COP 4610: Introduction to Operating Systems (Fall 2016)

Chapter 4: Threads

Zhi Wang
Florida State University

Contents

- Thread overview
Multithreading models
- Thread libraries
- Threading issues
+ Operating system examples
- Windows XP threads

- Linux threads

Motivation

- Why threads”?
- multiple tasks of an application can be implemented by threads
- e.g., update display, fetch data, spell checking, answer a network request
* process creation is heavy-weight while thread creation is light-weight
- threads can simplify code, increase efficiency

Kernels are generally multithreaded

What i1s Thread

- A thread is an independent stream of instructions that can be scheduled to run
as such by the kernel

- Process contains many states and resources
+ code, heap, data, file handlers (including socket), IPC
- process ID, process group ID, user ID
- stack, registers, and program counter (PC)

- Threads exist within the process, and shares its resources

- each thread has its own essential resources (per-thread resources). stack,
registers, program counter, thread-specific data...

* access to shared resources need to be synchronized
-+ Threads are individually scheduled by the kernel
- each thread has its own independent flow of control

- each thread can be in any of the scheduling states

Single and Multithreaded

Processes

code data files
registers stack
thread —>»

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack
<

multithreaded process

thread

UNIX Threads

data

heap

User Address Space

routinel wvarl()
varz2()

main()
routinel ()

routine2 ()

arraya
arrayB

Stack Pointer
Prgm. Counter

Registers

Process ID
Group ID
User ID

User Address Space
Thread 2 | routine2() wvarl Stack Pointer
stack var2 Prgrm. Counter
var3 Registers
Thread 1 routinel () varl 2 ninte:
tack var2 " sunte
main()
text routinel ()
routine2()
Process ID
User ID
Group ID
arrayA
data arrayB

Thread Benefits

Responsiveness

- multithreading an interactive application allows a program to continue running even part
of it is blocked or performing a lengthy operation

Resource sharing
- sharing resources may result in efficient communication and high degree of cooperation
Economy
- thread is more lightweight than processes
- Scalability

- better utilization of multiprocessor architectures

Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request

client » server » thread

U

(3) resume listening
for additional
client requests

Concurrent Execution on a Single-core System

single core T4 To T3 Ty T4 To T3 T Ty

time

Parallel Execution on a Multicore System

core 1 T4 Ta T4 T4 T4

core2 | To Ty To Ty To

Implementing Threads

- Thread may be provided either at the user level, or by the kerne

- user threads are supported above the kernel without kernel support
- three thread libraries: POSIX Pthreads, Win32 threads, and Java threads
kernel threads are supported and managed directly by the kernel
- all contemporary OS supports kernel threads
Multithreading models: ways to map user threads to kernel threads
- many-to-one model
- one-to-one model

- many-to-many model

Many-to-One

Many user-level threads mapped to a single kernel thread
- thread management is done by the thread library in user space (efficient)
- entire process will block if a thread makes a blocking system call

- convert blocking system call to non-blocking (e.g., select in Unix)?
- multiple threads are unable to run in parallel on multi-processors
Examples:
- Solaris green threads

- GNU portable threads

Many-to-One Model

S

«—— kernel thread

One-10-One

Each user-level thread maps to one kernel thread
it allows other threads to run when a thread blocks
multiple thread can run in parallel on multiprocessors
- creating a user thread requires creating a corresponding kernel thread
it leads to overhead
most OSes implementing this model limit the number of threads
Examples
- Windows NT/XP/2000
Linux

- Solaris 9 and later

One-to-one Model

«—— |ser thread

R
&6 & b

Many-to-Many Model

- Many user level threads are mapped to many kernel threads

- It solves the shortcomings of 1:1 and m:1 model

- developers can create as many user threads as necessary

- corresponding kernel threads can run in parallel on a multiprocessor
- Examples

- Solaris prior to version 9

- Windows NT/2000 with the ThreadFiber package

Many-to-Many Model

?4— user thread

<«—— Kkernel thread

Two-level Model

- Similar to many-to-many model, except that it allows a user thread to be bound to
kernel thread

Examples
IRIX
HP-UX
- Tru64 UNIX

- Solaris 8 and earlier

Two-level Model

Thread Libraries

- Thread library provides programmer with API for creating and managing threads
- Two primary ways of implementing

- library entirely in user space with no kernel support

- kernel-level library supported by the OS
- Three main thread libraries:

- POSIX Pthreads

+ Win32

- Java

Pthreads

- A POSIX standard API for thread creation and synchronization
- common in UNIX operating systems (Solaris, Linux, Mac OS X)
- Pthread is a specification for thread behavior
- Implementation is up to developer of the library

-+ e.9., Pthreads may be provided either as user-level or kernel-level

Pthreads APIs

pthread create

create a new thread

pthread_exit

terminate the calling thread

pthread_join

join with a terminated thread

pthread_Kill

send a signal to a thread

pthread_yield

yield the processor

pthread cancel

send a cancellation request to a thread

pthread _mutex_init

initialize a mutex

pthread mutex_destroy

destroy a mutex

pthread mutex_lock

lock a mutex

pthread mutex_ unlock

unlock a mutex

pthread key create

create a thread-specific data key

pthread key delete

delete a thread-specific data key

pthread_setspecific

set value for the thread-specific data key

pthread_getspecific

get value for the thread-specific data key

Pthreads Example

struct thread_info { /* Used as argument to thread_start() */
pthread_t thread_id; /* ID returned by pthread_create() */
int thread_num; /* Application-defined thread # */
char *argv_string; /* From command-line argument */

s

static void *thread_start(void *arg)
{ struct thread_info *tinfo = (struct thread_info *) arg;
char *uargv, *p;

printf("Thread %d: top of stack near %p; argv_string=%s\n",
tinfo->thread_num, &p, tinfo->argv_string);

uargv = strdup(tinfo->argv_string);

for (p = uargv; *p !'= "\0"; p++) {

“p = toupper(*p);

ks

return uargv;

Pthreads Example

int main(int argc, char *argv[])
i .
pthread_attr_init(&attr);

pthread_attr_setstacksize(&attr, stack_size);

/* Allocate memory for pthread_create() arguments */
tinfo = calloc(num_threads, sizeof(struct thread_info));

/* Create one thread for each command-1line argument */

for (tnum = 0; tnum < num_threads; tnum++) {
tinfo[tnum].thread_num = tnum + 1;
tinfo[tnum].argv_string = argvloptind + tnum];

/* The pthread_create() call stores the thread ID into
corresponding element of tinfo[] */
pthread_create(&tinfo[tnum].thread_id, &attr,
&thread_start, &tinfo[tnum]);

¥

pthread_attr_destroy(&attr);

Pthreads Example

for (tnum = 0; tnum < num_threads; tnum++) {
pthread_join(tinfo[tnum].thread_id, &res);
printf("Joined with thread %d; returned value was %s\n",
tinfo[tnum].thread_num, (char *) res);
free(res); /* Free memory allocated by thread */

¥

free(tinfo);
ex1t(EXIT_SUCCESS);

Win32 APl Multithreaded C Program

typedef struct MyData {
int vall;

int valZ;
} MYDATA, *PMYDATA;

int _tmain()

{
PMYDATA pDataArray[MAX_THREADS];
DWORD dwThreadIdArray[MAX_THREADS];
HANDLE hThreadArray[MAX_THREADS];

// Create MAX_THREADS worker threads.
for(C int 1=0; 1<MAX_THREADS; 1i++)
{
// Allocate memory for thread data.
pDataArray[1] = (PMYDATA) HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY,
sizeof(MYDATA));

// Generate unique data for each thread to work with.

// Create the thread to begin execution on its own.
hThreadArray[i] = CreateThread(

NULL, // default security attributes
Q, // use default stack size
MyThreadFunction, // thread function name
pDataArray[1i], // argument to thread function
0 // use default creation flags

&dwThreadIdArray[i]); // returns the thread identifier

Win32 APl Multithreaded C Program

// Check the return value for success.
// If CreateThread fails, terminate execution.
// This will automatically clean up threads and memory.
1f (hThreadArray[1] == NULL)
{
ErrorHandler(TEXT("CreateThread"));
ExitProcess(3);
3

} // End of main thread creation loop.

// Wait until all threads have terminated.
WaitForMultipleObjects(MAX_THREADS, hThreadArray, TRUE, INFINITE);

// Close all thread handles and free memory allocations.
for(int 1=0; 1<MAX_THREADS; 1++)

{
CloseHandle(hThreadArray[1]);
1f(pDataArray[1] '= NULL)
{
HeapFree(GetProcessHeap(), 0, pDataArray[i]);
pDataArray[1] = NULL; // Ensure address 1s not reused.
¥
¥
return 0;

Java Threads

- Java threads are managed by the Java VM

-1t is implemented using the threads model provided by underlying OS
- Java threads may be created by:

- extending the java.lang.Thread class

- then implement the java.lang.Runnable interface

Java Multithreaded Program

public class SimpleThreads {
static void threadMessage(String message) {
String threadName = Thread. Q). O;
System. : ("%s: %s%n", threadName, message);

¥

private static class MessagelLoop implements Runnable {
public void run() {

string importantInfol | = { "Mares eat oats", "Does eat oats",
"Little lambs eat 1ivy", "A kid will eat 1ivy too" };
try {
for (int 1 = 0; 1 < importantInfo. ;o 1++) {
Thread. (4000) ;

threadMessage(importantInfo[i]); }
+ catch (InterruptedException e) {
threadMessage("I wasn't done!™);

¥

Java Multithreaded Program

public static void main(String args|[]) throws InterruptedException {
long patience = 1000 * 60 * 60;
threadMessage("Starting MessagelLoop thread");

long startTime = System. Q;
Thread t = new Thread(new Messageloop());
t. Q;
threadMessage("Waiting for Messageloop thread to finish");
while (t. O) {
threadMessage("Still waiting...");
t. (1000) ;
1f (((System. () - startTime) > patience) &&
t. O) {
threadMessage("Tired of waiting!");
t. Q;
t. O; // threads will exit soon
3
3

Threading Issues

- Semantics of fork and exec system calls
- Thread cancellation of target thread

- Signal handling

- Thread pools

- Thread-specific data

- Scheduler activations

Semantics of Fork and Exec

- Fork duplicates the whole single-threaded process

- Does fork duplicate only the ealling thread or all threads for multi-threaded process?
- some UNIX systems have two versions of fork, one for each semantic
- If fork all, how to handle multiple threads running on CPUS"”

- EXxec typically replaces the entire process, multithreaded or not
- use “fork the calling thread” if calling exec soon after fork

- Activity: review man fork

Thread Cancellation

- Thread cancellation: terminating a (target) thread before it has finished
- does it cancel the target thread immediately or later?
- Two general approaches:
- asynchronous cancellation: terminates the target thread immediately
- what if the target thread is in critical section requesting resources?

- deferred cancellation: allows the target thread to periodically check if it
should be cancelled

Pthreads: cancellation point

Signal Handling

- Signals are used in UNIX systems to notify a process that a particular event has
occurred. It follows the same pattern:

- asignal is generated by the occurrence of a particular event

- a signal is delivered to a process

- once delivered, the signal must be handled
- A signal can be synchronous (exceptions) or asynchronous (e.g., |/O)

- synchronous signals are delivered to the same thread causing the signal
- Asynchronous signals can be delivered to:

- the thread to which the signal applies

- every thread in the process

- certain threads in the process (signal masks)

- a specific thread to receive all signals for the process

Thread Pools

- One thread per request model has scalability problems
-+ overhead to create a thread before each request
- it may exhaust the resource (Denial-of-Service attack)
- Thread pool solves the problem by:
- create a number of threads in a pool, where they sit and wait for work
- when received a request, the server wakens a thread and pass it the request
- thread returns to the poll after completing the job
-+ Advantages:

- servicing a request with an existing thread is usually faster than waiting to create
a new thread

- thread pool limits the number of threads that exist at any one point

Thread Specific Data

- Data is shared in multithreaded programs
- Thread specific data allows each thread to have its own copy of data

- In kernel, there are usually CPU-specific data

Lightweight Process & Scheduler Activations

- Lightweight process (LWP) is an intermediate data structure between the user and kernel
thread in many-to-many and two level models

- to the user-thread library, it appears as virtual processors to schedule user threads on
- each LWP is attached to a kernel thread
- kernel thread blocks —> LWP blocks —> user threads block
- kernel schedules the kernel thread, thread library schedules user threads
- thread library may make sub-optimal scheduling decision
- solution: let the kernel notify the library of important scheduling events
- Scheduler activation notifies the library via upcalls
- upcall: the kernel call a upcall handler in the thread library (similar to signal)

- e.g., when a thread is about to block, the library can pause the thread, and schedule
another one onto the virtual processor

Lightweight Processes

3 - yser thread

LWP | «=— lightweight process

l/- -‘\l
| K |*——kemel thread
~ ’

Windows XP Threads

- Win XP implements the one-to-one mapping thread model
- each thread contains
- athreadid
- aregqister set for the status of the processor
+ a separate user stack and a kernel stack
- a private data storage area
- The primary data structures of a thread include:
- ETHREAD: executive thread block (kernel space)
- KTHREAD: kernel thread block (kernel space)

- TEB: thread environment block (user space)

Windows XP Threads Data Structures

ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
> and
synchronization
. information
- kernel
stack

TEB

thread identifier

user
stack

thread-local
storage

kernel space

user space

Linux Threads

- Linux has both fork and clone system call

- Clone accepts a set of flags which determine sharing between the parent and children
- FS/VM/SIGHAND/FILES —> equivalent to thread creation
- no flag set no sharing (copy) —> equivalent to fork

- Linux doesn’t distinguish between process and thread, uses term task rather than thread

flag meaning
CLONE FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.

—nd of Chapter 4

