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Introduction
I

 Graph stream = Graph + Data stream
— The edge set 1s massive
— Edges are received and updated rapidly in a form of a stream
* Most existing network applications can be naturally
modeled as graph streams

— Representative applications
e Intrusion detection on Internet
e Social networks

e Telecommunications
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Challenges

 Graph streams

— In a very large scale, the data cannot be stored explicitly in main

memory, or even on disk

— The arriving rate of graph streams is fast

* “You can never step in the same stream twice” --- Heraclitus

e Graph streams

— The universe we are keeping track of 1s extremely large

— The dynamic nature hampers a direct application of many

algorithms for static memory-resident graphs
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Problem Formulation
I

 Graph streams

— G = (I, E) a labeled, directed graph \
* V=N

e Queries to be estimated
1. Edge query
» Determine the frequency of the edge <X,Y>: f (X,Y)=X;;er f(X,Y; t)
2. Aggregate subgraph query

e Determine the aggregate frequency behavior of the edges in a
subgraph

VLDB 2012 4 /20



A Naive Solution: Global Sketching
I

* Global sketching

— A direct application of any existing sketch method for data streams

« AMS[STOC'96], Lossy-Count[VLDB'02], CountMin[J.Alg'05,SIGMOD'11], Bottom-
k[VLDB'08], ......

— CountMin sketch
* Given a data stream with N arrivals till the time-stamp t, the estimated
frequency f is bounded up w.h.p. (1 — e™%)
f<f<f+exN/w
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A Naive Solution: Global Sketching
I

* The vulnerabilities of global sketching

. L .. e —
— The relative error of query estimation on edge 7is —N / fi, which is

proportional to N/ f; |

— Such an estimation error incurred can be extremely high

« Edge frequencies of a graph stream are distributed quite unevenly

« “Low-frequency" edges are quite relevant for querying, and may

show up repeatedly in the workload
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A Better Solution: Sketch Partitioning
I

e Broad intuition

— Common characteristics of real graph streams

* Global Heterogeneity and Skews: the relative frequencies of
different edges are very uneven

« Local Similarity: within structurally localized regions of the graph,
relative frequencies of edges are often correlated

— (Data/workload) samples are always available
e Key idea:

— Partitioning the global sketch, so that edges with similar frequencies
are maintained and queried in localized sketches in order to
achieve better estimation accuracy

VLDB 2012 7 /20



gSketch: Overview
I

 Objective

— Given a space limit S, to partition the global sketch over different
regions of the graph

 Partition based on vertices toward counting edges with sufficient
frequency uniformity within a sketch

 Sampling-based partitioning
— A sample of the original stream is available

— Both a sample of the stream and a sample of the query workload

are available
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Sketching Partitioning with Data Sample
I

e Recursive partitioning in a top-down fashion as in a

decision tree

— Data Samples are used to estimate edge frequencies based on local

similarity of edges emanating from different vertices

— Optimize the partitioning of S into §, and §,

o000 000 OG0TSO NVZ
o d(m) = F(Sy) d(m) * F(S,)
min E = mln(ngl E}(m) + mZSZ fl; ) )
d(m) d(m)
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Sketching Partitioning with Data/Workload Samples
I

 Recursive partitioning in a top-down fashion as in a
decision tree

— Workload Samples are used to estimate “relative weights” of

different edges
min E = min( w(m~) *FS) + W(m3 *FS2)
meS, fy—(m) meS, @ (m)
d(m) d(m)
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Early Termination of the Recursive Partition
I

1. The width of a partitioned sketch at a given level is less
than a particular threshold w,: Width(S;) < wy

2. The number of distinct edges being counted in a sketch

is less than a given factor of the sketch table width:
Y ecd(m) < C * Width(S;)

— The probability of any collision in a particular cell in § can be
bounded by C
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gSketch: Query Processing
I

* Sketch partitioning is performed on the sample data as
a preprocessing step
— Data samples only

— Data and query workload samples

e After sketch partitioning, graph streams are maintained

and queried by a set of partitioned localized sketches

— Each edge is dispatched to its corresponding local sketch for
frequency maintenance and query processing

— Edges not in the data sample are uniformed dispatched to an

outlier sketch
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Experimental Evaluation
I

o gSketch vs. Global sketching

e Evaluation methods

— Average relative error

— Number of effective queries

 Two real data sets and one synthetic data set
— DBLP (1,954,776 edges)
— IBM-Attack Sensor Streaming Data (3,781,471 edges)
— GTGraph (10° vertices and 107 edges)
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Query Estimation Accuracy of Edge Queries
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Query Estimation Accuracy of Edge Queries

(Data and Query ﬂorkload Samples)
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Query Estimation Accuracy of Edge Queries

(Data and Query ﬂorkload Samples)
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Query Estimation Accuracy of
Aggregate Suﬁraph Queries
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Query Efficiency
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Effects of New Vertices/Edges

I
Memory Size
128M | 256M | 512M | 1G | 2G
Average gSketch 58.5068 20.381 8.0068 3.0345 0.7257
relative error Qutlier sketch 58.5071 20.392 8.0081 3.0557 0.7837

Table: Average Relative Error of gSketch and Outlier Sketch in GTGraph
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Conclusions

I

o gSketch: a Partition-based sketch method for better
query estimation in massive graph streams

— Adaptation of well-known sketching methods in conventional

data streams
— Leveraging common structural characteristics of massive graphs

— Achieving up to an order of magnitude improvement in

estimation accuracy

e Future directions

— Computation of complex functions of edge frequencies in
subgraph queries
— Structural queries
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