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Motivation

- Why threads”?
- multiple tasks of an application can be implemented by threads
- e.g., update display, fetch data, spell checking, answer a network request
* process creation is heavy-weight while thread creation is light-weight
- threads can simplify code, increase efficiency

Kernels are generally multithreaded



What i1s Thread

- A thread is an independent stream of instructions that can be scheduled to run
as such by the kernel

- Process contains many states and resources
+ code, heap, data, file handlers (including socket), IPC
- process ID, process group ID, user ID
- stack, registers, and program counter (PC)

- Threads exist within the process, and shares its resources

- each thread has its own essential resources (per-thread resources). stack,
registers, program counter, thread-specific data...

* access to shared resources need to be synchronized
-+ Threads are individually scheduled by the kernel
- each thread has its own independent flow of control

- each thread can be in any of the scheduling states



Single and Multithreaded
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UNIX Threads
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Thread Benefits

Responsiveness

- multithreading an interactive application allows a program to continue running even part
of it is blocked or performing a lengthy operation

Resource sharing
- sharing resources may result in efficient communication and high degree of cooperation
Economy
- thread is more lightweight than processes
- Scalability

- better utilization of multiprocessor architectures



Multithreaded Server Architecture
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Concurrent Execution on a Single-core System
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Parallel Execution on a Multicore System
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Implementing Threads

- Thread may be provided either at the user level, or by the kerne

- user threads are supported above the kernel without kernel support
- three thread libraries: POSIX Pthreads, Win32 threads, and Java threads
kernel threads are supported and managed directly by the kernel
- all contemporary OS supports kernel threads
Multithreading models: ways to map user threads to kernel threads
- many-to-one model
- one-to-one model

- many-to-many model



Many-to-One

Many user-level threads mapped to a single kernel thread
- thread management is done by the thread library in user space (efficient)
- entire process will block if a thread makes a blocking system call

- convert blocking system call to non-blocking (e.g., select in Unix)?
- multiple threads are unable to run in parallel on multi-processors
Examples:
- Solaris green threads

- GNU portable threads
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One-10-One

Each user-level thread maps to one kernel thread
it allows other threads to run when a thread blocks
multiple thread can run in parallel on multiprocessors
- creating a user thread requires creating a corresponding kernel thread
it leads to overhead
most OSes implementing this model limit the number of threads
Examples
- Windows NT/XP/2000
Linux

- Solaris 9 and later



One-to-one Model
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Many-to-Many Model

- Many user level threads are mapped to many kernel threads

- It solves the shortcomings of 1:1 and m:1 model

- developers can create as many user threads as necessary

- corresponding kernel threads can run in parallel on a multiprocessor
- Examples

- Solaris prior to version 9

- Windows NT/2000 with the ThreadFiber package



Many-to-Many Model
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Two-level Model

- Similar to many-to-many model, except that it allows a user thread to be bound to
kernel thread

Examples
IRIX
HP-UX
- Tru64 UNIX

- Solaris 8 and earlier



Two-level Model




Thread Libraries

- Thread library provides programmer with API for creating and managing threads
- Two primary ways of implementing

- library entirely in user space with no kernel support

- kernel-level library supported by the OS
- Three main thread libraries:

- POSIX Pthreads

+ Win32

- Java



Pthreads

- A POSIX standard API for thread creation and synchronization
- common in UNIX operating systems (Solaris, Linux, Mac OS X)
- Pthread is a specification for thread behavior
- Implementation is up to developer of the library

-+ e.9., Pthreads may be provided either as user-level or kernel-level



Pthreads APIs

pthread create

create a new thread

pthread_exit

terminate the calling thread

pthread_join

join with a terminated thread

pthread_Kill

send a signal to a thread

pthread_yield

yield the processor

pthread cancel

send a cancellation request to a thread

pthread _mutex_init

initialize a mutex

pthread mutex_destroy

destroy a mutex

pthread mutex_lock

lock a mutex

pthread mutex_ unlock

unlock a mutex

pthread key create

create a thread-specific data key

pthread key delete

delete a thread-specific data key

pthread_setspecific

set value for the thread-specific data key

pthread_getspecific

get value for the thread-specific data key




Pthreads Example

struct thread_info { /* Used as argument to thread_start() */
pthread_t thread_id; /* ID returned by pthread_create() */
int thread_num;  /* Application-defined thread # */
char *argv_string; /* From command-line argument */

s

static void *thread_start(void *arg)
{ struct thread_info *tinfo = (struct thread_info *) arg;
char *uargv, *p;

printf("Thread %d: top of stack near %p; argv_string=%s\n",
tinfo->thread_num, &p, tinfo->argv_string);

uargv = strdup(tinfo->argv_string);

for (p = uargv; *p !'= "\0"; p++) {

“p = toupper(*p);

ks

return uargv;



Pthreads Example

int main(int argc, char *argv[])
i .
pthread_attr_init(&attr);

pthread_attr_setstacksize(&attr, stack_size);

/* Allocate memory for pthread_create() arguments */
tinfo = calloc(num_threads, sizeof(struct thread_info));

/* Create one thread for each command-1line argument */

for (tnum = 0; tnum < num_threads; tnum++) {
tinfo[tnum].thread_num = tnum + 1;
tinfo[tnum].argv_string = argvloptind + tnum];

/* The pthread_create() call stores the thread ID into
corresponding element of tinfo[] */
pthread_create(&tinfo[tnum].thread_id, &attr,
&thread_start, &tinfo[tnum]);

¥

pthread_attr_destroy(&attr);



Pthreads Example

for (tnum = 0; tnum < num_threads; tnum++) {
pthread_join(tinfo[tnum].thread_id, &res);
printf("Joined with thread %d; returned value was %s\n",
tinfo[tnum].thread_num, (char *) res);
free(res); /* Free memory allocated by thread */

¥

free(tinfo);
ex1t(EXIT_SUCCESS);



Win32 APl Multithreaded C Program

typedef struct MyData {
int vall;

int valZ;
} MYDATA, *PMYDATA;

int _tmain()

{
PMYDATA pDataArray[MAX_THREADS];
DWORD  dwThreadIdArray[MAX_THREADS];
HANDLE hThreadArray[MAX_THREADS];

// Create MAX_THREADS worker threads.
for(C int 1=0; 1<MAX_THREADS; 1i++ )
{
// Allocate memory for thread data.
pDataArray[1] = (PMYDATA) HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY,
sizeof(MYDATA));

// Generate unique data for each thread to work with.

// Create the thread to begin execution on its own.
hThreadArray[i] = CreateThread(

NULL, // default security attributes
Q, // use default stack size
MyThreadFunction, // thread function name
pDataArray[1i], // argument to thread function
0 // use default creation flags

&dwThreadIdArray[i]); // returns the thread identifier



Win32 APl Multithreaded C Program

// Check the return value for success.
// If CreateThread fails, terminate execution.
// This will automatically clean up threads and memory.
1f (hThreadArray[1] == NULL)
{
ErrorHandler(TEXT("CreateThread"));
ExitProcess(3);
3

} // End of main thread creation loop.

// Wait until all threads have terminated.
WaitForMultipleObjects(MAX_THREADS, hThreadArray, TRUE, INFINITE);

// Close all thread handles and free memory allocations.
for(int 1=0; 1<MAX_THREADS; 1++)

{
CloseHandle(hThreadArray[1]);
1f(pDataArray[1] '= NULL)
{
HeapFree(GetProcessHeap(), 0, pDataArray[i]);
pDataArray[1] = NULL; // Ensure address 1s not reused.
¥
¥
return 0;



Java Threads

- Java threads are managed by the Java VM

-1t is implemented using the threads model provided by underlying OS
- Java threads may be created by:

- extending the java.lang.Thread class

- then implement the java.lang.Runnable interface



Java Multithreaded Program

public class SimpleThreads {
static void threadMessage(String message) {
String threadName = Thread. Q). O;
System. : ("%s: %s%n", threadName, message);

¥

private static class MessagelLoop implements Runnable {
public void run() {

string importantInfol | = { "Mares eat oats", "Does eat oats",
"Little lambs eat 1ivy", "A kid will eat 1ivy too" };
try {
for (int 1 = 0; 1 < importantInfo. ;o 1++) {
Thread. (4000) ;

threadMessage(importantInfo[i]); }
+ catch (InterruptedException e) {
threadMessage("I wasn't done!™);

¥



Java Multithreaded Program

public static void main(String args|[]) throws InterruptedException {
long patience = 1000 * 60 * 60;
threadMessage("Starting MessagelLoop thread");

long startTime = System. Q;
Thread t = new Thread(new Messageloop());
t. Q;
threadMessage("Waiting for Messageloop thread to finish");
while (t. O) {
threadMessage("Still waiting...");
t. (1000) ;
1f (((System. () - startTime) > patience) &&
t. O) {
threadMessage("Tired of waiting!");
t. Q;
t. O; // threads will exit soon
3
3



Threading Issues

- Semantics of fork and exec system calls
- Thread cancellation of target thread

- Signal handling

- Thread pools

- Thread-specific data

- Scheduler activations



Semantics of Fork and Exec

- Fork duplicates the whole single-threaded process

- Does fork duplicate only the ealling thread or all threads for multi-threaded process?
- some UNIX systems have two versions of fork, one for each semantic
- If fork all, how to handle multiple threads running on CPUS"”

- EXxec typically replaces the entire process, multithreaded or not
- use “fork the calling thread” if calling exec soon after fork

- Activity: review man fork



Thread Cancellation

- Thread cancellation: terminating a (target) thread before it has finished
- does it cancel the target thread immediately or later?
- Two general approaches:
- asynchronous cancellation: terminates the target thread immediately
- what if the target thread is in critical section requesting resources?

- deferred cancellation: allows the target thread to periodically check if it
should be cancelled

Pthreads: cancellation point



Signal Handling

- Signals are used in UNIX systems to notify a process that a particular event has
occurred. It follows the same pattern:

- asignal is generated by the occurrence of a particular event

- a signal is delivered to a process

- once delivered, the signal must be handled
- A signal can be synchronous (exceptions) or asynchronous (e.g., |/O)

- synchronous signals are delivered to the same thread causing the signal
- Asynchronous signals can be delivered to:

- the thread to which the signal applies

- every thread in the process

- certain threads in the process (signal masks)

- a specific thread to receive all signals for the process



Thread Pools

- One thread per request model has scalability problems
-+ overhead to create a thread before each request
- it may exhaust the resource (Denial-of-Service attack)
- Thread pool solves the problem by:
- create a number of threads in a pool, where they sit and wait for work
- when received a request, the server wakens a thread and pass it the request
- thread returns to the poll after completing the job
-+ Advantages:

- servicing a request with an existing thread is usually faster than waiting to create
a new thread

- thread pool limits the number of threads that exist at any one point



Thread Specific Data

- Data is shared in multithreaded programs
- Thread specific data allows each thread to have its own copy of data

- In kernel, there are usually CPU-specific data



Lightweight Process & Scheduler Activations

- Lightweight process (LWP) is an intermediate data structure between the user and kernel
thread in many-to-many and two level models

- to the user-thread library, it appears as virtual processors to schedule user threads on
- each LWP is attached to a kernel thread
- kernel thread blocks —> LWP blocks —> user threads block
- kernel schedules the kernel thread, thread library schedules user threads
- thread library may make sub-optimal scheduling decision
- solution: let the kernel notify the library of important scheduling events
- Scheduler activation notifies the library via upcalls
- upcall: the kernel call a upcall handler in the thread library (similar to signal)

- e.g., when a thread is about to block, the library can pause the thread, and schedule
another one onto the virtual processor



Lightweight Processes
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Windows XP Threads

- Win XP implements the one-to-one mapping thread model
- each thread contains
- athreadid
- aregqister set for the status of the processor
+ a separate user stack and a kernel stack
- a private data storage area
- The primary data structures of a thread include:
- ETHREAD: executive thread block (kernel space)
- KTHREAD: kernel thread block (kernel space)

- TEB: thread environment block (user space)



Windows XP Threads Data Structures
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Linux Threads

- Linux has both fork and clone system call

- Clone accepts a set of flags which determine sharing between the parent and children
- FS/VM/SIGHAND/FILES —> equivalent to thread creation
- no flag set no sharing (copy) —> equivalent to fork

- Linux doesn’t distinguish between process and thread, uses term task rather than thread

flag meaning
CLONE FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.
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