COP 4610: Introduction to Operating Systems (Spring 2015)

Chapter 18:
The Linux System

Zhi Wang
Florida State University

Content

| inux history
Design principles

Kernel modules

Process management
Scheduling

Memory management

File systems

Input and output
Inter-process communication

Network structure

Objectives

- To explore the history of the UNIX operating system from which Linux is derived and
the principles which Linux is designed upon

- To examine the Linux process model and illustrate how Linux schedules processes
and provides interprocess communication

- To look at memory management in Linux

- To explore how Linux implements file systems and manages 1/0O devices

History

- Linux is a modern, free operating system based on UNIX standards

- First developed as a small but self-contained kernel in 1991 by Linus Torvalds, with the
major design goal of UNIX compatibility

Its history has been one of collaboration by many users from all around the world,
corresponding almost exclusively over the Internet

It has been designed to run efficiently and reliably on common PC hardware, but also runs
on a variety of other platforms

- The core Linux operating system kernel is entirely original, but it can run much existing free
UNIX software, resulting in an entire UNIX-compatible operating system free from
proprietary code

- Many, varying Linux Distributions including the kernel, applications, and management tools

The Linux Kernel

- Version 0.01 was released at May 1991
* N0 networking
- ran only on 80386-compatible Intel processors and on PC hardware
- extremely limited device-drive support
- supported only the Minix file system
- Linux 1.0 (March 1994) included these new features:
- support UNIX’s standard TCP/IP networking protocols
- BSD-compatible socket interface for networking programming
- device-driver support for running IP over an Ethernet
- enhanced file system
- support for a range of SCSI controllers for high-performance disk access
- extra hardware support

- Version 1.2 (March 1995) was the final PC-only Linux kernel

Linux 2.0

-+ Version 2.0 was released in June 1996
- support for multiple architectures, including a fully 64-bit native Alpha port
- support for multiprocessor architectures
- Improved memory-management code

- improved TCP/IP performance

- support for internal kernel threads

- standardized configuration interface
- 2.4 and 2.6 increased SMP support

- added journaling file system

- preemptive kernel

- 64-bit memory support

The Linux System

- Linux uses many free tools developed as part of
- Berkeley’s BSD operating system
- socket interface
+ networking tools (e.qg., traceroute...)
- MIT’s X Window System
- Free Software Foundation's GNU project
- bin-utilities, gcc, gnu libc...
- Linux used to developed by individual, now also big cooperators
- |IBM, Intel, Red hat, Marvell, Microsoft...

- Main Linux repository: www.kernel.org

http://www.kernel.org

Linux Distributions

-+ Standard, precompiled sets of packages, or distributions
- Include the basic Linux system
- system installation and management utilities
- ready-to-install packages of common UNIX tools
- Popular Linux distributions
- Ubuntu, Fedora, Debian, Open Suse, ...

- see distrowatch.com

http://distrowatch.com

Linux Licensing

- Linux kernel is distributed under GNU General Public License (GPL)
- GPL is defined by the Free Software Foundation
- GPL implications:

- anyone using Linux, or creating their own derivative of Linux, may not make the derived
(public) product proprietary

- software released under GPL may not be redistributed as binary-only

- LGPL: Lesser GPL

- allow non-(L)GPL software to link to LGPL licensed software

Design Principles

- Linux is a multiuser, multitasking system

- Linux is UNIX compatible
- 1ts file system adheres to traditional UNIX semantics
-1t fully implements the standard UNIX networking model
- its APl adheres to the SVR4 UNIX semantics
- it is POSIX-compliant

- Linux supports a wide variety of architectures

- Main design goals are speed, efficiency, and standardization

Components of a Linux System

system- lser user
management utilit
9 processes /
programs programs

compilers

system shared libraries

Linux kernel

loadable kernel modules

Kernel Modules

Kernel code that can be compiled, loaded, and unloaded independently
it allows a Linux system to be set up with standard minimal kernel

- other components loaded as modules

- typically to implement device drivers, file systems, or networking protocols
- Three components to Linux module support:
- module management
load/unload the module

- resolve symbols (similar to a linker)
- driver registration

- kernel define an interface, module implement the interface

- module registers to the kernel, kernel maintain a list of loaded modules
- conflict resolution

- resource conflicts

- Tools to support kernel modules: Ismod, rmmod, modprobe

Process Management

Linux process management follows the Unix model:
fork system call creates a new process
a new program is run after a call to execve
Process control block contains all the information about the process
process’s identity
process environment

process context

Process |ldentity

- Process ID (PID): the unique identifier for the process
- Credentials: each process has an associated UID and group IDs

- determine the process’s rights to access system resources and files.
- Personality: the ABI the process conforms to

- Linux supports ABIs of different flavors of UNIX (e.g., BSD)

- personality selects the ABI used by the process

- not traditionally found on UNIX systems

Process Environment

Environment is inherited from its parent

- argument vector lists the command-line arguments used to it
- conventionally starts with the program name

- environment vector is a list of “NAME=VALUE" pairs
- associates named environment variables with arbitrary textual values
- e.g., PATH="/usr/bin;....”

Environment variables can be used to pass data among processes

Environment variables can be set per-process

Process Context

- (Constantly changing) state of a running program at any point in time.
- many context information: resources, scheduling, files, accounting...
- scheduling context is the most important part of the process context
- file table is an array of pointers to kernel file structures.
- when making file I/O, processes refer to files by their index into this table
- signal-handler defines the routine to be called upon some events

- virtual memory defines the process’s address space

Processes and Threads

Linux uses the same internal representation for processes and threads
- athread is a new process sharing the same address space as its parent.
- A distinction is made when a new thread Is created by clone
- clone allows fine-grained control over what is shared between two threads

- fork creates a new process with its own entirely new process context

Scheduling

- Allocate CPU time to different tasks within an operating system
Linux supports both user processes and kernel tasks

kernel tasks may be requested by a running process, or executes internally on
behalf of a device driver

CPU-X Expired CPU-X Active
rungueue runqueue
— —+—> Priority 1
—_— -+ Priority 2
0 @ Real-time task priorities
2 | 1 2 | 1,
@ o]
U L
(T w
—_— —4+—» Priority 100
£ £ Y _
S g -
; —t+—> Priority 101 b —t+—> Priority 101 k
ks e \
N . el > User task priorities
'0
=t Prionty 140 = Priority 140 |

Memory Management

- Linux’s physical MM system deals with allocating and freeing:
* pages, groups of pages, and small blocks of memory
- Memory is split into 3 different zones due to hardware characteristics
- Two major types of allocator:
-+ page allocator allocates physical pages using buddy algorithm
- many data structure needs whole pages (e.g., driver buffers)

- slab allocator allocates memory in smaller sizes (kernel objects)

Memory Zones

Zone physical memory
ZONE DMA <16 MB
ZONE NORMAL 16 .. 896 MB

Z0ONE HIGHMEM

> 896 MB

Page Allocator (

Buddy System)

16KB

8KB

8KB

4KB

4KB

Slab Allocator

kernel objects caches slabs
3KB T~
objects
S~ physical
_ s contiguous
o pages
\L __/
7KB e
objects T >
__.’
—_"’_r ______ i

Virtual Memory

- VM maintains address space of each process
- Linux VM supports many different feature

- demand paging, swapping, copy-on-write, memory mapped files...
- Linux keeps track of every physical page (struct page)

- each physical frame has an associated struct page

- Kkeep struct page at minimal to avoid waste of memory

—xecuting and Loading User Programs

- Linux can load many different executable file formats

- E
- E
=

- a.out...

- IS the most command format

- file has a header followed by several page-aligned sections

- Binary files are loaded into memory using demand paging

Memory Layout for ELF Programs

kernel virtual memory T memory invisible to user-mode code

stack

'
1

memory-mapped region

memory-mapped region

memory-mapped region

A the ‘brk’ pointer
run-time data

uninitialized data
initialized data
program text

forbidden region

File Systems

- To the user, Linux’s file system is a hierarchical directory tree
- Internally, Linux kernel use the virtual file system (VFS)
- Linux supports many many file systems
- Ext2, Ext3, Ext4, Btrfs, NTFS, FAT/FAT32, ...
- Linux also supports synthetic file systems, such as the /proc file system
- /proc does not store data, file content is computed on demand

- /proc provides many statistics about the kernel

—xt2fs Block-Allocation (Bitmap)

allocating scattered free blocks

S ALV /!

allocating continuous free blocks

“ X /l

block in use o biock selected bit boundary

by allocator

free block — bitmap search byte boundary

Input and Output

- Linux device 1/O uses two types of cache:
- data Is cached in the page cache
- unified cache with the virtual memory system
- metadata is cached in the buffer cache
* a separate cache indexed by the physical disk block
- Linux splits all devices into three classes:
- block devices allow random access to independent, fixed size blocks of data
- character devices include most other devices
-+ they don’t need to support the functionality of regular files

- network devices are interfaced via the kernel’s networking subsystem

Device-Driver Block Structure

user application

|
|
file system | b!ockﬂ character network
. ___ell'_cf_'_e___ device file socket
ST T . =
I/O scheduler i e fite : orotocol
_______ = = . | discipline | driver
Plock ' SCSI| manager ————] e —————
dovice = character network
driver | SCSldevice device device
j driver driver driver

Inter-process Communication

- Linux informs processes that an event has occurred via signals

- there is a limited number of signals

- signals cannot carry information, only the fact that a signal has occurred
- Linux supports SVR4 |PC

- pipe, shared memory, synchronization...

Network Structure

- Networking is a key area of functionality for Linux.
- It supports the standard Internet protocols for UNIX to UNIX communications
- It also iImplements protocols native to non-UNIX operating systems
- e.g., Apple talk, IPX (Novell), Netbios
- Internally, Linux networking is implemented by three layers of software:
+ socket interface
- protocol drivers

- network device drivers

—nd of Chapter 21

