
On Graph Query Optimization in Large Networks

Peixiang Zhao, Jiawei Han

Department of Computer Science
University of Illinois at Urbana-Champaign

pzhao4@illinois.edu, hanj@cs.uiuc.edu

September 14th, 2010

VLDB’10 Singapore On Graph Query Optimization in Large Networks 1 / 25

Outline

1 Introduction

2 The Pattern-based Graph Indexing Framework

3 SPath: Graph Indexing on Large Networks

4 Graph Query Processing and Optimization

5 Experimental Evaluation

6 Conclusion

VLDB’10 Singapore On Graph Query Optimization in Large Networks 2 / 25

Introduction

The burgeoning size and heterogeneity of networks call for
effective graph query processing methods in a diverse range
of applications:

1 Bioinformatics and Cheminformatics

2 Social Networks and Communication Networks

3 Software Systems

Graph Query

Given a network G and a query graph Q, the graph query problem
is to find as output all distinct matchings of Q in G .

The graph query problem is hard
1 Subgraph isomorphism checking is proven to be NP-complete

2 The heterogeneity and sheer size of networks hinder a direct
application of well-known graph matching methods

VLDB’10 Singapore On Graph Query Optimization in Large Networks 3 / 25

A Running Example

1

2 3

4

5

6

7

8

9

10

11

12

A

B C

A

B

A

C

A

C

B

B

A

1

2

3

4A

B

C

C

Figure: A Network G and a Query Graph Q

VLDB’10 Singapore On Graph Query Optimization in Large Networks 4 / 25

Introduction

Motivation: Can we take advantage of well-studied database
indexing and query optimization techniques to address the
graph query problem on large networks?

SPath:
1 Indexes neighborhood signatures of vertices in the network,

which maintains decomposed shortest path information within
vertex vicinity

1 Space-efficient

2 Effective search space pruning ability

3 High scalability in large networks

2 Boosts graph query processing from vertex-at-a-time to
path-at-a-time

VLDB’10 Singapore On Graph Query Optimization in Large Networks 5 / 25

The Baseline Algorithm

Exploring a tree-structured search space by considering all
possible vertex-to-vertex correspondences from Q to G

Matching Candidate

∀v ∈ V (Q), the matching candidates of v is a set C (v) of vertices
in G bearing the same vertex label with v , i.e.,
C (v) = {u|l(u) = l ′(v), u ∈ V (G)}, where l and l ′ are vertex
labeling functions for G and Q, respectively.

Total search space size:
∏N

i=1 |C (vi)|
Worst-case time complexity: O(MN) (M and N: the sizes of
G and Q, respectively)

VLDB’10 Singapore On Graph Query Optimization in Large Networks 6 / 25

The Pattern Based Graph Indexing Framework

Objective: to reduce the search space size
∏N

i=1 |C (vi)|
1 Minimize the number of one-on-one correspondence

checkings, i.e, min N;

Vertex-at-a-time: N = |V (Q)|
Pattern-at-a-time: N = k , if a set of structural patterns
p1, p2, . . . , pk ⊆ Q (k < N) is indexed

2 Minimize for each vertex in the graph query its matching
candidates, i.e., min |C (vi)|

It is unnecessary to check every vertex in C (vi)!
For vi ∈ V (Q), we consider a neighborhood induced
subgraph of Q, G k

vi , which contains all vertices (and induced
edges) within k hops away from vi

VLDB’10 Singapore On Graph Query Optimization in Large Networks 7 / 25

The Pattern Based Graph Indexing Framework

Theorem

If Q ⊆ G w.r.t. a subgraph isomorphism matching f , for any
structural pattern p ⊆ G k

vi
, vi ∈ V (Q), there must be a matching

pattern, denoted as f (p) ⊆ G , s.t. f (p) ⊆ G k
f (vi)

, f (vi) ∈ V (G). �

If structural patterns in the k-neighborhood subgraphs are
indexed in advance, false positives in C (vi) can be pre-pruned,
such that |C (vi)| is reduced

By extracting and indexing structural patterns within the
k-neighborhood subgraphs, can we achieve both objectives!

VLDB’10 Singapore On Graph Query Optimization in Large Networks 8 / 25

The Pattern Based Graph Indexing Framework

Question

Among different kinds of structural patterns, which one (or ones)
is most suitable for graph indexing on large networks?

The graph indexing cost, C , can be formulated as a combination of

1 The pattern selection cost Cs in G

2 The pattern selection cost Cs in Q

3 The pattern pruning cost of Q

The Graph Indexing Cost

C = (|V (G)| ∗ n + |V (Q)| ∗ n′) ∗ Cs +
|V (Q)|∗|V (G)|∗n′∗Cp

|Σ|

n and n′ are the number of structural patterns in the
k-neighborhood subgraph of vertices in G and Q, respectively

VLDB’10 Singapore On Graph Query Optimization in Large Networks 9 / 25

The Pattern Based Graph Indexing Framework

We evaluate three different patterns, i.e., paths, trees and
graphs for indexing

Cost n(n′) Cs Cp

Path exponential linear time linear time
Tree exponential linear time polynomial time
Graph exponential linear time NP-complete

Paths excel trees and graphs for indexing on large networks
1 Shortest paths are further selected and decomposed into a

distance-wise structure, SPath, as a high-performance graph
indexing mechanism on large networks

2 During graph query processing, decomposed shortest paths in
SPath are reconstructed and joined for query optimization

VLDB’10 Singapore On Graph Query Optimization in Large Networks 10 / 25

SPath

k-DISTANCE SET

Given u ∈ V (G), and a nonnegative distance k , the k-distance set
of u, Sk(u), is defined as

Sk(u) = {S l
k(u)|l ∈ Σ}\{∅}

NEIGHBORHOOD SIGNATURE

Given u ∈ V (G), and a nonnegative neighborhood scope k0, the
neighborhood signature of u, denoted as NS(u), is defined as

NS(u) = {Sk(u)|k ≤ k0}

All shortest path information in the k0-neighborhood subgraph
G k0
u of u is (indirectly) encoded in the neighborhood

signature, NS(u)

VLDB’10 Singapore On Graph Query Optimization in Large Networks 11 / 25

A Running Example

1

2 3

4

5

6

7

8

9

10

11

12

A

B C

A

B

A

C

A

C

B

B

A

1

2

3

4A

B

C

C

Figure: A Network G and a Graph Query Q

Example (Neighborhood Signature)

If the neighborhood scope k0 is set 2, the neighborhood signature
of u1 ∈ G ,
NS(u1) = {{A : {1}}, {B : {2},C : {3}}, {A : {4, 6},B : {5}}};
The neighborhood signature of v1 ∈ Q,
NS(v1) = {{A : {1}}, {B : {2},C : {3}}, {C : {4}}}

VLDB’10 Singapore On Graph Query Optimization in Large Networks 12 / 25

SPath

NS CONTAINMENT

Given u ∈ V (G) and v ∈ V (Q), NS(v) is contained in NS(u),
denoted as NS(v) v NS(u), if ∀k ≤ k0, ∀l ∈ Σ,
|
⋃

k≤k0
S l
k(v)| ≤ |

⋃
k≤k0

S l
k(u)|

Theorem

Given a network G and a graph query Q, if Q is
subgraph-isomorphic to G w.r.t. f , i.e., Q ⊆ G , then
∀v ∈ V (Q),NS(v) v NS(f (v)), where f (v) ∈ V (G)

if NS(v) is not contained in NS(u), u is a false positive and
can be safely pruned from v ’s matching candidates C (v).
Therefore, the search space size |C (v)| is reduced

VLDB’10 Singapore On Graph Query Optimization in Large Networks 13 / 25

A Running Example

1

2 3

4

5

6

7

8

9

10

11

12

A

B C

A

B

A

C

A

C

B

B

A

1

2

3

4A

B

C

C

Figure: A Network G and a Graph Query Q

Example (NS Containment Pruning)

Based on NS pruning, the search space can be pruned for C (v1)
from {u1, u4, u6, u8, u11} to {u6, u8, u11}, for C (v2) from
{u2, u5, u10, u12} to {u5}, for C (v3) from {u3, u7, u9} to {u7}, and
for C (v4) from {u3, u7, u9} to {u7, u9}. The total search space size
has been reduced from 180 to 6

VLDB’10 Singapore On Graph Query Optimization in Large Networks 14 / 25

SPath Implementation

SPath, maintains the neighborhood signature for each vertex
of the network G

1 Global Lookup Table H : l∗ → {u|l(u) = l∗}, l∗ ∈ Σ

Given a vertex v in the query graph, its matching candidates
C(v) = H(l(v));

2 Histogram: |S l
k(u)| for 0 < k ≤ k0 in the neighborhood

signature

3 ID-List: S l
k(u), u ∈ V (G)

Index construction cost:

Time: O(|V (G)| ∗ |E (G)|)
Space: O(|V (G)|+ |Σ|+ k0|Σ||V (G)|)

VLDB’10 Singapore On Graph Query Optimization in Large Networks 15 / 25

A Running Example

1

2 3

4

5

6

7

8

9

10

11

12

A

B C

A

B

A

C

A

C

B

B

A

1

2

3

4A

B

C

C

Figure: A Network G and a Graph Query Q

label

A

B

C

vid

1 4 6 8 11

2 5 10 12

3 7 9

distance label count vid

1
A 3

B 2

1 4 6

2 5

2
A 1

C 2

8

7 9

Histogram ID-List

Figure: The Global Lookup Table H and the Histogram and ID-List of
NS(u3), u3 ∈ V (G) (k0 = 2)

VLDB’10 Singapore On Graph Query Optimization in Large Networks 16 / 25

Graph Query Processing and Optimization

1 Query Decomposition: To decompose the query graph Q
into a set of indexed shortest paths

2 Path Selection and Join: To choose an optimal set of paths
to “recover” the query graph

∀e ∈ E (Q), there should exist at least one selected shortest
path p, such that e ∈ p
The set of shortest paths should be cost-effective and help
reconstruct the query Q in an efficient way

3 Path Instantiation: To instantiate the path for exact
matching and cross-check the path join predicates

VLDB’10 Singapore On Graph Query Optimization in Large Networks 17 / 25

Path Selection and Join

We consider two objectives in the query plan optimizer for
path selection and join

1 To choose the smallest set of shortest paths which can cover
the query

Reduced to the NP-complete set-cover problem

2 To choose shortest paths with good selectivity, such that the
total search space can be minimized during real graph
matching

Selectivity of a path p

sel(p) =
ψ(l)∏

v∈V (p) |C ′(v)|

A greedy approach to always picking the edge-disjoint path
with highest selectivity first

VLDB’10 Singapore On Graph Query Optimization in Large Networks 18 / 25

Experimental Evaluation

SPath v.s. GraphQL [SIGMOD’08]

One real data set (memory resident)

Yeast Protein Interaction Network

A series of synthetic data set (disk resident)

G-MAT Synthetic Graph Generator

Queries to be Examined
1 Clique query

2 Path query

3 General subgraph query

VLDB’10 Singapore On Graph Query Optimization in Large Networks 19 / 25

Protein Interaction Network: Index Construction

The yeast protein interaction network

3, 112 vertices
12, 519 edges
183 GO terms as vertex labels

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1 2 3 4

M
em

or
y

(K
 B

yt
es

)

Neighborhood Scope

SPath
SPath+ID-Lists

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4

T
im

e
(s

ec
s)

Neighborhood Scope

SPath

Figure: Index Construction Cost for SPath

VLDB’10 Singapore On Graph Query Optimization in Large Networks 20 / 25

Protein Interaction Network: Query Response Time

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8 9 10

Ru
n T

im
e (

ms
ec

s)

Path Size

SPath
GraphQL

 0

 0.5

 1

 1.5

 2

 2.5

 3

2 3 4 5 6 7 8 9 10

Tim
e (

ms
ec

s)

Path Size

Decomposition
Selection

Instantiation

Figure: Query Response Time for Path Queries

 0

 5

 10

 15

 20

 25

 30

 2 3 4 5 6 7

Ru
n T

im
e (

ms
ec

s)

Clique Size

SPath
GraphQL

 0

 2

 4

 6

 8

 10

 12

 14

2 3 4 5 6 7

Tim
e (

ms
ec

s)

Clique Size

Decomposition
Selection

Instantiation

Figure: Query Response Time for Clique Queries

 0

 5

 10

 15

 20

 25

 2 3 4 5 6 7 8 9 10

Ru
n T

im
e (

ms
ec

s)

Subgraph Size

SPath
GraphQL

 0

 1

 2

 3

 4

 5

 6

2 3 4 5 6 7 8 9 10

Tim
e (

ms
ec

s)

Subgraph Size

Decomposition
Selection

Instantiation

Figure: Query Response Time for Subgraph Queries
VLDB’10 Singapore On Graph Query Optimization in Large Networks 21 / 25

Synthetic Disk-resident Network: Index Construction

A series of disk-resident synthetic graphs are generated based
on R-MAT model, which follows power-law in- and out-degree
distribution

|V (G) = 500, 000; 1, 000, 000; 1, 500, 000 and 2, 000, 000
|E (G)| = 5 ∗ |V (G)|
|Σ| = 1% ∗ |V (G)|

 10

 15

 20

 25

 30

 35

 40

 45

 50

 500000 1e+006 1.5e+006 2e+006

M
em

or
y

(M
 b

yt
es

)

Graph Size

P-Index

 0

 5

 10

 15

 20

 25

 500000 1e+006 1.5e+006 2e+006
Ti

m
e

(h
ou

rs
)

Graph Size

P-Index

Figure: Index Construction Cost for SPath

VLDB’10 Singapore On Graph Query Optimization in Large Networks 22 / 25

Synthetic Disk-resident Network: Subgraph Query

 0

 50

 100

 150

 200

 250

 300

 350

 5 10 15 20

Ti
m

e
(m

se
cs

)

Query Size

P-Index

 0

 50

 100

 150

 200

 250

 300

5 10 15 20

Ti
m

e
(m

se
cs

)

Query Size

Decomposition
Selection

Instantiation

Figure: Query Response Time for Subgraph Queries in the Synthetic
Graph

VLDB’10 Singapore On Graph Query Optimization in Large Networks 23 / 25

Conclusion

1 Graph queries are frequently issued on large networks

Existing data models, query languages and access methods no
longer fit well in the large networks to support graph query
processing effectively

2 Graph indexing plays a key role in facilitating graph query
processing

Different structural patterns are evaluated based on a
cost-sensitive model and shortest paths are chosen as good
indexing features in large networks

3 SPath
Revolutionizes the way of graph query processing from
vertex-at-a-time to path-at-a-time

Exhibits good scalability and satisfactory query performance

VLDB’10 Singapore On Graph Query Optimization in Large Networks 24 / 25

Thank you

VLDB’10 Singapore On Graph Query Optimization in Large Networks 25 / 25

