
Similarity Search in Graph Databases:
A Multi-layered Indexing Approach

Yongjiang Liang Peixiang Zhao
Department of Computer Science

Florida State University
Tallahassee, Florida 32306-4530

liang@cs.fsu.edu zhao@cs.fsu.edu

Abstract—We consider in this paper the similarity search
problem that retrieves relevant graphs from a graph database
under the well-known graph edit distance (GED) constraint.
Formally, given a graph database G = {g1, g2, . . . , gn} and a
query graph q, we aim to search the graph gi ∈ G so that the
graph edit distance between gi and q, GED(gi, q), is within a user-
specified GED threshold, τ . In spite of its theoretical significance
and wide applicability, the GED-based similarity search problem
is challenging in large graph databases due in particular to a large
amount of GED computation incurred, which has proven to be
NP-hard. In this paper, we propose a parameterized, partition-
based GED lower bound that can be instantiated into a series of
tight lower bounds towards synergistically pruning false-positive
graphs from G before costly GED computation is performed. We
design an efficient, selectivity-aware algorithm to partition graphs
of G into highly selective subgraphs. They are further incorpo-
rated in a cost-effective, multi-layered indexing structure, ML-
Index (Multi-Layered Index), for GED lower bound crosschecking
and false-positive graph filtering with theoretical performance
guarantees. Experimental studies in real and synthetic graph
databases validate the efficiency and effectiveness of ML-Index,
which achieves up to an order of magnitude speedup over the
state-of-the-art method for similarity search in graph databases.

I. INTRODUCTION

Today’s highly networked world is facing numerous chal-
lenges raised in particular by the abundance of complex and
interconnected data, which, without loss of generality, are often
modeled and interpreted as graphs [1], [11]. The proliferation
of graphs has sparked a growing interest in enabling effi-
cient access capabilities and flexible, structure-aware querying
functionalities in large graph databases [18], [2], [16]. In
order to account for noisy and distorted information arising
unavoidably in real-world graphs, and to support rank-based
exploration in graph-shaped data, it is essential and highly
desirable to enable similarity search in graph databases, the
goal of which is to retrieve relevant graphs given a user-
specified, graph-structured query. Graph similarity search has
found numerous real-world applications in business process
management, pattern recognition, drug design, program anal-
ysis, and cheminformatics [34], [37], [36], [28], [27], [23].

There has been a rich literature in the modeling and
computation of similarity between graphs, such as graph edit
distances [15], [21], [32], maximum common subgraphs [23],
[9], edge/feature misses [31], [38], [33], [30], graph align-
ment [25], and graph kernels [19]. In this paper, we consider
the similarity search problem defined upon the graph edit

distance (GED) constraint: given a graph database G =
{g1, g2, . . . , gn}, and a query graph q, we find as output
gi ∈ G whose graph edit distance w.r.t. q, GED(gi, q), is
within a user-specified GED threshold, τ . The graph edit
distance, GED(gi, q), is the minimum number of graph edit
operations that modify gi step-by-step to q (or vise versa), and
a graph edit operation can be vertex/edge insertion, deletion,
or relabeling. Our choice of GED as the underlying graph
similarity function is due primarily to its generality and broad
applicability [15], [19]: First, GED is a metric applicable to
virtually any type of graphs. The intuitive graph edit operations
can precisely capture any fine-grained difference concerning
both graph structures and contents [13]; Second, GED defines a
theoretical framework for graph proximity modeling and quan-
tification, within which many graph similarity measures, such
as maximum common subgraphs [7] and edge misses [30], are
just its special cases. Therefore, a systematic exploration of the
GED-based similarity search problem becomes fundamental to
real-world graph databases, and its solution will help address
a family of graph similarity search problems that are defined
upon other graph similarity constraints.

Unfortunately, the GED computation, GED(g, q), is NP-
hard [14], rendering the similarity search problem hard es-
pecially in large graph databases. Existing solutions typically
adopt a filtering-verification approach. In the filtering phase,
some GED lower-bounds are employed to pre-prune false-
positive graphs from G, and the graphs surviving the filtering
phase constitute a candidate set, C. In the verification phase,
costly GED computation has to be performed between q and
each candidate graph gi ∈ C to find the answers. Therefore,
the search performance is determined primarily by the tight-
ness of GED lower bounds, together with the computational
overhead for false-positive graph identification and filtering.
Insofar, different GED lower bounds and false-positive pruning
techniques have been proposed [15], [34], [37], [35], [28], [27],
[32], which typically suffer from the following weaknesses: (1)
Existing GED lower bounds have demonstrated limited filter-
ing capabilities without theoretical performance guarantees. As
a result, lots of false-positive graphs fail to be identified, thus
incurring a large amount of fruitless GED computation; (2)
The GED lower-bound evaluation is time-consuming, which
imposes another performance bottleneck for similarity search
in graph databases.

In this paper, we propose a new, multi-layered graph in-
dexing approach, ML-Index (Multi-Layer Index), to efficiently
addressing the similarity search problem in graph databases.

mailto:liang@cs.fsu.edu
mailto:zhao@cs.fsu.edu

We consider a parameterized (by a parameter k), partition-
based GED lower bound that subsumes the existing best-
known partition-based GED bound [34] as a degraded special
case (when k = 1). More importantly, it will result in a series
of instantiated, tighter GED lower bounds for effective false-
positive graph identification and pruning. While evaluating
these partition-based GED lower bounds, we need to partition
each data graph gi ∈ G into a set of variable-size, non-
overlapping subgraphs that constitute the basic index features
in our indexing solution. However, graph partitioning turns out
to be a hard problem [6], and a random partitioning oftentimes
yields subgraphs with limited pruning capabilities. We then
design an efficient, selectivity-aware graph partitioning method
for selectivity modeling of index features and quality-aware
partitioning toward identifying false-positive graphs early and
effectively from the graph database. The resultant partitioned
subgraphs demonstrate good pruning capabilities, and thus are
ideal index features for GED lower bound evaluation.

To ensure tight GED lower bounds with theoretical perfor-
mance guarantees, we design a multi-layered indexing struc-
ture, ML-Index, each layer i of which comprises three key
components: (1) GEDki : an instantiated GED lower bound
characterized by its parameter, ki; (2) Pi: a graph partitioning
method (e.g., selectivity-aware graph partitioning) that parti-
tions data graphs of G into index features; (3) the partitioned
index features used in the evaluation of the GED lower bound,
GEDki . Given a data graph gi ∈ G, it has to satisfy all the GED
lower-bound constraints in different layers of ML-Index before
being considered a candidate graph in C. To this end, multiple
GED lower bounds, as opposed to a single GED lower bound
considered in previous methods, are jointly crosschecked to
filter false-positive graphs from the graph database, and the
probability of a false-positive graph that fails to be identified by
ML-Index is exponentially small w.r.t. the number of layers of
ML-Index. To the best of our knowledge, ML-Index is the first
work for similarity search in graph databases with theoretically
guaranteed performance. In addition, ML-Index is a generic,
multi-layered graph indexing framework, upon which differ-
ent GED lower-bounds, graph partitioning algorithms, and
graph indexing mechanisms can be incorporated and optimized
synergetically towards high-performance similarity search in
large-scale graph databases. The main contributions of ML-
Index are summarized as follows,

1) We propose a parameterized, partition-based GED
lower bound that can be instantiated into a series of
new lower bounds with improved filtering capabili-
ties. Such instantiated lower bounds are further lever-
aged for collective false-positive graph identification
and filtering in ML-Index (Section IV-A);

2) We design an efficient, selectivity-aware graph parti-
tioning algorithm to generate highly selective index
features for effective GED lower bound evaluation
(Section IV-B);

3) We propose a cost-effective, multi-layered graph
indexing approach, ML-Index, that enables false-
positive graph filtering with theoretical guaranteed
performance (Section IV-C);

4) We perform extensive experimental studies for ML-
Index in comparison with the state-of-the-art sim-
ilarity search method, Pars [34], in both real and
synthetic graph databases. Experimental results vali-

date the efficiency and effectiveness of ML-Index that
achieves up to one order of magnitude speed-up over
Pars (Section VI).

The remainder of this paper is organized as follows. In
Section II, we will brief the related work for similarity search
in graph databases. The preliminary concepts and problem
definitions will be formulated in Section III. We will discuss in
detail our multi-layered indexing solution, ML-Index, in Sec-
tion IV, and design the index-based similarity search algorithm
in Section V. Experimental studies and results will be reported
in Section VI, followed by concluding remarks in Section VII.

II. RELATED WORK

The similarity search problem has drawn considerable
attention in a wide range of practical, rank-based applications
in graph databases [21], [39]. For example, in cheminformatics,
molecules are recorded as graphs and compared in an inexact
way for new material discovery and synthesis [30], [3]. In
pattern recognition and computer vision, graphs representing
hand-written symbols, fingerprints, or medical images are
matched and retrieved approximately for identity discovery,
object detection, and scene identification [10], [4]. In bioin-
formatics, graph similarity tools are devised for biological
pathway enumeration and protein interaction detection [20].

Graph similarity search relies on some graph proximity
function that models the similarity of graphs, and the most
referenced one is graph edit distance (GED) due in particular
to its generality and broad applicability [36], [37], [24], [27],
[35], [32], [8], [7]. The GED computation is NP-hard [14],
and the state-of-the-art GED method is based on an A* search
strategy with bipartite matching heuristics [12]. However, it is
only applicable to small-size graphs [15], but hard to employ
for similarity search in large-scale graph databases.

Previous studies on GED-based similarity search focused
on pruning false-positive graphs before the costly GED com-
putation is performed throughout the whole graph database.
Inspired by the q-gram concept for string edit distance com-
putation [26], k-AT [27] (k-Adjacent Tree) decomposes each
data graph g ∈ G into a multiset of tree-based q-grams, k-
AT trees, for GED estimation. A k-AT tree is a subtree of g
encompassing all vertices k-hops away from a given vertex
v of g. A count-based GED lower bound is proposed by
computing the minimum number of common k-AT trees from
g ∈ G and the query graph q, respectively. This GED lower
bound, however, is loose if g or q has high-degree vertices or
the GED threshold, τ , is large, thus making k-AT applicable
only for very sparse graphs. In contrast, path-based q-grams,
and the corresponding GED lower bounds, are designed [35].
However, the exponential number of paths of a graph imposes
a significant performance bottleneck for GED lower bound
computation. Additionally, paths overlap with each other, thus
weakening their overall pruning capabilities. SEGOS [28],
[32] and b-Tree [37] take advantage of star structures (1-
hop k-AT trees) and branch structures, respectively, as q-
grams. Both methods estimate the GED of two graphs based
on the edit distance of their star/branch representations using
the Hungarian algorithm [17]. Although these methods achieve
tighter GED lower bounds and better search performance than
k-AT, the decomposed q-grams still overlap, thus resulting in

index features with limited pruning capabilities. Furthermore,
the inability to handle large-degree vertices and large GED
thresholds is inherited from k-AT.

To address the deficiencies of the aforementioned ap-
proaches, Pars [34] considers variable-size, non-overlapping
graph partitions as q-grams for false-positive graph detection
and pruning. The partition-based scheme in Pars is not prone
to drastic changes of vertex degrees and GED threshold values,
and more importantly, there is no feature overlap between
partitioned q-grams. That is, any graph edit operation can affect
at most one graph partition, thus breaking the worst-case as-
sumption that many graph edit operations co-occur at the same
region where lots of q-grams are effected. Known as the state-
of-the-art solution for similarity search in graph databases,
Pars has its own limitations as follows. First, the partition-
based GED lower bound in Pars is still not tight, which may
result in a huge amount of wasteful GED computation. In this
paper, we consider a parameterized GED lower bound that
can give rise to a series of instantiated, tighter GED lower
bounds than the one in Pars. It turns out that the lower bound
of Pars is just a special, degraded case of our parameterized
GED lower bound. Second, Pars employs a random graph
partitioning strategy for index feature generation. The resultant
partitioned indexes, however, are of limited selectivity for
false-positive graph identification. Although a sophisticated
partitioning refinement is designed to regain quality partitions,
it relies on the availability of query workload information, and
incurs a large amount of subgraph isomorphism checking and
index reorganization, which are time-demanding. In this paper,
we consider an efficient, selectivity-aware graph partitioning
method to generate high-selectivity index features that can help
identify more false-positive graphs than Pars. Third, there
are no theoretical performance guarantees for Pars and all
the other existing similarity search methods. In this paper,
we design a multi-layered indexing solution, ML-Index, that
incorporates multiple GED lower-bounds for collective false-
positive graph filtering with theoretical performance guaran-
tees. To the best of our knowledge, ML-Index is the first
work for similarity search with guaranteed performance in real-
world, large graph databases.

III. PROBLEM FORMULATION

Henceforth, we focus on simple, undirected, and labeled
graphs, though the proposed method can be extended to other
types of graphs with minor revisions. A graph g is a 4-tuple
(Vg, Eg, lg, Σ), where Vg is a vertex set; Eg ⊆ Vg × Vg is an
edge set; lg : Vg ∪ Eg → Σ is a labeling function, where Σ
is the label set of vertices and edges (the subscript g in the
notations will be omitted when the context is clear). In practice,
the labels of a graph may represent vertex/edge attributes or
contents, such as tags in XML documents, atoms and bonds in
chemical compounds, gene ontology (GO) terms in biological
networks, or object descriptors of images.

A graph g can be modified by graph edit operations
including (1) inserting a new, isolated vertex u; (2) inserting
a new edge e = (u, v) between existing vertices u and v; (3)
deleting an isolated vertex u; (4) deleting an edge e = (u, v);
(5) changing the label l(u) of the vertex u; (6) changing the
label l(e) of the edge e. Given two graphs g and g′, g can be
modified step-by-step to g′, or vice versa, by a finite sequence

P

C1

C2

C3

C4

S

C1

C2

C3

C4

N

C1

C2

C3

C4

N

g1 g2 q

Fig. 1: Two graphs g1, g2 and a query graph q. Vertex labels
represent atom symbols, and edge labels are either single-
bond or double-bond. Subscripts of vertex labels differentiate
vertices that share the same label.

of graph edit operations, the minimum number of which is
referred to as the graph edit distance (GED) between g and g′,
denoted as GED(g, g′). We remark that GED is a metric [13].

Example 1: Figure 1 presents a tiny graph database G
consisting of two graphs, g1 and g2, and a query graph q.
The graph edit distance between q and g1, GED(q, g1) = 5,
indicates 5 graph edit operations that modify q to g1: inserting
an isolated vertex P , inserting an edge (P,C1), inserting an
edge (P,C2), relabeling the vertex label N to S, and relabeling
the edge label of (C1, C3) from single-bond to double-bond.
Similarly, GED(q, g2) = 2. 2

We define the problem of similarity search in a graph
database, as follows,

Definition 1 (Similarity Search): Given a graph database
G = {g1, g2, . . . , gn}, a query graph q, and a GED threshold
τ , the similarity search problem is to find as output all the data
graphs gi ∈ G such that GED(gi, q) ≤ τ . 2

Example 2: Consider the graph database G with two
graphs g1 and g2, a query graph q, as shown in Figure 1,
and the GED threshold τ = 2. The graph g2 is returned as a
similar graph to q because GED(q, g2) = 2 ≤ τ . 2

The similarity search problem is NP-hard in that the
computation of GED(q, gi) is NP-hard [14]. It is thus infeasible
to perform pairwise GED computation throughout the whole
graph database for similarity search. Instead, we consider a
filtering-verification approach to addressing this problem. First,
we employ some GED lower bound, denoted as GED(q, gi),
in the filtering phase. If GED(q, gi) > τ , we have

GED(q, gi) ≥ GED(q, gi) > τ,

so gi is a false-positive graph, and thus can be filtered without
costly GED verification. Furthermore, the graphs satisfying the
GED lower-bound constraint in the filtering phase are put into
a candidate set, C, from which the exact GED verification
is performed against q. To this end, we have to carry out a
number |C| of exact GED computations to find the truly similar
graphs of q. As a consequence, the key to the similarity search
problem is to devise tight GED lower bounds and efficient
filtering techniques in order to reduce the candidate set size,
|C|, which turns out to be the prime goal of our work.

IV. ML-INDEX

In this section, we detail our multi-layered indexing so-
lution, ML-Index, for similarity search in graph databases.
We first introduce a parameterized, partition-based GED lower
bound, then discuss an efficient, selectivity-aware graph par-
titioning method in order to partition graphs into a series of

P

C1

C2

C3

C4

S P C1 C3 C2 C4 S

p1 p2 p3 p4

Fig. 2: The graph g1 in Figure 1 is partitioned into four half-
edge graphs: P(g1) = {p1, p2, p3, p4}.

high-selectivity subgraph partitions, which comprise the main
index features of ML-Index for the evaluation of GED lower
bounds. Finally, we design and implement ML-Index, upon
which multiple partition-based GED lower bounds can be
evaluated synergistically for false-positive graph identification
and filtering with theoretical performance guarantees.

A. Partition-based GED Lower Bounds

We first define half-edge graphs [34] that model and
represent graph partitions and also index features of ML-Index.

Definition 2 (Half-edge Graph): A half-edge graph g =
(Vg, Eg, lg,Σ), where Eg ⊆ Vg × (Vg ∪ {∗}), is a graph
with possible existences of half edges (u, ∗) ∈ Eg , where
one incident vertex u ∈ Vg is a definite vertex, but the other
vertex (and its label) of the half edge is not explicitly specified,
represented as ∗. 2

Definition 3 (Half-edge Subgraph Isomorphism):
A half-edge graph g is a subgraph of another graph g′,
denoted as g ⊆ g′, if there exists an injective subgraph
isomorphism function f : Vg → Vg′ , such that (1)
∀u ∈ Vg, f(u) ∈ Vg′ and lg(u) = lg′(f(u)); (2) ∀(u, v) ∈
Eg, (f(u), f(v)) ∈ Eg′ and lg((u, v)) = lg′((f(u), f(v)));
(3) ∀(u, ∗) ∈ Eg,∃w ∈ Vg′\f(Vg) s.t. (f(u), w) ∈ Eg′ and
lg((u, ∗)) = lg′((f(u), w)). 2

If g ⊆ g′, g is a half-edge subgraph of g′, or a subgraph of g′
for brevity. Intuitively, if g ⊆ g′, we say g is contained in g′, or
g′ contains g. We remark that half-edge subgraph isomorphism
is NP-complete in that ordinary graphs without the special
vertex ∗ can be regarded as a special case of half-edge graphs,
and the subgraph isomorphism problem for ordinary graphs
has proven to be NP-complete [14].

Definition 4 (Graph Partitioning): A graph g can be
partitioned to a set P of collective exhaustive, mutually
exclusive, and non-empty half-edge graphs as P(g) =
{pi|

⋃
i Vpi = Vg,

⋃
iEpi ⊆ Eg ∪ Vg × {∗}, pi

⋂
pj =

∅, ∀i, j, i 6= j}. P is called a partitioning of g. 2

Example 3: As shown in Figure 2, the graph g1 in Fig-
ure 1 is partitioned into four half-edge graphs, p1, p2, p3, and
p4. So P = {p1, p2, p3, p4} is one partitioning, among others,
of g1. 2

Partitioning graphs into half-edge subgraphs has a clear
advantage for GED estimation: given any graph edit operation,
it can only affect at most one half-edge graph partition. As
a result, we derive the following partition-based GED lower
bound:

Theorem 1: Consider a graph g that is partitioned to a set
P(g) of (τ+k) half-edge graphs, where τ is the GED threshold
and k (k ≥ 1) is an integer parameter. Given the query graph
q, if GED(g, q) ≤ τ , there must exist at least k partitions of
g, pi1 , . . . , pik ∈ P(g), that satisfy pil ⊆ q (1 ≤ l ≤ k). 2

Proof: Please refer to Appendix A.

Consider a data graph g ∈ G and a partitioning P(g) =
{p1, . . . , pτ+k}. If pi ⊆ q, pi is called a matching partition.
Otherwise, pi is a mismatching partition. According to The-
orem 1, if the number of matching partitions of g w.r.t. q is
less than k, the graph edit distance, GED(g, q), must be larger
than τ . Therefore, g is a false-positive graph and can be safely
pruned without exact GED verification.

Example 4: Consider the graph database G = {g1, g2}
and the query graph q as shown in Figure 1, and the GED
threshold τ = 2. We set k = 2 such that g1 and g2 are par-
titioned into (τ + k) = 4 partitions, respectively. Specifically,
the partitioning of g1, P(g1), is shown in Figure 2. Because
there exist three mismatching partitions w.r.t. q: p1, p2, and
p4, g1 is thus a false-positive graph. However, no matter what
graph partitioning methods applied on g2, we can always find
at least k = 2 matching partitions. Therefore, g2 is a candidate
graph that further needs exact GED verification. 2

Theorem 1 provides a parameterized, partition-based GED
lower bound that can immediately generate a series of new
GED lower bounds by setting k with different values. We
remark that 1 ≤ k ≤ ming∈G(|Vg| − τ), and the newly
generated GED lower bounds have varied filtering capabilities.
When k = 1, the instantiated GED lower bound boils down to
a special, degraded case [34]. Consider a graph g ∈ G which
is a false positive w.r.t. the query graph q. It is easy to find one
(k = 1) matching partition given the (τ + 1) partitions of g.
Once found, g will be treated as a candidate graph by mistake.
When k > 1, however, g as a false-positive graph will more
likely be identified and filtered, as detecting k > 1 matching
partitions from g becomes less likely than in the case of k = 1.
This is demonstrated in the following theorem,

Theorem 2: Consider a false-positive graph g ∈ G
(GED(q, g) > τ) that is partitioned to P = {p1, . . . , pτ+1}
and P ′ = {p′1, . . . , p′τ+k}, k > 1, respectively. If we assume
graph edit operations occur irrespective of g, the probability of
the first k partitions of P ′ being matching partitions is smaller
than the probability of the first one partition of P being a
matching partition. 2

Proof: Please refer to Appendix A.

If we partition graphs of G into (τ + k) partitions, where
k > 1, it is more likely to identify false-positive graphs from
G than the degraded case of k = 1. As a consequence, the
generalized GED lower bound can be instantiated into a series
of tigher lower bounds, when k > 1, with better filtering
capabilities for similarity search.

B. Selectivity-aware Graph Partitioning

Given a data graph g ∈ G, there exist a huge number of
ways to partition g into (τ+k) partitions with varied sizes and
structures [6]. If not designed carefully, a partitioning method
(e.g., random partitioning) may lead to graph partitions with
limited filtering capabilities. Therefore, graph partitioning also
plays a critical role in evaluating partitioned-based GED lower
bounds for similarity search in graph databases.

Example 5: For the same problem setting as described
in Example 4, if g1 in Figure 1 is partitioned by a random

P

C1

C2

C3

C4

S P

C1

C2 C4

C3

S

p′
1

p′
2

p′
3

p′
4

Fig. 3: The graph g1 in Figure 1 is randomly partitioned into
four half-edge graphs, P ′(g) = {p′1, p′2, p′3, p′4}, with limited
selectivity.

partitioning method, P ′, into four half-edge graphs, p′1, p′2,
p′3, and p′4, as shown in Figure 3, we note that both p′2 and p′3
are matching partitions w.r.t. q, because p′2 ⊆ q and p′3 ⊆ q.
Based on Theorem 1 (k = 2), g1 is a candidate graph, although
it is in fact a false-positive graph and should be filtered if the
partitioning method P in Example 3 is employed. 2

In order to devise partitioning algorithms that lead to
partitions with good filtering capabilities, we define the notion
of selectivity for half-edge graph partitions. Consider any
partitioning scheme P that partitions a graph g into (τ + k)
partitions, P = {p1, . . . , pτ+k}. We design a selectivity
function s : pi ∈ P → R+ assigning for each partition
pi(1 ≤ i ≤ τ + k) a positive value, s(pi), indicating how
selective pi will be as a mismatching partition (pi * q) if
g is a false-positive graph. Intuitively, the higher the value
of s(pi) is, the more probably pi is a mismatching partition,
and the false-positive graph g will more easily be identified
and filtered from G. To this end, the objective of a selectivity-
aware partitioning P is to partition a graph g into (τ + k)
partitions, which have the highest overall selectivity values.
However, even for the simplest, balanced bi-partitioning case
(P = {p1, p2}), the number of possible partitionings is(

|Vg|
|Vg|/2

)
=

|Vg|!
((|Vg|/2)!)2

≈ 2|Vg|
√

2/(π|Vg|),

and finding the optimal selectivity-aware partitioning is NP-
hard, which is polynomially reducible from the l-way graph
partitioning problem [5], [14].

In the following, we design an efficient selectivity-aware
graph partitioning method. We first model the selectivity of
graph partitions based on the following heuristics:

1) Partition size: a larger-size partition pi is more likely
to be affected by graph edit operations, thus making
pi a mismatching partition. We thus consider the
graph size, (|Vpi | + |Epi |), as one aspect of the
selectivity;

2) Vertex/Edge label frequency: vertices/edges of pi
with small label frequencies in G may occur propor-
tionally rarely in the query q. Therefore, a partition
pi containing low-frequency vertices/edges might be
a mismatching partition, pi q. We thus consider
the average vertex/edge label frequencies as another
aspect related to the selectivity of pi.

To incorporate both factors, we define the selectivity, s(pi), of
a partition pi as

s(pi) =
|Vpi |+ |Epi |∑

v∈Vpi
f(lv)/|Vpi |+

∑
e∈Epi

f(le)/|Epi |
(1)

where f(·) is the vertex/edge label frequency in G. If there
exists a half-edge (v, ∗) in pi, its edge label frequency is

Algorithm 1: Selectivity-aware Graph Partitioning
Input: a graph g ∈ G, GED threshold τ , parameter k
Output: The partitioning P(g) = {p1, . . . , pτ+k}

1 begin
2 A Boolean vector B[·] : Vg → {true, false} where

∀v ∈ Vg, B[v]← false;
3 Γ← ∅;
4 for i← 1 to τ + k do
5 Select v ∈ Vg where B(v) = false, pi ← {v};
6 B(v)← true;
7 for u ∈ N(v), B[u] = false, u 6∈ Γ do
8 Γ← Γ ∪ {u};

9 while ∃v ∈ Γ do
10 for i← 1 to τ + k do
11 ∆i ← s(G[pi ∪ {v}])− s(pi);
12 pi∗ ← G[pi∗ ∪ {v}] where i∗ = arg maxi ∆i;
13 B(v)← true;
14 for u ∈ N(v), B[u] = false, u 6∈ Γ do
15 Γ← Γ ∪ {u};

16 while ∃(u, v) ∈ Eg, u ∈ pi, v ∈ pj , i 6= j do
17 ∆i ← s(pi ∪ (u, ∗))− s(pi);
18 ∆j ← s(pj ∪ (v, ∗))− s(pj);
19 if ∆i ≥ ∆j then
20 pi ← pi ∪ {(u, ∗)};
21 else
22 pj ← pj ∪ {(v, ∗)};

23 return P(g) = {p1, . . . , pτ+k};

estimated as

f(l(v,∗)) =

∑
u∈N (v) f(l(v,u))

|N (v)|
(2)

where N (v) is the set of neighboring vertices of v in G.

The selectivity-aware partitioning algorithm is presented
in Algorithm 1, which partitions a graph g ∈ G into (τ + k)
partitions (half-edge graphs). We first create a Boolean vector
B[·] indicating for each vertex v ∈ Vg whether v has been
assigned to some partition, and B[v] is initialized to false
(Line 2). We maintain another set, Γ, holding the unassigned
vertices of g that will be processed immediately (Line 3). Next,
we choose (τ + k) vertices as the initial seeds, which will be
expanded to the final (τ + k) partitions (Lines 4 − 6). The
neighboring vertices, N(·), of these seeds are added to Γ as
they will be considered for partition assignment in the next step
(Lines 7− 8). Henceforth, we examine each vertex v ∈ Γ by
evaluating the selectivity gain of assigning v to each existing
partition pi, denoted as

∆i = s(G[pi ∪ {v}])− s(pi), 1 ≤ i ≤ τ + k (3)

where G[pi ∪ {v}] denotes the induced subgraph if v and
all its induced edges (u, v), u ∈ Vpi are inserted to the
partition pi (Lines 10 − 11). The vertex v will be assigned
to the partition pi∗ which, with the addition of v (and its
induced edges), has the largest selectivity gain, ∆i∗ (Line 12).
After v has been assigned to some partition, all its unassigned
neighboring vertices are added to Γ for further inspection

(Lines 14 − 15). When all vertices of g have been properly
assigned to the (τ + k) partitions, we then consider the edges
straddling different partitions and assign them as half-edges to
one of the participant partitions. The principle of assignment
is similar: for the edge (u, v) where u ∈ Vpi , v ∈ Vpj , i 6= j,
we assign it to the partition that leads to a larger selectivity
gain (Lines 16− 22).

We remark that the vertex/edge label frequencies can be
pre-computed by scanning the graph database G once during
the index construction phase. Therefore, the time complexity of
Algorithm 1 is O((τ+k)|Vg|+|Eg|), or simply O(|Vg|+|Eg|)
considering (τ + k) is a small value in similarity search.

C. The Multi-layered Index Structure

In order to filter false positive graphs from the graph
database G, we build an index structure upon which partition-
based GED lower bounds can be evaluated in an efficient and
cost-effective way. For each data graph g ∈ G, we partition it
into (τ + k) half-edge subgraphs, which constitute the basic
index features. In addition, for each partition p, we maintain
the following crucial information:

1) Inverted index: If p is a partition of the graph gi ∈ G,
we maintain for p an inverted index, I(p), containing
the graph identifier i as p ⊆ gi. Given a query graph
q, if p ⊆ q, we can quickly locate all the graphs from
I(p), each of which has p as a matching partition.
Furthermore, by exploring all the indexed partitions,
we can find graphs of G that contain at least k
matching partitions, which constitute the candidate
set C for exact GED verification;

2) Graph profile: A common operation we have to
perform frequently is to examine if p ⊆ q holds as a
matching partition, or p * q as a mismatching pat-
tern otherwise. This half-edge subgraph isomorphism
testing is time-consuming in practice. We therefore
construct a graph profile, R(p), for the partition p
to facilitate this computation. R(p) maintains the
vertex/edge label frequencies of p in a space-efficient
histogram. Before examining p ⊆ q, their graph pro-
files, R(p) and R(q), are first compared bucket-wise:
For each vertex/edge label in R(p), its frequency
should be no more than that of the corresponding
vertex/edge label in R(q), denoted as R(p) � R(q).
Otherwise, we immediately know that p * q, and the
costly half-edge subgraph isomorphism computation
can be saved.

It is possible two partitions are graph isomorphic with each
other. We thus use the canonical DFS code [29] as a unique
representation of graph partitions to ensure that two isomorphic
partitions will share one index entry represented by their
canonical DFS code.

The aforementioned index structure is a conventional, one-
layer graph index designed for similarity search. However,
it promises limited filtering capabilities due to the following
reasons. First, only a single GED lower bound is adopted
for false-positive graph filtering. Although we can choose a
tight, partition-based GED lower bound (when k > 1) and
take advantage of high-selectivity index features generated
by the selectivity-aware graph partitioning method, there are

Algorithm 2: ML-Index Construction
Input: Graph database G
Output: The multi-layer index ML-Index

1 begin
2 for i← 1 to L do
3 A hash structure, Hi : p→ (I(p),R(p)), is

initialized as ∅;
4 foreach g ∈ G do
5 for i← 1 to L do
6 Pi(g) = {pi1, . . . , piτ+ki};
7 for l← 1 to τ + ki do

/* Inverted index */
8 I(pil)← I(pil) ∪ {g};

/* Graph profile */
9 R(pil)← a histogram of vertex/edge

label frequencies for pil;
10 Hi(pil) = (I(pil),R(pil));

11 return ML-Index {H1, . . . ,HL};

still many false-positive graphs unidentified from the graph
database G. Second, and more importantly, there are no the-
oretical tightness guarantees for GED lower bounds, which
typically lead to unstable, and sometimes poor, similarity
search performance in real-world graph databases.

In order to take advantage of multiple GED lower bounds
and exert a collective filtering strategy, we design a multi-
layered graph indexing structure, ML-Index, to enhance fil-
tering capabilities with theoretical performance guarantees. In
ML-Index, we consider L different graph partitioning methods,
P1, . . . ,PL, with each Pi partitioning g ∈ G into (τ +ki) par-
titions, Pi(g) = {pi1, . . . , piτ+ki}. To this end, the partitioning
method Pi, the instantiated GED lower bound (parameterized
by ki), and the resultant graph partitions (together with their
associated inverted indexes and graph profiles) constitute the
ith layer of ML-Index. Namely, ML-Index consists of L layers
of indexes, with each layer being responsible for the evaluation
of the ith GED lower-bound. Given a query graph q, we
examine ML-Index layer-by-layer. Specifically, at the ith layer,
we evaluate the ith GED lower bound parameterized by ki, and
generate a candidate set Ci. A data graph g ∈ G is a candidate
graph at the ith layer if and only if there exist at least ki
matching partitions from g:

Ci = {g|∃ pil1 . . . , p
i
lki
⊆ g and q, g ∈ G} (4)

where pil∗ are the partitioned index features at the ith layer of
ML-Index. As a result, the final candidate set C after all L
GED lower bounds of ML-Index have been evaluated is

C =

L⋂
i=1

Ci (5)

Given a graph g ∈ G, if it fails in the evaluation of a GED
lower-bound at any layer of ML-Index, it must be a false-
positive graph, and can be safely filtered without exact GED
verification.

Algorithm 2 presents the index construction process for
ML-Index with L layers of partition-based indexes. Each layer
of ML-Index is a hash structure,Hi(1 ≤ i ≤ L), that maintains

p1
1

......Layer 1

.
.
.
.
.
.

C

C C

O

I()Inverted index

O C C

C

C

C

C

O

Graph profile

(,)k1P1

......

......

......
Layer L
(,)kLPL

......

......
p1
i

p2
1

p2
2

pL
1

pL
j

p1
i

R()p1i

g
3

g
5

Layer 2
(,)k2P2

Fig. 4: The multi-layered index structure of ML-Index. Each
layer i is featured a partitioning strategy Pi, the partitioned
index features {pi1, pi2, . . . , }, and an instantiated GED lower
bound parameterized by ki. Each index feature pij is associated
with an inverted index I(pij) and a graph profile R(pij).

the correlation between a partition p and the associated inverted
index, I(p), and its graph profile, R(p) (Lines 2−3). We start
with a sequential scan of the graph database G, and for each
data graph g ∈ G, we partition it using L different partitioning
methods1. Each partitioning Pi yields (τ +ki) partitions from
g, which constitute the index features at the ith layer of ML-
Index (Lines 4−6). For each partition pil (1 ≤ l ≤ τ+ki), we
further maintain its inverted index (Line 8) and its graph profile
(Line 9), and associate them with pil in the hash structure Hi
(Line 10). We remark that different partitioning methods may
result in identical graph partitions (in terms of half-edge graph
isomorphism) at different layers of ML-Index, we maintain
only one copy of the inverted index and the graph profile
to save the index space. Figure 4 illustrates the schematic
structure of ML-Index.

The time complexity of Algorithm 2 is O(|G|×L×(O(P)+
O(|Vg|+ |Eg|))), where O(P) is the average-time complexity
of graph partitioning, and O(|Vg|+|Eg|) is the time complexity
of graph profile construction for all partitions of g ∈ G. If the
selectivity-aware graph partitioning (Section IV-B) is adopted,
the time complexity of Algorithm 2 turns out to be O(|G| ×
L × (|V | + |E|)), where (|V | + |E|) is the average size of
graphs in G. The space complexity of ML-Index is O(L ×
|F| × (|G|+ |Σ|)), where |F| is the average number of index
partitions at each layer of ML-Index, and Σ is the label set of
vertices and edges of G.

Theorem 3: Consider a graph g ∈ G, which is a false
positive w.r.t. the query graph q, i.e., GED(q, g) > τ . The prob-
ability of g being identified as a false positive by ML-Index
gets exponentially large (approaching 1) w.r.t. the number L
of independent GED lower bounds in ML-Index. 2

Proof: Please refer to Appendix A.

Theorem 3 states that ML-Index is guaranteed to identify
false-positive graphs from G w.h.p. by crosschecking multiple
independent GED lower bounds. In order to secure the inde-
pendency of the partition-based GED lower bounds in ML-
Index, we consider the following strategies in index construc-
tion. First, we randomly select initial seeds from g ∈ G when
applying the selectivity-aware partitioning method at different
layers of ML-Index. Second, we choose different values of the
parameter ki at different layer i of ML-Index. This way, the

1Note that we can apply the same selectivity-aware partitioning algorithm
with different initial seeds (by random selection), and different values of the
parameter ki, thus resulting in L different sets of partitioned index features.

Algorithm 3: Similarity Search Algorithm
Input: Graph database G, query graph q, GED

threshold τ , ML-Index {H1, . . . ,HL}
Output: O = {g|GED(g, q) ≤ τ, g ∈ G}

1 begin
/* Candidate Generation */

2 Create an array A that maintains for each graph
g ∈ G the number of matching partitions w.r.t. q;

3 for i← 1 to L do
4 foreach g ∈ G do
5 A[g]← 0;
6 for p ∈ Hi do
7 if R(p) � R(q) and (p ⊆ q) then
8 foreach g ∈ I(p) do
9 A[g]← A[g] + 1;

10 Ci ← ∅;
11 foreach g ∈ G do
12 if A[g] ≥ ki then
13 Ci ← Ci ∪ {g};

14 C ←
⋂L
i=1 Ci;

/* GED Verification */
15 O ← ∅;
16 foreach g ∈ C do
17 if GED(g, q) ≤ τ then
18 O ← O ∪ {g};

19 return The result set O;

index partitions and the GED lower-bound constraints will vary
significantly across different layers of ML-Index. As a result,
ML-Index has the theoretical tightness guarantee for the GED
lower bound, which was not promised in the existing, state-
of-the-art similarity search solutions.

We also remark that ML-Index is a generalized graph
indexing framework. The GED lower bounds in ML-Index are
not confined to partitioned-based lower bounds, so any existing
GED lower bound can be synergistically incorporated in ML-
Index to enable a powerful, collective filtering strategy towards
bringing a significant false-positive reduction for similarity
search with theoretical performance guarantees.

V. SIMILARITY SEARCH ALGORITHM

After ML-Index is built from G, we can use it to answer
similarity search queries, as detailed in Algorithm 3. We first
create an array A[·] to maintain for each data graph g ∈ G,
the number of matching partitions w.r.t. the query q (Line 2),
and it is initialized to 0 (Lines 4− 5). At the ith layer of ML-
Index (1 ≤ i ≤ L), we evaluate for each partitioned index
feature p if p ⊆ q is satisfied (the graph profile checking,
R(p) � R(q), is performed first to short-circuit the costly
half-edge subgraph isomorphism testing, p ⊆ q). If p ⊆ q is
true, p is a matching partition w.r.t. q, and it is also a half-
edge subgraph of all the data graphs g ∈ G in p’s inverted
index, I(p). We thus increment A[g], accordingly (Lines 6−9).
Based on Theorem 1, the candidate set at the ith layer of ML-
Index, Ci, includes all the data graphs with no less than ki
matching partitions, where ki is the instantiated GED lower-

bound parameter at the ith layer of ML-Index (Lines 10−13).
After this layer-by-layer evaluation, the final candidate set, C,
contains the data graphs satisfying all L disparate GED lower-
bounds specified in ML-Index (Line 14). Finally, we adopt
some exact GED computational method to achieve the final
results, O, from C (Lines 15− 19).

To examine the time complexity of Algorithm 3, we con-
sider the following critical factors: (1) Tiso : the average time
complexity of half-edge subgraph isomorphism from index
feature p to the query q, p ⊆ q; (2) Tged : the average
time complexity of exact GED computation, GED(q, g), where
g ∈ G; and (3) To : all the other time consumed for
initialization and set-based operations. As a result, the overall
runtime cost of Algorithm 3 can be formulated as

T = |
L⋃
i=1

Hi| ∗ Tiso + |
L⋂
i=1

Ci| ∗ Tged + To. (6)

Specifically, the first component, |
⋃L
i=1Hi| ∗ Tiso, represents

the overall time to generate the candidate sets at different layers
of ML-Index, while the second component, |

⋂L
i=1 Ci| ∗ Tged,

is the overall time for GED verification. Former empirical
studies have demonstrated that Tiso is typically three orders of
magnitude less than Tged in real-world graphs [34]. Therefore,
the main computational bottleneck lies in the GED verification
component, |

⋂L
i=1 Ci| ∗ Tged, and the key to enhancing simi-

larity search performance is to reduce the candidate set size,
|C| = |

⋂L
i=1 Ci|, which is also the goal of ML-Index. We

also note that by introducing the multi-layered index structure
for ML-Index, we have to spend extra space for new index
features and extra time for half-edge subgraph isomorphism
testings. However, the significant gain in false-positive graph
reductions has far outweighed such marginal cost, as reported
in Section VI.

VI. EXPERIMENTS

A. Graph Databases

We consider three publicly available graph databases to
benchmark different similarity search methods. The details of
graph databases are summarized as follows,

1) AIDS: this is an antivirus screen chemical com-
pound database from the Developmental Therapeu-
tics Program at NCI/NIH2. There are 42, 687 graph-
structured chemical compounds with 25.6 vertices
and 27.6 edges by average, and 62 vertex labels (like
elements C, O, N, and P) and 3 edge labels in total;

2) PROTEIN: this is a protein graph database from the
Protein Data Bank3 containing 600 graphs with 32.6
vertices and 62.1 edges by average. There are 3 vertex
labels and 5 edge labels in this database. The graphs
are denser and less label-informative than those in the
AIDS database;

3) GRAPHGEN: this is a synthetic graph generator
that creates large collections of labeled graphs4. The
generator is regulated by a series of parameters: the

2dtp.nci.hih.gov/docs/aids/aids data.html
3www.iam.unibe.ch/fki/databases/iam-graph-database
4www.cse.ust.hk/graphgen

number of graphs, |G|, the average size of each graph
in terms of the number of edges, |E|, the number
of unique vertex/edge labels, |Σ|, and the average
density of graphs, defined as d = 2|E|/|V |(|V | − 1).
If not specified explicitly otherwise, the default pa-
rameters are set as: |G| = 10K, |E| = 40, d = 0.1,
|Σ| = 4/4 denoting there are 4 distinct vertex labels
and 4 distinct edge labels, respectively.

The query set Q is generated by randomly sampling 100
graphs from each graph database, respectively. That is, query
graphs in Q have similar structure/label characteristics as the
data graphs in the corresponding graph databases.

B. Experimental Setup

We carry out experimental studies for ML-Index in com-
parison with Pars [34], which has outperformed other existing
similarity search methods [37], [28], [35], [27], and been by
far the most efficient algorithm. In particular, we consider the
following algorithms in the experimental studies,

1) Pars[34]: the state-of-the-art graph indexing method
adopting a single, degraded GED lower bound (k =
1) and random partitioning for index generation and
similarity search;

2) Selectivity: a single-layer graph indexing method
using the generalized GED lower bound with an
instantiated parameter k > 1 (Theorem 1), and the
selectivity-aware graph partitioning (Algorithm 1) for
index generation and similarity search;

3) ML-Index-L: a multi-layered graph indexing method
comprising L distinct layers, each of which represents
a distinct partition-based GED lower bound param-
eterized by ki, and a selectivity-aware partitioning
method, Pi, for index generation. We set L = 4 in
real-world graph databases, and L = 3 in synthetic
graph databases (When L is set with other values, we
have witnessed similar experimental findings, which
are omitted for brevity).

We consider the following performance evaluation metrics
in the experimental studies: (1) Index construction cost,
including the number |F| of partitioned index features, the
in-memory index size M , and the index construction time T ;
(2) Candidate set size, |C|, which is the most critical indicator
of the similarity search performance. The results reported here
are the average candidate set size for 100 queries in the query
set Q; (3) Query execution time, consisting of the time for
candidate generation and the time for exact GED verification,
is the real response time for similarity search. Again, the
time reported here is the average response time of 100 given
queries in Q. In our experiments, we use the state-of-the-art
method [22] for exact GED verification.

All our experiments were carried out on an Intel i7
3.20GHz quad-core PC with 8GB memory running Windows
7 operating system. The algorithms are implemented in C++
and compiled in Microsoft Visual Studio 2015.

C. Experiments for Index Construction

First of all, we evaluate the index construction cost of
different methods in different graph databases. Note that all

dtp.nci.hih.gov/docs/aids/aids_data.html
www.iam.unibe.ch/fki/databases/iam-graph-database
www.cse.ust.hk/graphgen

50K

100K

150K

200K

250K

 1 2 3 4 5 6

N
um

be
r

of
 I

nd
ex

 F
ea

tu
re

s
|F

|

GED Threshold τ

Pars
Selectivity

ML-Index-2
ML-Index-3

ML-Index-4

(a) |F| vs. τ (AIDS)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6

In
de

x
Si

ze
 (

M
B

yt
es

)

GED Threshold τ

Pars
Selectivity

ML-Index-2
ML-Index-3

ML-Index-4

(b) M vs. τ (AIDS)

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4 5 6

In
de

x
C

on
st

ru
ct

io
n

T
im

e
(S

ec
.)

GED Threshold τ

Pars
Selectivity

ML-Index-2
ML-Index-3
ML-Index-4

(c) T vs. τ (AIDS)

0K

5K

10K

15K

20K

 1 2 3 4 5 6

N
um

be
r

of
 I

nd
ex

 F
ea

tu
re

s
|F

|

GED Threshold τ

Pars
Selectivity

ML-Index-2

ML-Index-3
ML-Index-4

(d) |F| vs. τ (PROTEIN)

 0.5

 1

 1.5

 2

 1 2 3 4 5 6

In
de

x
Si

ze
 (

M
B

yt
es

)

GED Threshold τ

Pars
Selectivity

ML-Index-2

ML-Index-3
ML-Index-4

(e) M vs. τ (PROTEIN)

 0

 0.5

 1

 1.5

 2

 1 2 3 4 5 6

In
de

x
C

on
st

ru
ct

io
n

T
im

e
(S

ec
.)

GED Threshold τ

Pars
Selectivity

ML-Index-2
ML-Index-3
ML-Index-4

(f) T vs. τ (PROTEIN)

0K

100K

200K

300K

400K

500K

600K

700K

800K

10K 20K 40K 60K 80K

N
um

be
r

of
 I

nd
ex

 F
ea

tu
re

s
|F

|

Graph Database Size

Pars
Selectivity

ML-Index-2
ML-Index-3

(g) |F| vs. |G|

 0

 20

 40

 60

 80

 100

 120

10K 20K 40K 60K 80K

In
de

x
Si

ze
 (

M
B

yt
es

)

Graph Database Size

Pars
Selectivity

ML-Index-2
ML-Index-3

(h) M vs. |G|

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

10K 20K 40K 60K 80K

In
de

x
C

on
st

ru
ct

io
n

T
im

e
(S

ec
.)

Graph Database Size

Pars
Selectivity

ML-Index-2
ML-Index-3

(i) T vs. |G|

40K

60K

80K

100K

120K

140K

160K

0.1 0.2 0.3 0.4 0.5

In
de

x
Pa

rt
iti

on
 N

um
be

r
|F

|

Graph Density

Pars
Selectivity

ML-Index-2
ML-Index-3

(j) |F| vs. d

 4

 6

 8

 10

 12

 14

 16

 18

 20

0.1 0.2 0.3 0.4 0.5

In
de

x
Si

ze
 (

M
B

yt
es

)

Graph Density

Pars
Selectivity

ML-Index-2
ML-Index-3

(k) M vs. d

 5

 10

 15

 20

0.1 0.2 0.3 0.4 0.5

In
de

x
C

on
st

ru
ct

io
n

T
im

e
(S

ec
.)

Graph Density

Pars
Selectivity

ML-Index-2
ML-Index-3

(l) T vs. d

50K

100K

150K

200K

250K

4/4 6/6 8/8 10/10

In
de

x
Pa

rt
iti

on
 N

um
be

r
|F

|

Graph Labels |Σ|

Pars
Selectivity

ML-Index-2
ML-Index-3

(m) |F| vs. |Σ|

 5

 10

 15

 20

 25

4/4 6/6 8/8 10/10

In
de

x
Si

ze
 (

M
B

yt
es

)

Graph Labels |Σ|

Pars
Selectivity

ML-Index-2
ML-Index-3

(n) M vs. |Σ|

 2

 4

 6

 8

 10

 12

4/4 6/6 8/8 10/10

In
de

x
C

on
st

ru
ct

io
n

T
im

e
(S

ec
.)

Graph Labels |Σ|

Pars
Selectivity

ML-Index-2
ML-Index-3

(o) T vs. |Σ|
Fig. 5: Index construction cost in terms of the number of index features, |F|, the index size M (in megabytes), and the index
construction time T (in seconds) for different similarity search methods in different graph databases.

graph indexes are pre-built offline, given a graph database, G,
and we consider the GED threshold, τ , with practically small
values (τ ≤ 6), as users are typically more inclined to search
for similar graphs from graph databases.

We first examine the index construction cost in the AIDS
graph database. The number |F| of index features, the index
size M , and the index construction time T of different methods
are illustrated in Figure 5(a), (b), and (c), respectively. In
Figure 5(a), by varying the values of τ from 1 up to 6,
we recognize that the numbers of index features, |F|, of
the one-layer indexing methods, Pars and Selectivity, are
fairly stable and close with each other, while |F| of the
multi-layered indexing approaches, ML-Index-2, ML-Index-
3, and ML-Index-4, decrease steadily. This is because a
growing number of selectivity-aware partitions in the multi-
layered indexes turn out to be identical (in terms of half-edge
subgraph isomorphism), and their inverted indexes and graph
profiles can be reused across different layers of ML-Index, thus
resulting in succinct index structures. This is further verified
in terms of the index size, M (in megabytes), as shown in
Figure 5(b). Even for the largest index, ML-Index-4, with
four layers of partitioned index features, it only consumes
less than 80 megabytes, which is very cost-effective, and
can safely reside in memory. As to the index construction
time T (in seconds) in Figure 5(c), we find that the multi-
layered index ML-Index can be built efficiently. In particular,
the index construction time T for multi-layered indexes is
slightly greater than the construction time for single-layer
indexing methods (T for ML-Index-4 is within 2.5x of T for
Selectivity, given different values of τ). With the increase of
τ , this gap of index construction time becomes marginal. This
is mainly because when τ gets larger, each data graph g ∈ G is
accordingly partitioned into a larger number (τ+k) of smaller-

size partitions, thus leading to a speedup in half-edge subgraph
isomorphism computation, which typcailly takes more than
90% of the total index construction time.

We then examine the index construction cost in the PRO-
TEIN graph database, the graphs of which are dense and with
few vertex/edge labels. The experimental results are illustrated
in Figure 5(d)-(f). Here we witness similar trends and findings
as the ones from the AIDS database, with one exception that
there are much fewer numbers of identical index partitions
shared by different layers of ML-Index, thus leading to a
steady growth of the number of index features, |F|, w.r.t. τ , as
shown in Figure 5(d). However, the memory M consumed
by different graph indexes is still very small (less than 2
megabytes even for ML-Index-4), as shown in Figure 5(e), and
all indexes can be successfully constructed within 2 seconds,
as shown in Figure 5(f).

We further evaluate the index construction cost on a series
of synthetic graph databases generated by GRAPHGEN, and
set τ = 5 by default in the following experiments. Figure 5(g)-
(i) present the scalability results of index construction for
different methods. By varying the number of data graphs, |G|,
from 10K up to 80K, we recognize that the number of index
features, |F|, the index size M , and the index construction
time T all grow linearly, exhibiting excellent scalability for
all different graph indexing methods. For the largest graph
database with 80K graphs, the size of ML-Index-3 is 131
megabytes, and it can be efficiently built within 90 seconds.

We then tune the graph density parameter, d, to gen-
erate graph databases with varied graph densities, and the
experimental results for index construction are illustrated in
Figure 5(j)-(l). When d increases from 0.1 to 0.5, the number
of index features, |F|, decreases steadily for Selectivity, ML-

0K

5K

10K

15K

20K

25K

30K

35K

40K

45K

 1 2 3 4 5 6

C
an

di
da

te
 S

et
 S

iz
e

|C
|

GED Threshold τ

Pars
Selectivity

ML-Index-2
ML-Index-3
ML-Index-4

Real

(a) |C| vs. τ (AIDS)

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6

C
an

di
da

te
 S

et
 S

iz
e

|C
|

GED Threshold τ

Pars
Selectivity

ML-Index-2
ML-Index-3
ML-Index-4

Real

(b) |C| vs. τ (PROTEIN)

0K

10K

20K

30K

40K

50K

10K 20K 40K 60K 80K

C
an

di
da

te
 S

et
 S

iz
e

|C
|

Graph Database Size |G|

Pars
Selectivity

ML-Index-2
ML-Index-3

Real

(c) |C| vs. |G|

0K

2K

4K

6K

8K

10K

12K

0.1 0.2 0.3 0.4 0.5

C
an

di
da

te
 S

et
 S

iz
e

|C
|

Graph Density

Pars
Selectivity

ML-Index-2

ML-Index-3
Real

(d) |C| vs. d

0K

1K

2K

3K

4K

5K

6K

7K

8K

9K

4/4 6/6 8/8 10/10

C
an

di
da

te
 S

et
 S

iz
e

|C
|

Graph Labels |Σ|

Pars
Selectivity

ML-Index-2
ML-Index-3

Real

(e) |C| vs. |Σ|

100

101

102

103

104

105

1 2 3 4 5 6

R
un

tim
e

(s
ec

.)

GED Threshold τ

Pars

Selectivity

ML-Index-2

ML-Index-3

ML-Index-4

Can. Gen.

(f) Runtime (AIDS)

10-2

10-1

100

101

102

1 2 3 4 5 6

R
un

tim
e

(s
ec

.)

GED Threshold τ

Pars

Selectivity

ML-Index-2

ML-Index-3

ML-Index-4

Can. Gen.

(g) Runtime (PROTEIN)

10-1

100

101

102

103

104

10K 20K 40K 60K 80K

R
un

tim
e

(s
ec

.)

Graph Database Size |G|

Pars

Selectivity

ML-Index-2

ML-Index-3

Can. Gen.

(h) Runtime vs. |G|

100

101

102

103

104

0.1 0.2 0.3 0.4 0.5

R
un

tim
e

(s
ec

.)

Graph Density d

Pars

Selectivity

ML-Index-2

ML-Index-3

Can. Gen.

(i) Runtime vs. d

10-1

100

101

102

103

104

4/4 6/6 8/8 10/10

R
un

tim
e

(s
ec

.)

Graph Labels |Σ|

Pars

Selectivity

ML-Index-2

ML-Index-3

Can. Gen.

(j) Runtime vs. |Σ|
Fig. 6: The similarity search performance in terms of the candidate set size, |C|, and the overall runtime, T .

Index-2, and ML-Index-3, because a growing number of
selectivity-aware partitions turn out to be identical, which
are graph partitions shared by dense graphs in the graph
database. As a result, the index size M decreases steadily as
well. However, the index construction time T increases as it
typically takes more time to partition denser graphs.

Finally, we examine the index construction cost w.r.t. the
label set size, |Σ|. We generate a series of graph databases with
a varied number of vertex/edge labels, and construct graph
indexes in these graph databases. The experimental results are
presented in Figure 5(m)-(o). We note that when there are more
distinct vertex/edge labels in the graph database, both |F| and
M grows slightly larger, due primarily to a more diverse set
of index features generated from the graph database. However,
the index construction time T is very stable for all different
graph indexing methods.

D. Experiments for Similarity Search

We then report our experimental studies for the similarity
search performance of different methods in different graph
databases. We consider the candidate set size, |C|, as the prin-
cipal indicator for similarity search performance. Furthermore,
we also report the overall runtime concerning both candidate
generation and exact GED verification, which is also the real
response time for similarity search in graph databases.

Figure 6(a) illustrates the candidate set size, |C|, w.r.t.
the GED threshold, τ , for different methods in the AIDS
database. We also include the size, |O|, of the similarity search
results to demonstrate the ultimate goal we strive to attain
(colored in pink triangles). We have the following important
findings in the experimental studies. First of all, the values
of |C| for Selectivity (colored in red circle) are consistently
smaller than those for Pars (colored in green square), with
an average reduction of 30% false-positive graphs in the
candidate set. The reason is two-fold. First, the generalized
GED lower bound with parameter k > 1 is tighter than the
degraded one (k = 1). Second, the selectivity-aware parti-
tioning method in Selectivity is more effective than random
partitioning in Pars toward generating high-selectivity index
partitions, which further help filter false-positive graphs during
candidate generation. More importantly, we recognize that

the multi-layered indexing approaches, including ML-Index-
2, ML-Index-3, and ML-Index-4, have achieved significant
false-positive graph reductions during candidate generation.
With the increase of the number L of layers in ML-Index, we
find |C| is guaranteed to reduce consistently, indicating that
the multi-layered indexing method, ML-Index, has excellent
filtering capabilities, and can bring guaranteed improvement
for false-positive graph reduction in comparison to the single-
layer graph indexing methods such as Pars and Selectivity.
In particular, ML-Index-4 is the most effective method whose
candidate sets, C, are 2.5x to 10.7x smaller than the ones
returned by the state-of-the-art method, Pars.

The same experiments are carried out in the PROTEIN
database, and the results are presented in Figure 6(b). It can
be witnessed that, given different values of τ , the multi-
layered indexing methods, ML-Index-2, ML-Index-3, and ML-
Index-4, achieve significant and consistent false-positive graph
reductions, compared with the single-layer indexing methods.
Specifically, the candidate sets, C, of ML-Index-4 are 3.4x
up to 17.6x smaller than the ones returned by Pars, leading
to significant performance gains for similarity search given
different values of τ .

We further evaluate the candidate set sizes, |C|, in a series
of synthetic graph databases. First of all, we examine the
scalability results for similarity search by varying the number
of graphs ranging from 10K up to 80K in the graph database
G, and report the candidate set sizes, |C|, for different methods,
as shown in Figure 6(c). We note that, with a growth of the
number of graphs in G, the number of candidate graphs, |C|,
returned by Pars increases significantly, which will incur a
large amount of costly GED computation. However, when we
introduce the multi-layered index structure in ML-Index, a
significant portion of false-positive graphs are identified and
filtered even in very large graph databases. In particular, ML-
Index-4 achieves at least an order of magnitude improvement
for false-positive graph reductions, compared with Pars, in
graph databases of different sizes.

We then generate a series of graph databases (|G| = 10K)
with varied graph densities d ranging from 0.1 up to 0.5,
and examine the similarity search performance in these graph
databases. The experimental results are reported in Figure 6(d).
We recognize that when graphs become dense, the numbers

|C| of candidate graphs returned by different similarity search
methods turn out to increase significantly. The reason is that,
given a dense graph g ∈ G, some of its (τ+k) graph partitions
become dense accordingly. As a result, the probability of
more than one graph edit operations arising from a dense
partition, pi, increases as well. However, once identified as a
mismatching partition, pi is only counted as one mismatching
partition in the GED lower bound evaluation, though there
might be multiple graph edit operations co-occur within pi.
This phenomenon indicates that the detection of false positive
graphs becomes difficult for dense graphs. However, even in
this hard case, ML-Index-4 still outperforms Pars, meaning
that it is beneficial to crosscheck multiple GED lower bounds
to ensure effective false-positive reductions especially in the
graph databases with many dense graphs.

We also examine how the number of vertex/edge labels,
|Σ|, of a graph database is related to |C|, and the results are
presented in Figure 6(e). When |Σ| increases, a significant
reduction of |C| has been recognized for all different methods.
Interestingly enough, when |Σ| = 6/6 (and larger), ML-Index-
2 and ML-Index-3 can successfully identify and filter all false-
positive graphs from C. Namely, C = O. This indicates that the
consideration of vertex/edge labels in the modeling and design
of the selectivity-aware graph partitioning method turns out to
be effective, which leads to high-selectivity index partitions
from graph databases, and results in significant reductions of
false-positive graphs during similarity search.

We finally evaluate the overall runtime cost of all similarity
search methods in different graph databases, and the results are
illustrated in Figure 6(f)-(j) (Note that the experimental settings
are the same as in the corresponding experimental studies for
|C|, respectively). The similarity search response time reported
here comprise both the time for candidate generation (colored
in grey), and the time for exact GED verification. We note that
the time spent for candidate generation is at most several sec-
onds, which is marginal in comparison with the time spent for
exact GED verification. In the two real-world graph databases,
AIDS (Figure 6(f)) and PROTEIN (Figure 6(g)), the multi-
layered indexing method, ML-Index-4, achieves an order of
magnitude improvement in the similarity search performance,
compared with the state-of-the-art method, Pars, especially
when the GED threshold, τ , is small (τ ≤ 3). Meanwhile, in a
series of synthetic graph databases characterized by the graph
database size |G| (Figure 6(h)), graph density d (Figure 6(i)),
and the number of vertex/edge labels |Σ| (Figure 6(j)), the
search performance gap between ML-Index-3 and Pars can
be as large as two orders of magnitude. This further verifies
that our multi-layered graph indexing approach, ML-Index, is
an efficient and high-performance similarity search method
in real-world and synthetic graph databases under different
experimental settings.

VII. CONCLUSION

The similarity search problem plays a fundamental and
critical role in managing and querying graph-structured data,
and has found widely varying applications in real-world large-
scale graph databases. In this paper, we considered the simi-
larity search problem that is defined on the graph edit distance
(GED) constraint, and further proposed a new, multi-layered
graph indexing solution, ML-Index, to address this challenging

problem in graph databases. We employed a parameterized,
partition-based GED lower bound for false-positive graph
identification and filtering, and designed a selectivity-aware
graph partitioning algorithm for high-quality index feature
generation. We further incorporated and crosschecked multiple
instantiated GED lower bounds in ML-Index such that false-
positive graphs can be filtered with theoretical performance
guarantees. The experimental studies on both real and syn-
thetic graph databases have demonstrated that ML-Index is
an efficient and cost-effective indexing method, which has
significantly outperformed the state-of-the-art method, Pars,
for similarity search in large-scale graph databases.

REFERENCES

[1] C. C. Aggarwal and H. Wang. Managing and Mining Graph Data.
Springer Inc., 2010.

[2] P. Barceló Baeza. Querying graph databases. In Proceedings of the
32nd Symposium on Principles of Database Systems (PODS’13), pages
175–188, 2013.

[3] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,
H. Weissig, I. N. Shindyalov, and P. E. Bourne. The protein data bank.
Nucleic Acids Res, 28:235–242, 2000.

[4] S. Berretti, A. Del Bimbo, and E. Vicario. Efficient matching and
indexing of graph models in content-based retrieval. IEEE Trans.
Pattern Anal. Mach. Intell., 23(10):1089–1105, 2001.

[5] C.-E. Bichot and P. Siarry. Graph Partitioning. Wiley, 2011.

[6] A. Buluc, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent
advances in graph partitioning. ArXiv e-prints, 2013.

[7] H. Bunke. On a relation between graph edit distance and maximum
common subgraph. Pattern Recogn. Lett., 18(9):689–694, 1997.

[8] H. Bunke. Error correcting graph matching: On the influence of the
underlying cost function. IEEE Trans. Pattern Anal. Mach. Intell.,
21(9):917–922, 1999.

[9] H. Bunke and K. Shearer. A graph distance metric based on the maximal
common subgraph. Pattern Recogn. Lett., 19(3-4):255–259, 1998.

[10] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of
graph matching in pattern recognition. International Journal of Pattern
Recognition and Artificial Intelligence, 18(3):265–298, 2004.

[11] D. J. Cook and L. B. Holder. Mining Graph Data. John Wiley & Sons,
2006.

[12] S. Fankhauser, K. Riesen, and H. Bunke. Speeding up graph edit
distance computation through fast bipartite matching. In Proceedings
of the 8th International Conference on Graph-based Representations in
Pattern Recognition (GBRPR’11), pages 102–111, 2011.

[13] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance.
Pattern Anal. Appl., 13(1):113–129, 2010.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[15] K. Gouda and M. Arafa. An improved global lower bound for graph
edit similarity search. Pattern Recogn. Lett., 58:8–14, 2015.

[16] H. He and A. K. Singh. Graphs-at-a-time: query language and access
methods for graph databases. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data (SIGMOD’08), pages
405–418, 2008.

[17] H. W. Kuhn and B. Yaw. The hungarian method for the assignment
problem. Naval Res. Logist. Quart, pages 83–97, 1955.

[18] L. Libkin, W. Martens, and D. Vrgoč. Querying graphs with data. J.
ACM, 63(2):14:1–14:53, 2016.

[19] M. Neuhaus and H. Bunke. Bridging the Gap Between Graph Edit
Distance and Kernel Machines. World Scientific Publishing, 2007.

[20] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa.
KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids
Research, 27(1):29–34, 1999.

[21] S. Ranu, M. Hoang, and A. Singh. Answering top-k representative
queries on graph databases. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (SIGMOD’14), pages
1163–1174, 2014.

[22] K. Riesen, S. Emmenegger, and H. Bunke. A novel software toolkit
for graph edit distance computation. In 9th International Workshop on
Graph-Based Representations in Pattern Recognition, pages 142–151,
2013.

[23] H. Shang, X. Lin, Y. Zhang, J. X. Yu, and W. Wang. Connected sub-
structure similarity search. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data (SIGMOD’10), pages
903–914, 2010.

[24] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph
matching on billion node graphs. Proc. VLDB Endow., 5(9):788–799,
2012.

[25] Y. Tian, R. C. Mceachin, C. Santos, D. J. States, and J. M. Patel.
SAGA: A subgraph matching tool for biological graphs. Bioinformatics,
23(2):232–239, 2007.

[26] E. Ukkonen. Approximate string-matching with q-grams and maximal
matches. Theor. Comput. Sci., 92(1):191–211, 1992.

[27] G. Wang, B. Wang, X. Yang, and G. Yu. Efficiently indexing large
sparse graphs for similarity search. IEEE Trans. on Knowl. and Data
Eng., 24(3):440–451, 2012.

[28] X. Wang, X. Ding, A. K. H. Tung, S. Ying, and H. Jin. An efficient
graph indexing method. In Proceedings of the 2012 IEEE 28th
International Conference on Data Engineering (ICDE’12), pages 210–
221, 2012.

[29] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining.
In Proceedings of the 2002 IEEE International Conference on Data
Mining (ICDM’02), pages 721–724, 2002.

[30] X. Yan, P. S. Yu, and J. Han. Substructure similarity search in graph
databases. In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data (SIGMOD’05), pages 766–777,
2005.

[31] Y. Yuan, G. Wang, J. Y. Xu, and L. Chen. Efficient distributed subgraph
similarity matching. The VLDB Journal, 24(3):369–394, 2015.

[32] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou. Comparing
stars: On approximating graph edit distance. Proc. VLDB Endow.,
2(1):25–36, 2009.

[33] S. Zhang, J. Yang, and W. Jin. SAPPER: Subgraph indexing and
approximate matching in large graphs. Proc. VLDB Endow., 3(1-
2):1185–1194, 2010.

[34] X. Zhao, C. Xiao, X. Lin, Q. Liu, and W. Zhang. A partition-based
approach to structure similarity search. PVLDB, 7(3):169–180, 2013.

[35] X. Zhao, C. Xiao, X. Lin, and W. Wang. Efficient graph similarity
joins with edit distance constraints. In Proceedings of the 2012 IEEE
28th International Conference on Data Engineering (ICDE’12), pages
834–845, 2012.

[36] X. Zhao, C. Xiao, X. Lin, W. Wang, and Y. Ishikawa. Efficient
processing of graph similarity queries with edit distance constraints.
The VLDB Journal, 22(6):727–752, 2013.

[37] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao. Graph similarity
search with edit distance constraint in large graph databases. In
Proceedings of the 22nd ACM International Conference on Conference
on Information & Knowledge Management (CIKM’13), pages 1595–
1600, 2013.

[38] G. Zhu, X. Lin, K. Zhu, W. Zhang, and J. X. Yu. TreeSpan:
Efficiently computing similarity all-matching. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data
(SIGMOD’12), pages 529–540, 2012.

[39] Y. Zhu, L. Qin, J. X. Yu, and H. Cheng. Finding top-k similar graphs in
graph databases. In Proceedings of the 15th International Conference
on Extending Database Technology (EDBT’12), pages 456–467, 2012.

APPENDIX

Proof of Theorem 1. We assume, by contradiction, that there
are less than k partitions of g that are half-edge subgraph
isomorphic to q. Namely, there are more than (τ +k)−k = τ

partitions that are not half-edge subgraph isomorphic to q. For
each pi of these τ partitions where pi (q, we need at least
one graph edit operation to modify pi in order to modify g to
q as a consequence, thus amounting up to more than τ graph
edit operations, which is in contradiction to the known fact
that GED(g, q) ≤ τ . 2

Proof of Theorem 2. Based on the assumption that all graph
edit operations occur irrespectively of g, we cast the GED
problem into the classic balls-and-bins model, where graph
edit operations correspond to m = GED(q, g) balls, and (τ+k)
partitions correspond to n = τ + k bins. Such m balls will be
placed into n bins, and a matching partition pi ⊆ q (1 ≤ i ≤
τ + k) corresponds to an empty bin because there is no graph
edit operation occurring in pi. Since any ball is placed into
a bin with an equal probability of 1/n, the probability of the
first bin out of (τ + 1) bins being empty is

(1− 1

n
)m = (

τ

τ + 1
)GED(q,g)

while the probability of the first k bins out of (τ + k) bins
being empty is

(1− k

n
)m = (

τ

τ + k
)GED(q,g)

Because GED(q, g) > τ ≥ 0, we remark that when k > 1

(
τ

τ + k
)GED(q,g) < (

τ

τ + 1
)GED(q,g)

2

Proof of Theorem 3. Given the false-positive graph g, we
denote the probability of g being detected as a false positive
by the i-th GED lower bound at the i-th layer (1 ≤ i ≤ L) of
ML-Index is Pri(g). So, the probability of g that fails to be
detected and filtered at the i-th layer of ML-Index is 1−Pri(g).
Analogously, the probability of g satisfying all L GED lower-
bounds at L different layers of ML-Index while still not being
detected as a false positive is

∏L
i=1(1 − Pri(g)). Therefore,

the probability of g being identified as a false positive by ML-
Index is

1−
L∏
i=1

(1− Pri(g)). (7)

Assume that ML-Index adopts the naive random partition-
ing method at all L different layers for graph partitioning and
index generation, and we further assume Pri(g) = 1/2 for
all 1 ≤ i ≤ L. That is, the probability of whether g can be
successfully identified as a false-positive graph, or not, at any
layer of ML-Index is half-half. (Noth that the values of GED
lower-bound parameters, ki, can be different, thus resulting in
different index partitions with varied filtering capabilities at
different layers of ML-Index, and if we choose the selectivity-
aware graph partitioning method, as opposed to the random
partitioning, the probability Pri(g) can be significantly higher).
Then, the probability of g being identified as a false positive
graph by ML-Index is

1−
L∏
i=1

(1− 1

2
) = 1− 1

2L
,

which can be exponentially high and approaches 1, when the
number L of index layers of ML-Index is set large. 2

	Introduction
	Related Work
	Problem Formulation
	ML-Index
	Partition-based GED Lower Bounds
	Selectivity-aware Graph Partitioning
	The Multi-layered Index Structure

	Similarity Search Algorithm
	Experiments
	Graph Databases
	Experimental Setup
	Experiments for Index Construction
	Experiments for Similarity Search

	Conclusion
	References
	Appendix

