Both types of
ICTs are equally important to protect C++ programs.

• We have built a prototype of OS-CFI with the following
design highlights: we re-purpose the bound table of MPX to
securely store and retrieve origins, and use TSX to protect
the integrity of reference monitors; we piggyback on the
analysis of SUPA, a precise static points-to algorithm, to
built the origin-sensitive CFGs.

• We thoroughly evaluated the security and performance of
the prototype with SPEC CPU2006, NGINX, and a few real-
world exploits. In particular, we carefully studied the CFGs
generated from the points-to analysis and revealed a number
of its issues. Detailed CFG generation and measurement are
often overlooked in the evaluation of previous CFI systems.

2 Origin Sensitivity

In this section, we first introduce the initial definition of origin
sensitivity that is simple, powerful, but potentially inefficient.
We then derive a more viable but still effective definition.

2.1 A Simple Definition
OS-CFI takes the origin of the code pointer called by an ICT
as the context. If the ICT is a virtual call, the origin is defined
as the code location where the receiving object is created,
i.e., where its constructor is called; 2 The context of a C-style
ICT is similarly defined. A typical example of this type of
ICT is an indirect call to a function pointer. The origin of
the function pointer is defined as the instruction that initially
takes the function address stored in the function pointer.
Next, we use a real-world example from 471.omnetpp

in SPEC CPU2006 to illustrate the concept of the origin
(Fig. 1). 471.omnetpp is a discrete event simulator for large
Ethernet networks, written in the C++ programming language.
It relies heavily on macros to initialize many objects of the
simulated network. Line 1 - 10 shows how simulated networks
are initialized: it creates an ExecuteOnStartup object for
each network to call the network’s initialization code; The
constructor of ExecuteOnStartup sets the private mem-
ber code_to_exec (a function pointer) and adds itself to a
linked list (Line 18 - 23). When the program starts, it calls
all the queued code_to_exec function pointers (setup→
executeAll→ execute).

The ICT at Line 25 has the largest EC of this program with
168 targets. Call-site sensitivity is not useful here because there
is only one call stack to the ICT. Processor-trace-based path

2If the object is a global variable, its constructor is conceptually added to
a compiler-synthesized function that is called before entering main().

1 #define EXECUTE_ON_STARTUP(NAME, CODE) \

2 static void __##NAME##_code() {CODE;} \

3 static ExecuteOnStartup __##NAME##_reg(__##NAME##_code);

4

5 #define Define_Network(NAME) \

6 EXECUTE_ON_STARTUP(NAME##__net,\

7 (new NAME(#NAME))->setOwner(&networks);)

8

9 Define_Network(smallLAN);

10 Define_Network(largeLAN);

11

12 class ExecuteOnStartup{

13 private:

14 void (*code_to_exec)();

15 ExecuteOnStartup *next;

16 static ExecuteOnStartup *head;

17 public:

18 ExecuteOnStartup(void (*_code_to_exec)()){

19 code_to_exec = _code_to_exec;

20 // add to list

21 next = head;

22 head = this;

23 }

24 void execute(){

25 code_to_exec();

26 }

27 static void executeAll(){

28 ExecuteOnStartup *p = ExecuteOnStartup::head;

29 while (p){

30 p->execute();

31 p = p->next;

32 }

33 }

34 };

35 void cEnvir::setup(...){

36 try{

37 ExecuteOnStartup::executeAll();

38 }

39 }

Figure 1: Example to illustrate origin sensitivity

sensitivity can distinguish individual calls to code_to_exec
(because it records each iteration of the while loop); but it is
difficult to decide which target is valid because that depends
on the unspecified order in which the constructors are called.
Origin sensitivity can handle this case perfectly: the origin of
code_to_exec is where the related function addresses are
initially taken. For example, the macro at Line 9 creates a
new function called __smallLAN__net_code and passes its
address to the constructor of object __smallLAN__net_reg.
Therefore, Line 9 becomes the origin of this function address.
The origin is propagated through the program along with the
function address when it is assigned to variables or passed as
an argument, in a way similar to how the taint is propagated
in taint analysis [33]. At the ICT, the origin is used to verify
the target. Because only one function address can be taken at
each origin, only one target is possible at the ICT. In other
words, origin sensitivity ideally can reduce the EC size for
this ICT from 168 to 1. The same security guarantee can be
achieved for virtual calls because only one class of objects
can be created at an origin (Section 2.2).

Execution history based context is limited by the in-degree
of an ICT node in the CFG. Assuming the ICT node has n valid
targets and m incoming edges, there exists at least one EC with
more than d n

m e targets (the pigeonhole principle). For example,
the in-degree of the ICT in Fig. 1 is only one for call-site
sensitivity; Call-site sensitivity thus cannot reduce this EC at
all. The in-degree of this ICT for PathArmor is only 16 because
LBR can only record 16 most recent branches. In contrast,
origins are associated with the data flow of the program. It
traces how function addresses are propagated in the program.
Because of this, origin sensitivity can uniquely identify and
verify a single target for each ICT. Moreover, this example
clearly demonstrates that CFI systems for C++ programs must
fully support C-style ICTs because many C++ programs use
them (they may even have the largest ECs). Protection of
virtual calls alone provides only minimal security.

2.2 A Hybrid Definition
The previous definition of origin sensitivity is conceptually
simple but powerful because it can identify a unique target at
run-time for each ICT. However, we need to track origins as
function addresses are propagated throughout the program in
a way similar to how taint is propagated – the origin is the
source of the taint, and the ICT is the sink. It is well-known that
taint analysis has high overhead, even though the performance
of origin tracking could be much better because function
addresses are usually not as widespread as the regular data
(e.g., a network packet) [23]. This problem is more severe for
C-style ICTs because function pointers are frequently copied
or passed as arguments. It will not affect virtual calls as much
for the following reason: the origin of a virtual call is the
location where the receiving object’s constructor is called. If
an object is copied to another object, we essentially create a
new object using its class’ copy constructor or copy assignment
operator. This creates a new origin for that object. There is
thus no need to propagate the origin for objects.
To address the challenge, we propose a hybrid definition

of origin sensitivity that combines the origin with call-site
sensitivity. More specifically, we relax the definition of the
origin as the code location where the related code pointer is
most recently updated. In Fig. 1, the only function pointer
is code_to_exec in the ExecuteOnStartup class. It is last
updated in the class’ constructor at Line 19; i.e., the origin
of code_to_exec is just Line 19. Clearly, one origin cannot
tell Line 9 and 10 (and other places not shown) apart. This
can be solved by adding the call-site information to the origin.
The origin can now be represented as a tuple of (CS, Io).
Io is the instruction that last updates the code pointer; CS
is the immediate caller of the origin function (the function
that contains Io). Under this new definition, the ICT at Line
25 has two origins: (Line 9, Line 19) and (Line 10, Line 19).
Note how the two elements of the origin complement each
other: Io moves the context off the current execution path

Benchmarks Language Context-insensitive 1-call-site 2-call-site Origin-sensitive
ECL ECL Reduce by ECL Reduce by ECL Reduce by

445.gobmk C 427 427 0 427 0 427 0
400.perlbench C 173 120 31% 113 35% 21 88%
403.gcc C 54 54 0 54 0 42 22%
464.h264ref C 10 2 80% 2 80% 1 90%
471.omnetpp C++ 168 168 0 168 0 2 99%
483.xalancbmk C++ 38 38 0 38 0 4 95%
453.povray C++ 11 11 0 11 0 10 10%

Table 1: Effectiveness of hybrid origin sensitivity in reducing the largest EC size (ECL) as compared to call-site sensitivity

(that reaches the ICT); while CS adds extra information to Io
to separate different origins. We use call sites here because
they can be directly fetched from the shadow stack in the user
space. Other execution contexts such as last-branch record
and processor trace can only be accessed in the kernel.

Interestingly, the addition of call sites does NOT make the
context for virtual calls more powerful. The origin of a virtual
call is where the constructor of the receiving object is called.
C++’s constructors cannot be called virtually or indirectly.3
As such, a call to the constructor can create an object of just
one class. There is no ambiguity in the class created, hence no
ambiguity in the virtual functions. As such, we keep using the
object construction site alone as the origin for virtual calls.
Table 1 demonstrates the hybrid origin sensitivity’s capa-

bility in reducing the largest EC size as compared to call-site
sensitivity [21]. Specifically, we run and recorded the com-
plete execution history of all the C/C++ benchmarks in SPEC
CPU2006. We then parsed the history to construct the CFGs
for origin and call-site sensitivity. For example, 1-call-site
sensitivity uses the most recent return address as the context.
For each ICT, we grouped the recorded targets by the last
return addresses. Each group was an EC. We report the largest
EC sizes in Table 1 for all the benchmarks having the largest
EC size greater than or equal to 10 (ten other benchmarks have
less than 10 targets for every ICT). The table shows that origin
sensitivity consistently out-perform call-site sensitivity. Partic-
ularly, we can reduce the largest EC size of 471.omnetpp by
99%, from 168 to 2. Neither call-site nor origin sensitivity is
effective to 445.gobmk because it contains a loop over a large
static array of function pointers (the owl_defendpat array).
403.gcc similarly has a large array (operand_data) used
in a recursive function (expand_complex_abs). Common
CFI policies cannot handle such cases because there is not
sufficient information in the control flow to separate these
targets apart. A similar case is shown in Fig. 4 of Section 4
with the code snippet.

3Bjarne Stroustrup’s C++ Style and Technique FAQ: “To create an object
you need complete information. In particular, you need to know the exact
type of what you want to create. Consequently, a ‘call to a constructor’ cannot
be virtual.” [8].

3 System Design

In this section, we present the design of our LLVM-based
prototype OS-CFI system in detail.

3.1 Overview
Since its inception, many CFI systems have been proposed. To
separate OS-CFI from the existing work,we have the following
requirements for its design:

• Precision: OS-CFI must improve the security by reducing
the average and largest EC sizes. Large ECs are the weakest
link in a CFI system since they provide the most leeway in
“bending” the control flow within the CFI policy

• Security: context-sensitive CFI systems, including OS-CFI,
have more complex reference monitors to collect and main-
tain the contextual information. As such, we must protect
both the contextual data and the (temporary) data used by
reference monitors.

• Performance: high performance overhead can severely
limit the application of any defense mechanism. OS-CFI
must have strong performance relative to the native system.

• Compatibility: OS-CFI must support both C and C++ pro-
grams. As previously mentioned, any defense for C++ pro-
grams must protect both virtual calls and C-style ICTs.

A CFI system consists of three major components: the CFI
policy, the CFG generation, and the enforcement mechanism.
OS-CFI enforces an adaptive CFI policy that applies either
origin or call-site sensitivity for each ICT and adopts the
shadow stack to protect returns. OS-CFI’s CFG is generated
with a precise context-, flow-, and field-sensitive static points-
to analysis [36].4 The enforcement mechanism of OS-CFI uses
the hash-table based set-membership test with the hardware
acceleration for metadata storage. Next, we describe each
component in detail.

4Context sensitivity in the points-to analysis is, more precisely, call-site
sensitivity. It is named as is for the historical reasons.

3.2 OS-CFI Policy
OS-CFI features an adaptive CFI policy [21] that applies either
origin or call-site sensitivity to an ICT, decided by which one
is more capable in reducing the EC size. If both have the
same effectiveness, we prefer call-site sensitivity because it
has lower overhead. If the EC size is already small without
context, we just enforce the context-insensitive CFI for this
ICT. In addition, call-site sensitivity can use multiple levels
of call sites as the context. More levels generally improve
the security but incur higher overhead. We limit call-site
sensitivity in OS-CFI to at most three call sites. Note that
origin sensitivity itself uses 1-call-site on its origins for C-style
ICTs (Section 2.2).
We adopt this policy to improve the performance without

sacrificing the security: origin sensitivity is a powerful context
that can substantially break down large ECs, but it has to collect
andmaintain moremetadata at the run-time. On the other hand,
most ICTs in a program have a small number of possible targets.
For example, the largest EC size for 400.perlbench is 173,
but its second largest one is only 18. For small ECs, call-site
sensitivity is mostly sufficient. We select call-site sensitivity
as the secondary policy because last-branch registers (LBR)
and processor trace (PT) can only be accessed in the kernel
mode, even though they provide more fine-grained execution
records. Call-sites instead can be directly fetched from the
shadow stack in the user space.

3.3 CFG Generation
A complete and precise CFG is the foundation of any CFI
systems. A CFG must be complete to ensure that the resulting
CFI system has no false positives (valid control flows reported
as invalid). False positives are detrimental to the usability of a
security system. Meanwhile, a precise CFG can reduce false
negatives, making the system more secure. CFGs can have
different levels of precision. For example, a CFG that assumes
each ICT can target any address-taken functions is complete
but utterly imprecise. Most CFI systems utilize static points-to
analysis to construct CFGs because such analysis is (suppos-
edly) conservative and the generated CFGs are complete. The
precision of the points-to analysis directly decides the quality
of the generated CFGs. A precise points-to analysis is often
context- and flow-sensitive, such as SUPA [34].
OS-CFI enforces an adaptive CFI policy that combines

call-site and origin sensitivity, which require call-site and
origin-sensitive CFGs, respectively. We represent these CFGs
as a set of tuples:

• Call-site sensitive CFG: each tuple of this CFG has the
following form: (CS1/2/3, Ii , T). CS represents the callers
of the current function on the call stack. OS-CFI may use
up to three call sites. Ii is the address of the ICT instruction
itself. It is either a C-style ICT or a virtual call. T is the set
of valid targets under this context.

1 typedef void (*Format)();

2 class Base {

3 protected:

4 Format fmt;

5 public:

6 Base(/* Base_o.vPtr, origin */) {

7 // store_metadata(Base_o.vPtr, Base::vTavle,

8 // origin);

9 }

10 ~Base() {}

11 virtual void set(Format fp) {

12 fmt = fp;

13 // store_metadata(fmt.addr, fp.value,

14 // Base:set_loc1, Base::set_ctx);

15 }

16 void print() {

17 // ccall_ref_monitor(fmt.addr, fmt.value);

18 fmt();

19 }

20 };

21 class Child : public Base {

22 public:

23 Child(/* Child_o.vPtr, origin */) {

24 // Base(Child_o.vPtr, origin);

25 // store_metadata(Child_o.vPtr, Child::vTable,

26 // origin);

27 }

28 ~Child() {}

29 void set(Format fp) {

30 fmt = fp;

31 // store_metadata(fmt.addr, fp.value,

32 // Child::set_loc1, Child::set_ctx);

33 }

34 void print() {

35 // ccall_ref_monitor(fmt.addr, fmt.value);

36 fmt();

37 }

38 };

39 void exec () {

40 Base *bp = new Base(); // call constructor

41 // vcall_ref_monitor(Base_o.vPtr,

42 // Base::vTable, Base::set())

43 bp->set(&targetA);

44 bp->print();

45

46 Child ci; // call constructor

47 ci.set(&targetB);

48 ci.print();

49

50 bp = &ci;

51 // vcall_ref_monitor(Child_o.vPtr,

52 // Child::vTable, Child::set())

53 bp->set(&targetB);

54 bp->print();

55 }

Figure 2: An example featuring C-style ICT and virtual call.

• Origin sensitive CFG for C-style ICTs: each tuple of this
CFG has the form of ((CSo, Io), Ii , T). (CSo, Io) is the
hybrid origin of the function pointer. In particular, Io is the

last store to the related function pointer; while Ii is where
the function pointer is actually called.

• Origin sensitive CFG for virtual calls: each tuple of this
CFG has the form of (Io, Ii , T). Io is the location where
the receiving object of a virtual call is constructed.

We use the C++ code in Fig. 2 to illustrate how the CFGs
are generated (and later enforced). There are two classes,
Base and Child. Child inherits Base. Base has a protected
function pointer fmt that can only be set by virtual function
set. fmt is called indirectly by the print function, which is
overloaded in Child. As such, this example has both C-style
ICTs (Line 18 and 36) and virtual calls (Line 43 and 53).

Our CFG construction algorithm is based on SVF, a static
tool that “enables scalable and precise inter-procedural depen-
dence analysis for C and C++ programs” [36]. SVF constructs
a whole-program sparse value-flow graph (SVFG) that con-
servatively captures the program’s def-use chains. SVFG is
imprecise because it overestimates the points-to sets when
constructing the def-use chains. SUPA is a client of SVF. It
is an on-demand context-, flow-, and field-sensitive points-to
analysis based on the SVFG. It improves the precision by
refining away imprecise value-flows in the SVFG with strong
updates [34]. Our CFGs are constructed on top of the refined
SVFG of SUPA.
SUPA is a demand-driven points-to analysis. It traverses

the program’s SVFG reversely to compute the points-to sets.
OS-CFI queries SUPA for every ICT in the program. In
response, SUPA starts traversing the def-use chains to solve
the request. OS-CFI piggybacks on SUPA during this traversal.
Specifically, OS-CFI monitors the traversed nodes to identify
the origin of the ICT. When SUPA stops the traversal, it has
located the targets of the ICT, and OS-CFI has collected all
the elements required to generate the tuples for the ICT. Next,
we describe how OS-CFI generates the related tuples for the
indirect calls in Fig. 2 since they are the more complex cases.

In Fig. 2,Base has a protectedmember function pointerfmt,
which is called by Base.print and Child.print. Therefore,
OS-CFI requests SUPA to resolve the points-to set for both
uses of fmt. We describe the resolution of the first call to fmt
by Base.print here. This indirect call to fmt is actually a
use of the fmt filed of the this object. SUPA can create a
def-use chain from Line 18 to the assignment of the fmt field
at Line 12 because it is field-sensitive. This def-use chain is
linked by the bp pointer created at Line 40. When traversing
this def-use chain, OS-CFI marks the first store to fmt as
the origin for the ICT. The traversal continues until SUPA
has reached the call to the set function at Line 43. OS-CFI
then marks Line 43 as the call-site for the origin. Now, SUPA
has located the target of fmt (targetA). Note that SUPA is
precise enough to exclude targetB from the points-to set
of fmt at Line 18. The CFG tuple for Line 18 is ((Line 43,
Line 12), Line 18, targetA). Tuples for other CFGs can be
similarly constructed.

3.4 Enforcement Mechanism
Overview: we use a hash-table based set membership test to
enforce the OS-CFI policy. Specifically, we create a hash table
for each CFG and instrument the program (at the LLVM IR
level) to collect the run-time metadata at the origins. OS-CFI
verifies the targets at each ICT site by searching the hash table
for matches. As mentioned before, the CFGs are encoded as
tuples. The hash function simply takes each element of the
tuple and xor them together. It is extremely fast and leads
to few conflicts in practice. The hash function can be easily
replaced if necessary.

In this section,we will describe the instrumentation in detail.
Note that OS-CFI adopts both call-site and origin sensitivity.
The context for the former is the return addresses on the call
stack, which can be fetched from the shadow stack at the ICT
sites. As such, call-site sensitivity is enforced (instrumented)
only at the ICT sites. However, we need to instrument both
the origin and ICT sites for origin sensitivity.

3.4.1 Instrumentation at Origin Sites

OS-CFI has different origins for C-style ICTs and virtual calls.
We describe them separately.

C-style ICTs: the origin for this type of ICTs is defined
as (CSo, Io). Io is the address of the origin (i.e., the in-
struction that last writes to the function pointer), and CSo

is the most recent return address on the call stack. Since we
are instrumenting the origin, Io is a known constant. CSo

can be retrieved directly from the shadow stack. To store the
metadata, we use the address of the function pointer as the
key and the context, (CSo, Io), as the value. At the ICT site,
we can recover the context with the function pointer address.
Fig. 2 has been annotated with the calls to store metadata at
Line 13 and 31 for Base.fmt function pointer.

Virtual calls: the origin for virtual calls is the location
where the object is created (Io). Io is also a known constant
at the origin site. To store this metadata, we use the object’s
vPtr pointer address as the key and Io as the value. In C++,
every object with virtual functions has a hidden member
named vPtr that points to its vTable. vTable is used by the
compiler for dynamic dispatching of virtual function calls. It
is a table of virtual function pointers. Each virtual function
of a class has a fixed offset in vTable. A virtual call is thus
compiled as an indirect call to the corresponding entry in
vTable. Initially, a sub-class inherits its base class’ vTable.
If the sub-class overrides a virtual function, it sets the related
function pointer in vTable to its own function’s address.
Consequently, the virtual call can call either the base or sub-
class’ virtual function, decided by the class of the receiving
object. COOP attacks essentially compromise the binding of
vPtr and vTable [32]. After an object is created, its vTable
will not be changed.

The reason we use vPtr’s address as the key (instead of
the base address of the object, even though they both can

uniquely identify the object) will be clarified as we discuss
the metadata storage. The instrumentation is added to each
class’ constructor so that we only need to insert the code
once (instead of once at each location where the constructor
is called). Line 7 and 25 of Fig. 2 show the added code. We
simply pass the origin from the object allocation site to the
constructor as a hidden parameter. Note that the constructor
of a sub-class calls the constructor of its base classes first. We
thus add the code near the end of the constructor so that the
metadata will not be mistakenly overwritten.

Metadata storage: the storage of the contextual informa-
tion (i.e., the metadata) is a key design component of OS-CFI.
The metadata of OS-CFI is organized as (key, value) pairs.
The key is the address of the function pointer or the receiving
object’s vPtr pointer. The value is the origin associated with
the key. We store the (key, value) pair at each origin site, and
query the storage with the same key to retrieve the origin
information at each ICT site. The performance and security of
the storage is critical to OS-CFI. In our prototype, we uniquely
(ab)use the hardware-based bound table of Intel MPX for
metadata storage [18].
MPX is a hardware-based bound check system. With the

support of the compiler, run-time, and kernel, MPX can check
the bounds of memory access to prevent memory errors, such
as buffer overflows and over-reads. However, whole program
bound check is hard to implement correctly and efficiently,
even with the hardware support [26]. In fact, the MPX support
will be removed from GCC in version 9.0, after it was just
integrated in 5.0 [27]. This leaves the whole MPX hardware
free-to-use by OS-CFI and other (security) systems.

Figure 3: MPX operations, from Intel’s manual [30]

MPX ’s bound table is indexed by the address of a pointer
(i.e., the key). Each key has its own unique bound table
entry, which consists of the content of the pointer, the upper
bound, and the lower bound. The bound table is organized
and operates like a two-level page table, as shown in Fig. 3:
the bounds directory points to the second-level bounds tables;
each bounds table contains a number of bound entries. The

pointer address is divided into two indexes. To locate a bound
entry, MPX first indexes into the bounds directory to retrieve
the base of the related bounds table, and then uses the second
index to locate the related bound entry. If a bounds table does
not exist, the kernel allocates a new one and links it to the
bounds directory. The base of the bounds directory is stored
in a special register, BNDCFGx, inaccessible to the user space.

We can store all the origins in the MPX bound table. Even
though we are supposed to store the lower and upper bounds
in this table, the hardware does not perform any validations
on the bounds, as confirmed by both the official document
and our experiments. Accordingly, we can store and retrieve
arbitrary numbers in the bounds (after doing some simple
calculations on these two numbers). This design not only
significantly accelerates the access of the metadata but also
improves the security: the MPX table stores the content of the
key along with the bounds. When querying the table for a key,
we need to provide the pointer’s address and its content. If the
provided pointer content mismatches that in the table, MPX
will return an error. Therefore,we can detect any manipulation
of these pointers, after they have been stored, without the extra
performance penalty.

For virtual calls, OS-CFI uses the address of the receiving
object’s vPtr pointer, which points to the object’s vTable, as
the key. As such, OS-CFI can readily detect any COOP attack,
which compromises the object’s vPtr pointer [32], similar
to how object-type integrity (OTI [4]) works. Note that OTI
is not a complete protection for C++ virtual calls because
the attacker can still call the “correct” virtual functions of
an unintended object. In contrast, OS-CFI provides more
comprehensive and complete protection for C++ programs
because it not only enforces the precise CFI but also protects
both virtual calls and C-style ICTs.

OS-CFI can use other keys for the virtual call. For example,
it can use the address of the object itself as the key and a
constant number as its content. We can retrieve the origin from
the MPX table by this key and its “content”, and then enforce
the CFI against the unique target decided by the origin. This
is because the origin (i.e., the location where the receiving
object is constructed) identifies the exact class of the object,
hence the unique target of the virtual call (Section 2.2). Our
prototype uses the address of the vPtr pointer as the key
because it is more natural for MPX (i.e., the vPtr pointer
address and its real content). This is not strictly necessary
since OS-CFI nevertheless can detect these attacks.

3.4.2 Instrumentation at ICT Sites

The instrumentation at each ICT site is rather straightforward:
it first queries the metadata storage with the key and its content
to retrieve the origin. If the origin exists, it further checks the
corresponding hash table whether the origin and the target are
valid for the ICT site. Use the indirect call as an example, we
need to reconstruct the tuple of ((CSo, Io), Ii , T). (CSo, Io)

is the origin fetched from the metadata storage; Ii represents
the address of indirect call instruction; T is the target, i.e., the
value of the function pointer. OS-CFI then queries the hash
table whether this tuple is one of its items. If so, the indirect
call is allowed. For call-site sensitivity, OS-CFI retrieves the
return addresses from the shadow stack and uses a similar
method to verify the target under this context.

3.4.3 Protection of Metadata

The MPX table is protected by ASLR. The 64-bit address
space provides enough entropy to render brute force attacks
difficult, if not impossible. Note that the access to the bounds
directory and tables is implemented by the hardware, similar
to the access to page tables. Particularly, the base of the bounds
directory is stored in a kernel-mode register, inaccessible to
the user space. Therefore, the address of the MPX table will
not be leaked to the user space. This prevents the attacker
from overwriting the metadata stored in the MPX table. We
consider side-channel attacks out-of-scope. A number of
defenses have been proposed to detect/mitigate them [7,45].
If a stronger protection of the MPX table is necessary, we can
use MPX’s bound check to protect it, with a small additional
overhead [4, 22]. Note that this use of the bound check does
not conflict with OS-CFI’s use of the MPX table since the
bound check can be performed with just the bound registers.
The hash tables for CFGs are protected as the read-only

memory and thus cannot be changed by the attacker. A subtle
attack surface is the temporary data used by the reference
monitors to search the hash tables. Context-sensitive CFI
systems have more complex reference monitors, which have to
use the memory (instead of all registers) to store the temporary
data. This makes them vulnerable to race conditions in a brief
time widow. To address that, we utilize the transactional
memory (Intel TSX) to protect the reference monitors [21].
Specifically, TSX keeps tracks of the memory accessed by a
transaction and aborts the transaction if any of that memory is
changed by others (e.g., attacks). We enclose each reference
monitor in a transaction and repeat the transaction if it fails
because, with a very low probability, transactions could fail
without attacks (e.g., because of cache conflicts).

3.4.4 CFG Address Mapping

OurCFGs are generated using SUPA, a LLVM-based points-to
analysis. The resulting CFGs are accordingly encoded as the
LLVM IR locations. However, the instrumentation requires
the run-time addresses of the CFG nodes. We need to map the
IR locations to the run-time addresses. Previous systems often
use the debug information for this purpose, which works for
function addresses but not as well for call sites because they
are not in the symbol table. To address that, heuristics such as
the code structure are used to infer the locations of call sites.
This approach works most of the time but may not be reliable

Benchmarks Out of budget Empty points-to sets
of ICTs SUPA Type # of ICTs Type

400.perlbench 54 639 349 2 7
403.gcc 46 544 218 20 107
445.gobmk 22 1645 1637 1 4

447.dealII 0 - - 23 37
450.soplex 0 - - 157 11
453.porvray 47 317 79 22 24
471.omnetpp 37 143 44 67 21
483.xalancbmk 0 - - 349 29

NGINX 141 1066 102 4 34

Table 2: Failed cases of SUPA and the improvements of our
type-based matching. Column 3, 4, and 6 show the largest EC
sizes for SUPA and the type-based matching. SUPA works for
all other benchmarks.

when the compiler optimization is turned on.
OS-CFI solves this problem without using any heuristics.

Specifically, we insert a custom label after each call instruc-
tion. We then use the label-as-value extension of Clang to
store the label addresses to an array and assign the array to
a custom section. The compiler will automatically convert
these labels to the addresses. Note that the array has to be
marked as used so that the later stages of the compiler will
not optimize it away. These extensions are supported by both
GCC and Clang/LLVM. A benefit of this approach is that
OS-CFI theoretically can support ASLR because the loader
will automatically fix these addresses when the program is
loaded. This resolves the run-time addresses of call sites. For
the rest of the data in the CFGs, we encode the ICT and
origin sites as IDs (specifically the hashes of their source code
locations) since their concrete values are irrelevant. The target
function addresses are obtained from the symbol table. With
the address mapping information, we can encode the CFGs in
the hash tables.

4 Evaluation

In this section, we evaluate how effectively OS-CFI can im-
prove the security by reducing the largest and average EC
sizes and what is the performance overhead for some standard
benchmarks. We also experimented with real-world exploits
to demonstrate how OS-CFI can block them.

4.1 Improvement in Security
The security of a CFI system can be measured by its CFGs,
assuming the enforcement mechanism does not introduce
imprecision. Particularly, the average and largest EC sizes
reflect the overall quality of the CFGs [21]. OS-CFI’s CFGs
are derived from SUPA, a static points-to analysis. Therefore,
the quality of its CFGs are affected by SUPA.

Advancements and issues of SUPA: SUPA is a scalable
and precise context-, flow-, and field-sensitive points-to analy-
sis. Public availability of such algorithms is, to the best of our

knowledge, non-existent before the release of SUPA. Though,
SUPA has its own issues. More specifically, SUPA is an on-
demand points-to analysis. It allocates a specific amount of
(configurable) budgets for each query. We found that, even
with a generous budget on a relatively powerful machine (a
16-core Xeon server with 64GB of memory), SUPA can still
run out of budgets for complex programs, such as gcc and
perlbench. When that happens, SUPA may return wrong
results in the points-to sets (e.g., functions with wrong signa-
tures). In addition, SUPA may return empty results because
of the language features it does not yet support (e.g., C++’s
pointers to member functions). 5 When these issues were
detected, we used a simple type-based matching to fix the
points-to sets.
The results are listed in Table 2. Generally speaking, the

type-based matching can substantially reduce the target sizes
for the failed cases. For example, we can reduce the size of
largest EC size of NGINX returned by SUPA from 1,066 to
just 102. A noticeable exception is gobmk, which has more
than 1,600 address-taken functions with the same signature
((int, int, int, int)). Our manual examination of the
program shows that no ICTs in gobmk should have more than
500 targets.
It is no surprising that SUPA has some issues because

scalable points-to analysis with multiple types of sensitivity
is a hard problem. We suspect SUPA is still more scalable
and/or precise than other publicly available points-to analysis
algorithms, and expect these problems to be solved soon.
However, these issues can put OS-CFI to a disadvantage
currently – our CFGs are generated by piggybacking on the
SUPA as it traverses the SVFG. For these failed cases, SUPA
prematurely stops traversing the graph. Accordingly,we cannot
generate call-site or origin sensitive edges for these failed ICTs.
We instead have to fallback to the context-insensitive CFI for
them. We would like to emphasize that the issues of SUPA
does not invalid the usefulness of origin sensitivity. These are
two orthogonal problems.

Effectiveness of OS-CFI: Table 3 shows how OS-CFI
can significantly reduce both the average and largest EC
sizes. This table focuses on measuring the effectiveness of
origin sensitivity; the table thus does not take the ICTs that
SUPA failed to resolve (Table 2) into consideration. We
will present the overall results with all the ICTs in Table 4.
Additionally, Table 3 compares OS-CFI against the context-
insensitive CFG,which can be calculated directly from SUPA’s
points-to sets. It is technically difficult to compare the origin-
sensitive CFG against path-sensitive CFGs, such as these in
PathArmor [38] or PittyPat [14]: they both use online points-to
analysis to calculate the valid targets, with the help of run-time
information; i.e., their CFGs are dynamically generated and
are, most likely, incomplete for a fair comparison. In addition,
the comparison to call-site sensitive CFG has been shown in

5SUPA may also returns empty results for ICTs in the dead code.

Benchmark # ICTs No Context OS-CFI Reduce by
Avg Lg Avg Lg Avg Lg

400.perlbench 79 23.8 39 2.8 10 88% 74%
401.bzip2 20 2.0 2 1.0 1 50% 50%
403.gcc 347 30.7 169 1.3 27 96% 84%
433.milc 4 2.0 2 1.0 1 50% 50%
445.gobmk 36 8.1 107 1.5 12 82% 89%
456.hmmer 9 2.8 10 1.0 1 64% 90%
464.h264ref 367 2.0 12 1.0 2 50% 83%

444.namd 12 2.5 3 1.0 1 60% 67%
447.dealII 79 2.1 3 1.2 3 43% 0%
450.soplex 317 1.0 1 1.0 1 0% 0%
453.porvray 45 9.3 17 1.6 5 83% 71%
471.omnetpp 331 5.7 109 1.0 2 83% 98%
473.astar 1 1.0 1 1.0 1 0% 0%
483.xalancbmk 1492 2.5 11 1.0 1 60% 91%

NGINX 248 9.4 43 1.1 19 88% 56%

Table 3: Improvement of precision by OS-CFI over context-
insensitive CFI, shown by the significant reduction in the
average (Avg) and largest (Lg) EC sizes.

Table 1. Nevertheless, the absolute average and largest EC sizes
OS-CFI can achieve still clearly show its effectiveness. For
example, OS-CFI can reduce the largest EC size of omnetpp
from 109 to 2, a 98% reduction. It can also reduce the average
EC size of gcc by 96% from 30.7 to 1.3. Overall, OS-CFI can
reduce the average and largest EC sizes by 59.8% and 60.2%
on average, respectively.

1 typedef int (*EVALFUNC)(int sq,int c);

2 static EVALFUNC evalRoutines[7] = {

3 ErrorIt,

4 Pawn,

5 Knight,

6 King,

7 Rook,

8 Queen,

9 Bishop };

10

11 int std_eval (int alpha, int beta) {

12 for (j = 1, a = 1; (a <= piece_count); j++) {

13 score += (*(evalRoutines[piecet(i)]))

14 (i,pieceside(i));

15 }

16 }

Figure 4: An example in sjeng where the ICT at Line 15 has
no context in SUPA.

Overall statistics of OS-CFI: Table 4 shows the overall
statistics ofOS-CFIwhen applied to all the C/C++ benchmarks
in SPECCPU2006 andNGINX. The second and third columns
show the number of C-style ICTs and virtual calls, respectively.
It is clear that C++ programs often use C-style ICTs. Any
protection for C++ programs thus must support both types of
ICTs. OS-CFI enforces an adaptive policy where an ICT can
be protected by either origin or call-site sensitivity. However,
it may fall back to the context-insensitive policy if SUPA
fails to resolve the points-to set for the ICT or if SUPA

#ICTs OS-CFI / Adaptiveness
Origin sensitive Call-site sensitive Context-insensitive OverallBenchmark #c-Call #vCall

#ICTs #Origins Avg Lg #ICTs Depth Avg Lg #ICTs Avg Lg Avg Lg

400.perlbench 135 0 53 49 2.5 6 18 2 3.2 8 64 25.5 349 11.4 349
401.bzip2 20 0 20 4 1.0 1 0 0 0 0 0 0 0 1.0 1
403.gcc 413 0 249 139 1.0 1 88 2 1.0 1 76 29.8 218 3.4 218
433.milc 4 0 0 0 0 0 4 1 1.0 1 0 0 1 1.0 1
445.gobmk 59 0 29 12 1.4 3 7 3 1.0 1 23 661.7 1637 246.3 1637
456.hmmer 9 0 1 15 1.0 1 1 1 1.0 1 7 1.0 1 1.0 1
458.sjeng 1 0 0 0 0 0 0 0 0 0 1 7 7 7.0 7
464.h264ref 367 0 318 52 1.0 1 7 1 1.5 2 42 1.7 2 1.1 2

444.namd 12 0 12 30 1.0 1 0 0 0 0 0 0 0 1.0 1
447.dealII 7 95 73 59 1.0 1 3 2 1.0 1 26 27.9 37 6.7 37
450.soplex 0 357 0 0 0 0 0 0 0 0 357 1.2 11 1.2 11
453.porvray 38 76 37 29 1.5 5 8 3 1.0 1 69 14.4 79 7.5 79
471.omnetpp 39 403 276 243 1.0 1 21 2 1.0 1 145 27.5 44 9.2 44
473.astar 0 1 0 0 0 0 0 0 0 0 1 1.0 1 1.0 1
483.xalancbmk 18 2073 1486 1544 1.0 1 6 3 1.0 1 599 7.2 29 3.5 29

NGINX 393 0 184 169 1.0 1 37 3 1.0 1 172 13.8 102 6.6 102

Table 4: Overall distribution of ICTs among origin sensitive, call-site sensitive, and context-insensitive ICTs. The second column
shows the total number of C-style indirect calls, while the third column shows the number of virtual calls. We omit the results of
mcf, libquantum, and sphinx3 from this table because they do not have ICTs in their main programs.Columns marked with
Avg and Lg show the average and largest EC sizes, respectively.

fails to provide the context for the ICT. The latter could
happen if the ICT uses global function pointers (e.g., Fig. 4).
Specifically, the ICT in Line 13 calls global function pointers
defined in the evalRoutines array. Because evalRoutines
is initialized statically, SUPA will not generate any context for
this ICT. Neither will origin or call-site sensitivity improve
the precision of such cases because the target is decided by the
index (piecet(i)). Even µCFI can only provide the same
precision as context-insensitive CFI in this case because the
constraint data (piecet(i)) can potentially be compromised
before being captured by µCFI using processor trace [17].
In Table 4, most ICTs are protected by origin sensitivity.

Interestingly, the number of origins (the 5th column) is often
less than the number of ICTs (the 4th column) because some
ICTs may share origins. Both origin and call-site sensitivity
can reduce most of the average and largest EC sizes to less
than 2 and 5, respectively 6. Note that OS-CFI prefers call-site
sensitivity over origin sensitivity. Origin sensitivity is used
only if call-site sensitivity fails to provide sufficient security.
Therefore, ICTs protected by origin sensitivity generally have
larger ECs than those by call-site sensitivity. OS-CFI similarly
prefers context insensitivity over call-site sensitivity. ICTs
that SUPA failed to resolve are also context-insensitive. The
majority of the largest ECs in the context-insensitive ICTs
come from the problems in SUPA. We expect OS-CFI to
substantially break down most of these ECs once the problems
in SUPA are resolved.

Next, we present a few case studies to illustrate howOS-CFI
can successfully break down largest ECs in some programs of
SPEC CPU2006.

6Table 3 and 4 cannot be compared directly because Table 4 includes the
ICTs SUPA failed to resolve while Table 3 does not.

4.1.1 Case Studies

Largest EC in 471.omnetpp: Fig. 5 shows the virtual call in
471.omnetpp with the largest number of targets – 35 targets
in context-insensitive CFG. The related ICT is located in
Line 5, which calls the virtual destructor declared in Line
10. Unlike constructors, destructors in C++ can be called
virtually. cObject is the root class in 471.omnetpp. It is
inherited by many other classes, such as CModuleType (Line
12) and cArray (Line 17). Interestingly, cArray is a container
of cObject even though itself is a sub-class of cObject.
cArray has a clear function that calls discard on every
contained object, which in turn calls the virtual destructor.
Clearly, the ICT in Line 5 can target any virtual destructor of
cObject’s sub-classes.

OS-CFI defines an origin for each location where an object
of cObject or its sub-class is created. Because the constructor
in C++ cannot be virtually called, each origin is associated
with exactly one class. As such, OS-CFI can uniquely identify
the specific destructor to be called; i.e., it can enforce a perfect
CFI policy at Line 5 since the EC size is 1.

Largest EC in 483.xalancbmk: The ICT with the largest
EC size in 483.xalancbmk is a C-style indirect call (Fig. 6,
Line 11). The function pointer is defined in Line 4 as a private
member of XMLRegisterCleanup. As such, it can only be
set by function registerCleanup (Line 6). In Line 15 and
16, two objects of XMLRegisterCleanup are created. They
register the cleanup function at Line 18 and 19, respectively.

The ICT at Line 11 have a EC size of 38. Since this is a C-
style ICT, the origin is defined as (CSo, Io). Io is the location
of the instruction that last writes to the function pointer (Line
7), while CSo is the call sites of the store function (Line 18

1 class cObject{

2 protected:

3 void discard(cObject *object){

4 if(object->storage() == 'D')

5 delete object;

6 else

7 object->setOwner(NULL);

8 }

9 public:

10 virtual ~cObject();

11 }

12 class cModuleType:public cObject{

13 ~cModule(){

14 delete [] fullname;

15 }

16 }

17 class cArray:public cObject{

18 private:

19 cObject **vect;

20 public:

21 clear(){

22 for (int i=0; i<=last; i++){

23 if (vect[i] && vect[i]->owner()==this)

24 discard(vect[i]);

25 }

26 }

27 }

Figure 5: Virtual call with the largest EC in 471.omnetpp

1 class XMLRegisterCleanup

2 {

3 private:

4 XMLCleanupFn m_cleanupFn;

5 public :

6 void registerCleanup(XMLCleanupFn cleanupFn) {

7 m_cleanupFn = cleanupFn;

8 }

9 void doCleanup() {

10 if (m_cleanupFn)

11 m_cleanupFn();

12 }

13 }

14 XMLTransService::XMLTransService(){

15 static XMLRegisterCleanup mappingsCleanup;

16 static XMLRegisterCleanup mappingsRecognizerCleanup;

17

18 mappingsCleanup.registerCleanup(reinitMappings);

19 mappingsRecognizerCleanup.registerCleanup

20 (reinitMappingsRecognizer);

21 }

Figure 6: The ICT with the largest EC in 483.xalancbmk

and 19). As such, OS-CFI can enforce a perfect CFI policy
for this ICT with an EC size of 1.

Largest EC in 456.hmmer: 456.hmmer is a benchmark
to measure the performance of searching a gene sequence
database. It begins its execution by reading the HMM (Hidden

1 struct hmmfile_s{

2 int (*parser)(struct hmmfile_s *,

3 struct plan7_s **);

4 };

5 typedef struct hmmfile_s HMMFILE;

6

7 HMMFILE *HMMFileOpen(char *hmmfile,

8 char *env){

9 HMMFILE *hmmfp;

10 hmmfp = (HMMFILE*)

11 MallocOrDie(sizeof(HMMFILE));

12 hmmfp->parser = NULL;

13

14 if(magic == v20magic){

15 hmmfp->parser = read_bin20hmm;

16 return hmmfp;

17 }else if (magic == v20swap){

18 hmmfp->parser = read_bin20hmm;

19 return hmmfp;

20 }else if (magic == v19magic){

21 hmmfp->parser = read_bin19hmm;

22 return hmmfp;

23 }else if (magic == v19swap){

24 hmmfp->parser = read_bin19hmm;

25 return hmmfp;

26 }

27 ...

28 }

29 int HMMFileRead(HMMFILE *hmmfp,

30 struct plan7_s **ret_hmm){

31 return (*hmmfp->parser)(hmmfp,

32 ret_hmm);

33 }

34 int main(...) {

35 if((hmmfp = HMMFileOpen(hmmfile,

36 "HMMERDB")) == NULL)

37 Die(...);

38 if(!HMMFileRead(hmmfp, &hmm))

39 Die(...);

40 }

Figure 7: The ICT with the largest EC in 456.hmmer

Markov Models) file. This model file can have different
versions and formats identified by its magic number. As such,
the benchmark creates the HMMFILE structure with the parser
function pointer (Line 9 and 10), and assigns the function
pointer according to the model file’s magic (Line 14-27). The
function pointer is called at Line 31. In total, there are fifteen
valid parsers.

Because HMMFileRead is called in the main function, call-
site sensitivity is not useful for this case at all because there is
just one call site. As such,OS-CFI applies the origin sensitivity
for this ICT. It creates an origin for each assignment to parser
(Line 15,18,21,24...). Therefore,OS-CFI can enforce a perfect
CFI policy for this ICT as well.

4.2 Security Experiments
We experimented with two real-world exploits and one syn-
thesized exploit to show how OS-CFI can block them.

4.2.1 Real-world Exploits

We experimented with two vulnerabilities, CVE-2015-8668
in libtiff and CVE-2014-1912 in python. We used the existing
PoC exploits to overwrite a function pointer in order to hijack
the control flow. We first verified that the exploits work and
then tested them again under the protection of OS-CFI.

CVE-2015-8668: This is a heap-based buffer overflow
caused by an integer overflow. The program fails to sani-
tize the buffer size if the multiplication overflows (Fig. 8, Line
20). This causes the allocated buffer (uncomprbuf) to be too
small, allowing the attacker to overflow the heap memory. A
potential target of the attack is the TIFF object, which contains
several function pointers. One of such function pointers is
tif_encoderow, which is called by TIFFWriteScanline
later in the program.

1 int TIFFWriteScanline(TIFF* tif, ...){

2 ...

3 status = (*tif->tif_encoderow)(tif, (uint8*) buf,

4 tif->tif_scanlinesize, sample); // <= exploit call-point

5 }

6 void _TIFFSetDefaultCompressionState(TIFF* tif){

7 tif->tif_encoderow = _TIFFNoRowEncode; // <= origin

8 }

9 TIFF* TIFFOpen(...){

10 ...

11 _TIFFSetDefaultCompressionState(tif);

12 }

13 int main(int argc, char* argv[]){

14 TIFF *out = NULL;

15 out = TIFFOpen(outfilename, "w"); // <= exploited object

16 ...

17 uint32 uncompr_size;

18 unsigned char *uncomprbuf;

19 ...

20 uncompr_size = width * length; // non-sanitized code and

21 // following memory allocation

22 uncomprbuf = (unsigned char *)_TIFFmalloc(uncompr_size);

23 ...

24 if (TIFFWriteScanline(out, ...) < 0) {}

25 ...

26 }

Figure 8: Sketch of the vulnerable code in libtiff v4.0.6.

The indirect call at Line 3 was protected in OS-CFI
by origin sensitivity. OS-CFI identified twelve origins of
tif_encoderow with twelve different targets. However, the
only origin recorded during this exploit was the one in
the _TIFFSetDefaultCompressionState function, and
the corresponding valid target was _TIFFNoRowEncode. Al-
though all twelve origins are possible for the ICT at Line 3,
the run-time context allowed us to uniquely identify the only
valid target. Our system successfully detected the exploit.

CVE-2014-1912: this buffer overflow in python-2.7.6 is
caused by the missing check of buffer size (Fig. 9, Line

1 int PyType_Ready(PyTypeObject *type){

2 ...

3 bases = type->tp_bases;

4 PyObject *b = PyTuple_GET_ITEM(bases, i);

5 if(PyType_Check(b))

6 inherit_slots(type, (PyTypeObject *)b); // <= origin context

7 }

8 static void inherit_slots(PyTypeObject *t, PyTypeObject *b){

9 ...

10 type->tp_hash = base->tp_hash; // <= origin

11 }

12 long PyObject_Hash(PyObject *v){

13 PyTypeObject *tp = v->ob_type;

14 if (tp->tp_hash != NULL)

15 return (*tp->tp_hash)(v); // <= exploit call-point

16 }

17 static PyObject *sock_recvfrom_into(...){

18 Py_buffer buf;

19 ...

20

21 if (recvlen < 0) {

22 goto error;

23 }

24 if (recvlen == 0) {

25 recvlen = buflen;

26 }

27

28 // missing check if (buflen < recvlen) {}

29

30 // vulnerable code

31 readlen = sock_recvfrom_guts(s, buf.buf, recvlen, flags, &addr);

32 }

Figure 9: Sketch of the vulnerable code in Python-2.7.6

28) before receiving the data into a Py_buffer object.
Py_buffer has a member of the type PyTypeObject, which
contains a function pointer tp_hash. tp_hash is used by the
PyObject_Hash function to hash objects. The buffer overflow
at Line 31 can be used to overwrite this function pointer.
Our algorithm identified the origin of tp_hash as Line

10 plus its call-site at Line 6. As such, origin sensitivity is
ineffective for the indirect call at Line 15 because there is only
one origin. Instead, 3-call-site sensitivity was used for this ICT.
We counted 40 immediate call sites to the PyObject_Hash
function. With three call-sites, we were able to limit the valid
targets to a single candidate for each valid call stack. Our
system also successfully prevented this exploit.

In both cases, OS-CFI not only blocked the exploits but also
constrained the vulnerable ICTs to a single target at run-time.

4.2.2 Synthesized Exploit: a COOP Attack

We used the example code in Fig. 10 to demonstrate how
OS-CFI can detect both vTable hijacking and control-flow
hijacking for C++ objects. The example was inspired by
PittyPat [14]. There are two virtual calls (Line 44 and 48)
and two vulnerable functions (getPerson and isEmployee).
The getPerson function contains a heap-based overflow,
which allows the attacker to compromise the returned object’s
vPtr pointer, for example, to overwrite Employee’s vPtr to
Employer’s vTable. The buffer overflow in isEmployee
can overwrite res to always return true.
OS-CFI prevented both exploits. The first exploit was de-

1 class Person{

2 protected:

3 SalaryAccount *salary = nullptr;

4 public:

5 virtual void seeEvaluation()=0;

6 virtual void seeSalary(){/*null derefernce*/ }

7 };

8 class Employee : public Person{

9 public:

10 void seeEvaluation(){/* show employee evaluation*/ }

11 void seeSalary(){/*employee has salary account*/ }

12 };

13 class Employer : public Person{

14 public:

15 void seeEvaluation(void){/*list of employee evaluation*/ }

16 };

17 Person *getPerson(int id){

18 char *name = (char*)malloc(10);

19 Person *p;

20 if (isEmployer(id)) {

21 p = new Employer();

22 } else {

23 p = new Employee();

24 }

25 gets(name); // vulnerable gets()

26 ...

27 return p;

28 }

29 bool isEmployee(Person *member) {

30 bool res = false;

31 char name[10];

32 // vulnerable strcpy()

33 strcpy(name, member->getName());

34 ...

35 if(Employee *emp = dyn_cast<Employee*>(member)){

36 if(emp != NULL)

37 res = true;

38 }

39 return res; // attacker overwrite res

40 }

41 int main() {

42 ...

43 Person *member;

44 member = getPerson(id);

45

46 // if employee, can only see his/her evaluation

47 // if employer, can see list of employee evaluation

48 member->seeEvaluation(); // OTI protected

49

50 // only employee has salary account

51 if (isEmployee(member))

52 member->seeSalary(); // CFI protected

53 }

Figure 10: A program vulnerable to COOP attack.

tected by the MPX table that failed to return the origin because
the object’s vPtr had been changed. The second exploit was
blocked because SUPA understands dyn_case and correctly
determines that member should be an object of Employee.
OS-CFI thus refused to call other class’ seeSalary function.

4.3 Performance Evaluation

We evaluated the performance of OS-CFI on all the C/C++
benchmarks in SPEC CPU2006 and NGINX. All the exper-
iments were conducted on a server with the Xeon E3-1275
processor and 64 GB of memory, running the 64-bit Ubuntu
16.04.5 LTS Server system. The kernel is the standard Ubuntu
kernel 4.4.0-139-generic. All the benchmarks were compiled

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

perlbench

bzip2

gcc
m

cf
m

ilc
nam

d

gobm
k

dealII

soplex

povray

hm
m

er

sjeng

libquantum

h264ref

lbm
om

netpp

astar

sphinx3

xalancbm
k

N
G
IN

X

Average_all

Average_ex

 P
e

rf
o

rm
a

n
c
e

 O
v
e

rh
e

a
d w/o TSX

w/ TSX

Figure 11: Normalized performance overhead, Average_ex
shows the average overhead excluding three benchmarks that
have no ICTs.

with the LLVM Safestack, which protects return addresses
by relocating them to a separate stack [23]. We use Safestack
to demonstrate that OS-CFI is compatible with the return
protection. Other return protection can be integrated with
OS-CFI too, such as shadow stack [10] and Intel CET [19],
with different security and performance impacts. Moreover,
OS-CFI uses Intel TSX to protect its reference monitors. This
will incur additional overhead. We measured the performance
of the benchmarks with and without Intel TSX. All the SPEC
CPU2006 benchmarks were measured with the reference data.
The results are show in Fig. 11.

On average, OS-CFI incurred an overhead of 7.1% without
Intel TSX and 7.6% with it. Note that three SPEC benchmarks
(mcf,libquantum, and sphinx3) did not have any noticeable
overhead because they do not have/use ICTs in their main pro-
grams (and Safestack has negligible overhead). We excluded
them from the average. The overhead reduced to 5.7% and
6.1%, respectively, if these three benchmarks were included.
The highest performance overhead was 14.9% for NGINX
and 12.9% for omnetpp. The performance of OS-CFI is bet-
ter than PathArmor (8.5%) [38] and PittyPat (12.7%) [14],
even though OS-CFI is a whole program protection while
PathArmor only protects a few selected syscalls and PittyPat
uses separate threads to parse processor traces (this reduces
the number of available CPU cores by half).
OS-CFI generates its CFGs by piggybacking on SUPA.

Compared to the original SUPA, it took OS-CFI 5.3% longer
on average to analyze these benchmarks, measured on the
same machine as the performance evaluation. As shown in
Table. 5, the average analysis time is about 3 hours, and the
longest analysis time is 15.6 hours from gcc. We consider the
overhead incurred by OS-CFI acceptable since the analysis is
conducted only once offline.

5 Related Work

In this section, we compare OS-CFI to recent (context-
sensitive) CFI systems. Since its introduction in 2005 [2], there
has been a long list of research in CFI [1,6,9,11–14,16,17,24,
25,28,29,31,38,40,41,43,44]. A recent survey by Burow et al.
compares many context-insensitive CFI systems [3]. Earlier
CFI systems often trade security for performance, introducing

Benchmark SUPA (s) OS-CFI (s) Overhead

400.perlbench 6083.2 6350.7 4.4%
401.bzip2 445.8 457.2 2.6%
403.gcc 53029.1 56231.7 6.0%
433.milc 3.9 4.0 2.6%
445.gobmk 4071.5 4246.4 4.3%
456.hmmer 10.9 11.8 8.3%
458.sjeng 2.6 2.6 0.0%
464.h264ref 372.1 382.0 2.7%
444.namd 15.6 16.7 7.1%
447.dealII 651.5 673.8 3.5%
450.soplex 1280.7 1340.2 4.6%
453.povray 4633.9 5304.0 14.5%
471.omnetpp 43929.0 45351.5 3.2%
473.astar 1.4 1.5 7.1%
483.xalancbmk 9703.7 10792.6 11.2%
NGINX 39860.2 41630.7 4.4%
Average 10255.9 10799.8 5.3%

Table 5: The analysis time of OS-CFI as compared to the
vanilla SUPA algorithm. The unit of the analysis time in the
table is seconds.

imprecision in both CFGs and enforcement mechanisms. For
example, some of them enforce a coarse-grained CFG [37,43],
making them vulnerable to attacks [13, 16]. Even precise
context-insensitive CFI systems may be vulnerable because of
their large EC sizes [6]. Compared to these systems, OS-CFI
is a context-sensitive CFI system. Its origin-based context can
effectively break down large ECs, improving the security.
An effective method to improve the precision of CFI is to

use the contextual information to differentiate sets of targets.
However, the addition of context imposes stringent demands
on the system design, leading to more trade-offs and oppor-
tunities: first of all, a context-sensitive CFI system requires
context-sensitive CFGs. It is well-known that context-sensitive
points-to analysis does not scale well. The situation has been
substantially improved with the recent release of SUPA [35].
However, scalable path-sensitive points-to analysis, needed
by systems like PathArmor and PittyPat, is still unavailable;
The second challenge is how to securely collect, store, and use
contextual information with minimal performance overhead.
In the following, we compare OS-CFI to three representative
context-sensitive CFI systems: PathArmor [38], PittyPat [14],
and µCFI [17]. Table 6 shows their key differences.

PathArmor, PittyPat and µCFI all use the recent execution
history recorded by Intel CPUs as the context, last branch
record (LBR) for PathArmor and processor trace (PT) for
the other two. LBR records only the last sixteen branches
taken by the process; while PT provides more fine-grained

record of the past execution. Unlike MPX that can be accessed
directly in the user space, LBR and PT are privileged and only
accessible by the kernel. Transition into and out of the kernel
is an expensive operation. It is thus impractical to check these
records for each ICT. To address that, PathArmor enforces the
CFI policy at the selected syscalls; i.e., only a small part of the
program is protected. PittyPat and µCFI redirect the trace to
a separate process and verify the control flow there. They can
verify all the ICTs but only enforce the results at the selected
syscalls. The drawback of this design is that the usable number
of CPU cores is effectively reduced by half. Because all three
systems cannot enforce the CFI policy at every ICT, their focus
is to protect the other part of the system from attacks. OS-
CFI instead collects the context by inline reference monitors
protected by Intel TSX. It is a whole-program protection that
enforces the CFI policy at every ICT. In addition, all these
three systems require to change the kernel. OS-CFI uses the
stock kernel, whose general MPX support is sufficient.

OS-CFI derives its CFGs from a context-, flow-, and field-
sensitive static points-to analysis. However, PathArmor and
PittyPat enforce path-sensitivity. To the best of our knowledge,
there is no scalable path-sensitive points-to analysis available
(at least publicly). Both systems, aswell as µCFI, instead utilize
on-line points-to analysis, based on the recorded context. The
design of µCFI is interesting in that it turns the constraint
data into indirect control transfers, which are recorded by PT.
This securely conveys the constraint data to the monitoring
process. Unfortunately, it seems that this usage puts too much
pressure on PT, causing PT to lose packets. This renders
µCFI unsuitable for large programs. Indeed, it cannot handle
the most demanding benchmarks in SPEC CPU2006, such
as gcc, omnetpp, and xalancbmk, and the benchmarks are
tested with the smaller train data, not the regular reference
data. OS-CFI focuses on reducing the EC sizes. PathArmor
and PittyPat are unlikely to achieve the same effectiveness
because they use the execution history as the context. The
largest EC sizes will remain significant because of the limited
incoming paths towards a ICT. For example, PittyPat reports
one large EC size of 218. The goal of µCFI is to enforce
unique target for each ICT. This is achieved by considering the
constraint data during verification. However, the constraint
data can potentially be compromised before being captured
by µCFI, as mentioned in the paper [17]. This weakens its
security guarantee.

CPI is another closely related system. It can guarantee the
integrity of all code pointers in the program by separating them
and related critical data pointers in a protected safe memory
region [23]. As such, CPI can prevent all the control-flow
hijacking attacks. Compared to CPI,OS-CFI achieves a similar
but slightly relaxed protection in the CFI principle (because
OS-CFI still allows some leeway to manipulate the control
flow). OS-CFI uses the MPX table to store its metadata. This
usage can be applied in CPI as well to further improve its
performance, as suggested by the paper itself. Burow et al.

Categories CFIXX PathArmor PittyPat µCFI OS-CFI

Protected Object type Control flow Control flow Control flow Control flow&Object type
Context vPtr to vTable

binding
last branches taken Processor execution paths Execution paths and constraint

data
Origins of function point-
ers and objects

CFG None On-demand, constraint
driven context-
sensitive CFG

Abstract-interpretation based
online points-to analysis

Run-time points-to analysis CFGs based on context-
, flow- and field-sensitive
static points-to analysis

Coverage Virtual calls Selected syscalls Whole program, enforced at
selected syscalls

Whole program, enforced at
selected syscalls

Whole program, enforced
at every ICT

Required
hardware

Intel MPX for meta-
data storage

Intel LBR for taken
branches

Intel PT for execution history Intel PT for execution history
and control data

Intel MPX for metadata
storage and Intel TSX to
protect reference monitors

Kernel
changes

No, built-in MPX
support

Yes, enforce CFI on the
syscall boundary

Yes, redirect traces and en-
force CFI on syscall boundary

Yes, redirect traces and en-
force CFI on syscall boundary

No, built-in MPX and TSX
support

Runtime
support

Library to track the
type of each object

Per-thread control
transfer monitoring

Additional threads to parse
trace and verify control flow

Additional threads to parse
trace and verify control flow

Hash based verification
protected by TSX

Table 6: Comparison between OS-CFI and recent (context-sensitive) CFI systems

independently discovered the way to re-purpose theMPX table
as a generic key-value store [5]. As a hardware accelerated data
store, MPX can be used in a wide variety of security systems,
especially considering that its bound registers can be used for
high-performance SFI (software-fault isolation) [4, 22, 39].

Another closely related system isCFIXX [4],which enforces
the object-type integrity (OTI). CFIXX prevents attacks such
as COOP [32] from subverting an object’s vPtr pointer. OTI is
a complementary policy to CFI [4]. It requires and strengthens
CFI to provide more complete protection. OS-CFI’s protection
of virtual calls uses the same key (but different metadata, i.e.,
the origin) as OTI as a by-product of using MPX to keep
the metadata. As mentioned earlier, OS-CFI can use different
keys in its design as long as it can retrieve the origin of
the receiving object because the origin alone can uniquely
identify the target. Overall, OS-CFI provides stronger security
guarantee than CFIXX with its CFI for all ICTs. There are
several other systems that focus on protecting virtual calls, such
as VTrust [42] and SAFEDISPATCH [20]. OS-CFI supports
both C-style ICTs and C++ virtual calls.

6 Summary

We have presented a new type of context for CFI systems
– origin sensitivity. By considering the origins of function
pointers and objects during the verification of control transfers,
we can significantly improve the security of CFI by reducing
the largest and average EC sizes. By leveraging the commodity
hardware features such as MPX and TSX, our system incurs
only a small overhead.

7 Availability

Our prototype is available as an open-source project at https:
//github.com/mustakcsecuet/OS-CFI.

8 Acknowledgment

Wewould like to thank the anonymous reviewers and our shep-
herd, Dr. Nathan Dautenhahn, for their insightful comments
that helped improve the presentation of this paper. This project
was partially supported by National Science Foundation (NSF)
under Grant 1453020. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of NSF.

References

[1] Niu, Ben and Tan, Gang , “Per-input Control-flow In-
tegrity,” in Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security.
ACM, 2015, pp. 914–926.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti,
“Control-flow Integrity,” in Proceedings of the 12th ACM
conference on Computer and communications security.
ACM, 2005, pp. 340–353.

[3] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz,
S. Brunthaler, and M. Payer, “Control-Flow Integrity:
Precision, Security, and Performance,” ACM Comput.
Surv., vol. 50, no. 1, pp. 16:1–16:33, Apr. 2017. [Online].
Available: http://doi.acm.org/10.1145/3054924

[4] N. Burow, D. McKee, S. A. Carr, and M. Payer, “CFIXX:
Object Type Integrity for C++,” in Proceedings of the
2018 Network and Distributed System Security Sympo-
sium, 2018.

[5] N. Burow, X. Zhang, and M. Payer, “SoK: Shining Light
on Shadow Stacks,” in Proceedings of the 2019 IEEE
Symposium on Security and Privacy, ser. SP ’19. Wash-
ington, DC, USA: IEEE Computer Society, 2019.

https://github.com/mustakcsecuet/OS-CFI
https://github.com/mustakcsecuet/OS-CFI
http://doi.acm.org/10.1145/3054924

[6] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R.
Gross, “Control-Flow Bending: On the Effectiveness
of Control-Flow Integrity,” in Proceedings of the 24th
USENIX Security Symposium, vol. 14, 2015, pp. 28–38.

[7] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detect-
ing Privileged Side-channel Attacks in Shielded Execu-
tion with Déjá Vu,” in Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications
Security. ACM, 2017, pp. 7–18.

[8] “Bjarne Stroustrup’s C++ Style and Technique FAQ,”
http://www.stroustrup.com/bs_faq2.html, p. 5.

[9] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Com-
plete Control-flow Integrity for Commodity Operating
System Kernels,” in Security and Privacy (SP), 2014
IEEE Symposium on. IEEE, 2014, pp. 292–307.

[10] T. H. Dang, P. Maniatis, and D. Wagner, “The Perfor-
mance Cost of Shadow Stacks and Stack Canaries,” in
Proceedings of the 10th ACM Symposium on Informa-
tion, Computer and Communications Security, ser. ASIA
CCS ’15, 2015.

[11] L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-
assisted Fine-grained Control-flow Integrity: Towards
Efficient Protection of Embedded Systems against Soft-
ware Exploitation,” in Proceedings of the 51st Annual
Design Automation Conference. ACM, 2014, pp. 1–6.

[12] L. Davi and A.-R. Sadeghi, “Building Control-flow
Integrity Defenses,” in Building Secure Defenses Against
Code-Reuse Attacks. Springer, 2015, pp. 27–54.

[13] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose,
“Stitching the Gadgets: On the Ineffectiveness of Coarse-
grained Control-flow Integrity Protection,” in Proceed-
ings of the 23Rd USENIX Conference on Security, ser.
SEC’14, 2014.

[14] R. Ding, C. Qian, C. Song, B. Harris, T. Kim,
and W. Lee, “Efficient Protection of Path-sensitive
Control Security,” in 26th USENIX Security Sym-
posium (USENIX Security 17). Vancouver, BC:
USENIX Association, 2017, pp. 131–148. [On-
line]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/ding

[15] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos, “Control Ju-
jutsu: On the Weaknesses of Fine-grained Control-flow
Integrity,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security.
ACM, 2015, pp. 901–913.

[16] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portoka-
lidis, “Out of Control: Overcoming Control-flow In-
tegrity,” in Proceedings of the 2014 IEEE Symposium
on Security and Privacy, ser. SP ’14, 2014.

[17] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung,
W. R. Harris, T. Kim, and W. Lee, “Enforcing
Unique Code Target Property for Control-Flow
Integrity,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. New York, NY, USA:
ACM, 2018, pp. 1470–1486. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3243797

[18] Intel 64 and IA-32 Architectures Software Developerś
Manual, Intel.

[19] Intel, “Control-flow Enforcement,” https:
//software.intel.com/sites/default/files/managed/4d/
2a/control-flow-enforcement-technology-preview.pdf,
2018.

[20] D. Jang, Z. Tatlock, and S. Lerner, “SafeDispatch: Secur-
ingC++VirtualCalls fromMemoryCorruptionAttacks,”
in NDSS, 2014.

[21] M. Khandaker, A. Naser, W. Liu, Z. Wang, Y. Zhou, and
Y. Cheng, “Adaptive Call-site Sensitive Control Flow
Integrity,” in Proceedings of the 4th IEEE European
Symposium on Security and Privacy (EuroS&P 2019),
2019.

[22] K. Koning, X. Chen, H. Bos, C. Giuffrida, and
E. Athanasopoulos, “No Need to Hide: Protecting Safe
Regions on Commodity Hardware,” in Proceedings
of the Twelfth European Conference on Computer
Systems, ser. EuroSys ’17. New York, NY, USA:
ACM, 2017, pp. 437–452. [Online]. Available:
http://doi.acm.org/10.1145/3064176.3064217

[23] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea,
R. Sekar, and D. Song, “Code-pointer Integrity,” in
11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). Broomfield, CO:
USENIX Association, 2014, pp. 147–163. [Online].
Available: https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/kuznetsov

[24] J. Li, Z. Wang, T. Bletsch, D. Srinivasan, M. Grace, and
X. Jiang, “Comprehensive and Efficient Protection of
Kernel Control Data,” IEEE Transactions on Information
Forensics and Security, vol. 6, no. 4, pp. 1404–1417,
Dec 2011.

[25] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and
M. Franz, “Opaque Control-flow Integrity,” in Proceed-
ings of the 22th Network and Distributed System Security
Symposium, ser. NDSS ’15, 2015.

http://www.stroustrup.com/bs_faq2.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding
http://doi.acm.org/10.1145/3243734.3243797
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
http://doi.acm.org/10.1145/3064176.3064217
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov

[26] “Intel MPX Performance Evaluation for Bound Check-
ing,” https://intel-mpx.github.io/performance/.

[27] “GCC 9 Looks Set To Remove Intel MPX Sup-
port,” https://www.phoronix.com/scan.php?page=news_
item&px=GCC-Patch-To-Drop-MPX.

[28] B. Niu and G. Tan, “Modular Control-flow Integrity,”
ACM SIGPLAN Notices, vol. 49, no. 6, pp. 577–587,
2014.

[29] Niu,Ben andTan,Gang, “RockJIT: Securing Just-in-time
Compilation Using Modular Control-flow Integrity,” in
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014,
pp. 1317–1328.

[30] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and
C. Fetzer, “Intel MPX explained: An empirical study
of intel MPX and software-based bounds checking ap-
proaches,” arXiv preprint arXiv:1702.00719, 2017.

[31] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained
Control-flow Integrity through Binary Hardening,” in
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2015,
pp. 144–164.

[32] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R.
Sadeghi, and T. Holz, “Counterfeit Object-oriented Pro-
gramming: On the Difficulty of Preventing Code Reuse
Attacks in C++ Applications,” in Proceedings of the
36th IEEE Symposium on Security and Privacy. IEEE,
2015.

[33] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All You
Ever Wanted to Know About Dynamic Taint Analy-
sis and Forward Symbolic Execution (but Might Have
Been Afraid to Ask),” in Proceedings of the 2010 IEEE
Symposium on Security and Privacy, ser. SP ’10, 2010.

[34] Y. Sui and J. Xue, “On-demand Strong Update Analy-
sis via Value-flow Refinement,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2016, pp.
460–473.

[35] “Demand Driven Pointer Annalysis,” https://github.com/
SVF-tools/SUPA.

[36] “Static Value-FlowGraph in LLVM,” https://github.com/
SVF-tools/SVF.

[37] C. Tice,T. Roeder,P. Collingbourne,S. Checkoway,Ú. Er-
lingsson, L. Lozano, and G. Pike, “Enforcing Forward-
edge Control-flow Integrity in GCC & LLVM,” in
USENIX Security Symposium, 2014, pp. 941–955.

[38] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras,
L. Sambuc, A. Slowinska, H. Bos, and C. Giuffrida,
“Practical Context-sensitive CFI,” in Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’15, 2015.

[39] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Efficient Software-based Fault Isolation,” in Proceed-
ings of the 14th ACM Symposium On Operating System
Principles, December 1993.

[40] Z. Wang and X. Jiang, “Hypersafe: A Lightweight Ap-
proach to Provide Lifetime Hypervisor Control-flow
Integrity,” in Security and Privacy (SP), 2010 IEEE
Symposium on. IEEE, 2010, pp. 380–395.

[41] Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: De-
tecting Violation of Control-flow Integrity Using Perfor-
mance Counters,” in Dependable Systems and Networks
(DSN), 2012 42nd Annual IEEE/IFIP International Con-
ference on. IEEE, 2012, pp. 1–12.

[42] C. Zhang, D. Song, S. A. Carr, M. Payer, T. Li, Y. Ding,
and C. Song, “VTrust: Regaining Trust on Virtual Calls,”
in NDSS, 2016.

[43] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. Mc-
Camant, D. Song, and W. Zou, “Practical Control Flow
Integrity and Randomization for Binary Executables,” in
Proceedings of the 2013 IEEE Symposium on Security
and Privacy, ser. SP ’13, 2013.

[44] M. Zhang and R. Sekar, “Control Flow Integrity for
COTS Binaries,” in Proceedings of the 22Nd USENIX
Conference on Security, ser. SEC’13, 2013.

[45] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A
real-time side-channel attack detection system in clouds,”
in International Symposium on Research in Attacks,
Intrusions, and Defenses. Springer, 2016.

https://intel-mpx.github.io/performance/
https://www.phoronix.com/scan.php?page=news_item&px=GCC-Patch-To-Drop-MPX
https://www.phoronix.com/scan.php?page=news_item&px=GCC-Patch-To-Drop-MPX
https://github.com/SVF-tools/SUPA
https://github.com/SVF-tools/SUPA
https://github.com/SVF-tools/SVF
https://github.com/SVF-tools/SVF

	Introduction
	Origin Sensitivity
	A Simple Definition
	A Hybrid Definition

	System Design
	Overview
	OS-CFI Policy
	CFG Generation
	Enforcement Mechanism
	Instrumentation at Origin Sites
	Instrumentation at ICT Sites
	Protection of Metadata
	CFG Address Mapping

	Evaluation
	Improvement in Security
	Case Studies

	Security Experiments
	Real-world Exploits
	Synthesized Exploit: a COOP Attack

	Performance Evaluation

	Related Work
	Summary
	Availability
	Acknowledgment

