
COP 4610: Introduction to Operating Systems (Spring 2015)

Chapter 18:
The Linux System

Zhi Wang

Florida State University

Content

• Linux history
• Design principles
• Kernel modules
• Process management
• Scheduling
• Memory management
• File systems
• Input and output
• Inter-process communication
• Network structure

Objectives

• To explore the history of the UNIX operating system from which Linux is derived and
the principles which Linux is designed upon

• To examine the Linux process model and illustrate how Linux schedules processes
and provides interprocess communication

• To look at memory management in Linux
• To explore how Linux implements file systems and manages I/O devices

History
• Linux is a modern, free operating system based on UNIX standards
• First developed as a small but self-contained kernel in 1991 by Linus Torvalds, with the

major design goal of UNIX compatibility
• Its history has been one of collaboration by many users from all around the world,

corresponding almost exclusively over the Internet
• It has been designed to run efficiently and reliably on common PC hardware, but also runs

on a variety of other platforms
• The core Linux operating system kernel is entirely original, but it can run much existing free

UNIX software, resulting in an entire UNIX-compatible operating system free from
proprietary code

• Many, varying Linux Distributions including the kernel, applications, and management tools

The Linux Kernel
• Version 0.01 was released at May 1991

• no networking
• ran only on 80386-compatible Intel processors and on PC hardware
• extremely limited device-drive support
• supported only the Minix file system

• Linux 1.0 (March 1994) included these new features:
• support UNIX’s standard TCP/IP networking protocols
• BSD-compatible socket interface for networking programming
• device-driver support for running IP over an Ethernet
• enhanced file system
• support for a range of SCSI controllers for high-performance disk access
• extra hardware support

• Version 1.2 (March 1995) was the final PC-only Linux kernel

Linux 2.0

• Version 2.0 was released in June 1996
• support for multiple architectures, including a fully 64-bit native Alpha port
• support for multiprocessor architectures
• improved memory-management code
• improved TCP/IP performance
• support for internal kernel threads
• standardized configuration interface

• 2.4 and 2.6 increased SMP support
• added journaling file system
• preemptive kernel
• 64-bit memory support

The Linux System

• Linux uses many free tools developed as part of
• Berkeley’s BSD operating system

• socket interface
• networking tools (e.g., traceroute…)

• MIT’s X Window System
• Free Software Foundation's GNU project

• bin-utilities, gcc, gnu libc…
• Linux used to developed by individual, now also big cooperators

• IBM, Intel, Red hat, Marvell, Microsoft...
• Main Linux repository: www.kernel.org

http://www.kernel.org

Linux Distributions

• Standard, precompiled sets of packages, or distributions
• include the basic Linux system
• system installation and management utilities
• ready-to-install packages of common UNIX tools

• Popular Linux distributions
• Ubuntu, Fedora, Debian, Open Suse, …
• see distrowatch.com

http://distrowatch.com

Linux Licensing
• Linux kernel is distributed under GNU General Public License (GPL)

• GPL is defined by the Free Software Foundation
• GPL implications:

• anyone using Linux, or creating their own derivative of Linux, may not make the derived
(public) product proprietary

• software released under GPL may not be redistributed as binary-only
• LGPL: Lesser GPL

• allow non-(L)GPL software to link to LGPL licensed software

Design Principles

• Linux is a multiuser, multitasking system
• Linux is UNIX compatible

• its file system adheres to traditional UNIX semantics
• it fully implements the standard UNIX networking model
• its API adheres to the SVR4 UNIX semantics
• it is POSIX-compliant

• Linux supports a wide variety of architectures
• Main design goals are speed, efficiency, and standardization

Components of a Linux System

Kernel Modules
• Kernel code that can be compiled, loaded, and unloaded independently

• it allows a Linux system to be set up with standard minimal kernel
• other components loaded as modules

• typically to implement device drivers, file systems, or networking protocols
• Three components to Linux module support:

• module management
• load/unload the module
• resolve symbols (similar to a linker)

• driver registration
• kernel define an interface, module implement the interface
• module registers to the kernel, kernel maintain a list of loaded modules

• conflict resolution
• resource conflicts

• Tools to support kernel modules: lsmod, rmmod, modprobe

Process Management

• Linux process management follows the Unix model:
• fork system call creates a new process
• a new program is run after a call to execve

• Process control block contains all the information about the process
• process’s identity
• process environment
• process context

Process Identity

• Process ID (PID): the unique identifier for the process
• Credentials: each process has an associated UID and group IDs

• determine the process’s rights to access system resources and files.
• Personality: the ABI the process conforms to

• Linux supports ABIs of different flavors of UNIX (e.g., BSD)
• personality selects the ABI used by the process
• not traditionally found on UNIX systems

Process Environment

• Environment is inherited from its parent
• argument vector lists the command-line arguments used to it

• conventionally starts with the program name
• environment vector is a list of “NAME=VALUE” pairs

• associates named environment variables with arbitrary textual values
• e.g., PATH=“/usr/bin;….”

• Environment variables can be used to pass data among processes
• Environment variables can be set per-process

Process Context

• (Constantly changing) state of a running program at any point in time.
• many context information: resources, scheduling, files, accounting…
• scheduling context is the most important part of the process context
• file table is an array of pointers to kernel file structures.

• when making file I/O, processes refer to files by their index into this table
• signal-handler defines the routine to be called upon some events
• virtual memory defines the process’s address space
• …

Processes and Threads

• Linux uses the same internal representation for processes and threads
• a thread is a new process sharing the same address space as its parent.

• A distinction is made when a new thread is created by clone
• clone allows fine-grained control over what is shared between two threads
• fork creates a new process with its own entirely new process context

Scheduling

• Allocate CPU time to different tasks within an operating system
• Linux supports both user processes and kernel tasks
• kernel tasks may be requested by a running process, or executes internally on

behalf of a device driver

Memory Management

• Linux’s physical MM system deals with allocating and freeing:
• pages, groups of pages, and small blocks of memory

• Memory is split into 3 different zones due to hardware characteristics
• Two major types of allocator:

• page allocator allocates physical pages using buddy algorithm
• many data structure needs whole pages (e.g., driver buffers)

• slab allocator allocates memory in smaller sizes (kernel objects)

Memory Zones

Page Allocator (Buddy System)

Slab Allocator

Virtual Memory

• VM maintains address space of each process
• Linux VM supports many different feature

• demand paging, swapping, copy-on-write, memory mapped files…
• Linux keeps track of every physical page (struct page)

• each physical frame has an associated struct page
• keep struct page at minimal to avoid waste of memory

Executing and Loading User Programs

• Linux can load many different executable file formats
• ELF, a.out…
• ELF is the most command format
• ELF file has a header followed by several page-aligned sections

• Binary files are loaded into memory using demand paging

Memory Layout for ELF Programs

File Systems

• To the user, Linux’s file system is a hierarchical directory tree
• Internally, Linux kernel use the virtual file system (VFS)

• Linux supports many many file systems
• Ext2, Ext3, Ext4, Btrfs, NTFS, FAT/FAT32, …

• Linux also supports synthetic file systems, such as the /proc file system
• /proc does not store data, file content is computed on demand
• /proc provides many statistics about the kernel

Ext2fs Block-Allocation (Bitmap)

Input and Output
• Linux device I/O uses two types of cache:

• data is cached in the page cache
• unified cache with the virtual memory system

• metadata is cached in the buffer cache
• a separate cache indexed by the physical disk block

• Linux splits all devices into three classes:
• block devices allow random access to independent, fixed size blocks of data
• character devices include most other devices

• they don’t need to support the functionality of regular files
• network devices are interfaced via the kernel’s networking subsystem

Device-Driver Block Structure

Inter-process Communication

• Linux informs processes that an event has occurred via signals
• there is a limited number of signals
• signals cannot carry information, only the fact that a signal has occurred

• Linux supports SVR4 IPC
• pipe, shared memory, synchronization…

Network Structure

• Networking is a key area of functionality for Linux.
• it supports the standard Internet protocols for UNIX to UNIX communications
• It also implements protocols native to non-UNIX operating systems

• e.g., Apple talk, IPX (Novell), Netbios
• Internally, Linux networking is implemented by three layers of software:

• socket interface
• protocol drivers
• network device drivers

End of Chapter 21

