On Query Estimation in Graph Streams

gSketch:

Peixiang Zhao (Florida State University) Charu C. Aggarwal (IBM Research, Yorktown Heights)

Min Wang (HP Labs, China)

Istanbul, Turkey, August, 2012

Synopsis

- 1. Introduction
- 2. Problem Formulation
- 3. A Naïve Solution: Global Sketching
- 4. A Better Sketch Partitioning Solution: gSketch
- 5. Experimental Evaluation
- 6. Conclusions

Introduction

- Graph stream = Graph + Data stream
 - The edge set is massive
 - Edges are received and updated rapidly in a form of a stream
- Most existing network applications can be naturally modeled as graph streams
 - Representative applications
 - Intrusion detection on Internet
 - Social networks
 - Telecommunications

VLDB 2012

Challenges

Graph streams

- In a very large scale, the data cannot be stored explicitly in main memory, or even on disk
- The arriving rate of graph streams is fast
 - "You can never step in the same stream twice" --- Heraclitus

Graph streams

- The universe we are keeping track of is extremely large
- The dynamic nature hampers a direct application of many algorithms for static memory-resident graphs

Problem Formulation

- Graph streams
 - -G = (V, E) a labeled, directed graph
 - |*V*|= *N*;
 - $E = \{ < u_{t1}, v_{t1} >: f_{t1}; < u_{t2}, v_{t2} >: f_{t2}; \dots; < u_{ti}, v_{ti} >: f_{ti}; \dots \}$
- Queries to be estimated
 - 1. Edge query
 - Determine the frequency of the edge $\langle X, Y \rangle$: f $(X, Y) = \sum_{ti \in T} f(X, Y; t_i)$
 - 2. Aggregate subgraph query
 - Determine the aggregate frequency behavior of the edges in a subgraph

A Naïve Solution: Global Sketching

Global sketching

- A direct application of any existing sketch method for data streams
 - AMS[STOC'96], Lossy-Count[VLDB'02], CountMin[J.Alg'05,SIGMOD'11], Bottomk[VLDB'08],
- CountMin sketch
 - Given a data stream with *N* arrivals till the time-stamp *t*, the estimated frequency \tilde{f} is bounded up *w.h.p.* $(1 e^{-d})$

$$f \leq f \leq f + e * N/w$$
$$w = \lceil \frac{e}{\epsilon} \rceil$$

A Naïve Solution: Global Sketching

- The vulnerabilities of global sketching
 - The relative error of query estimation on edge *i* is $\frac{e}{w}N/f_i$, which is proportional to N/f_i !
 - Such an estimation error incurred can be **extremely high**
 - Edge frequencies of a graph stream are distributed quite unevenly
 - "Low-frequency" edges are quite relevant for querying, and may show up repeatedly in the workload

A Better Solution: Sketch Partitioning

Broad intuition

- Common characteristics of real graph streams
 - Global Heterogeneity and Skews: the relative frequencies of different edges are very uneven
 - Local Similarity: within structurally localized regions of the graph, relative frequencies of edges are often correlated
- (Data/workload) samples are always available
- Key idea:
 - Partitioning the global sketch, so that edges with similar frequencies are maintained and queried in localized sketches in order to achieve better estimation accuracy

gSketch: Overview

- Objective
 - Given a space limit *S*, to partition the global sketch over different regions of the graph
 - Partition based on <u>vertices</u> toward counting edges with <u>sufficient</u> frequency uniformity within a sketch

Sampling-based partitioning

- A sample of the original stream is available
- Both a sample of the stream and a sample of the query workload are available

Sketching Partitioning with Data Sample

- Recursive partitioning in a top-down fashion as in a decision tree
 - Data Samples are used to estimate edge frequencies based on local similarity of edges emanating from different vertices
 - Optimize the partitioning of S into S_1 and S_2

Sketching Partitioning with Data/Workload Samples

- Recursive partitioning in a top-down fashion as in a decision tree
 - Workload Samples are used to estimate "relative weights" of different edges

$$\min E = \min\left(\sum_{m \in S_1} \frac{\widetilde{w}(m) * \widetilde{F}(S_1)}{\frac{\widetilde{f}_{v}(m)}{\widetilde{d}(m)}} + \sum_{m \in S_2} \frac{\widetilde{w}(m) * \widetilde{F}(S_2)}{\frac{\widetilde{f}_{v}(m)}{\widetilde{d}(m)}}\right)$$

Early Termination of the Recursive Partition

- **1.** The width of a partitioned sketch at a given level is less than a particular threshold w_0 : $Width(S_i) \le w_0$
- 2. The number of distinct edges being counted in a sketch is less than a given factor of the sketch table width: $\sum_{m \in S} \tilde{d}(m) < C * Width(S_i)$
 - The probability of any collision in a particular cell in S can be bounded by C

gSketch: Query Processing

- Sketch partitioning is performed on the sample data as a preprocessing step
 - Data samples only
 - Data and query workload samples
- After sketch partitioning, graph streams are maintained and queried by a set of partitioned localized sketches
 - Each edge is dispatched to its corresponding local sketch for frequency maintenance and query processing
 - Edges not in the data sample are uniformed dispatched to an outlier sketch

Experimental Evaluation

- gSketch vs. Global sketching
- Evaluation methods
 - Average relative error
 - Number of effective queries
- Two real data sets and one synthetic data set
 - DBLP (1,954,776 edges)
 - IBM-Attack Sensor Streaming Data (3,781,471 edges)
 - GTGraph (10⁸ vertices and 10⁹ edges)

Query Estimation Accuracy of Edge Queries (Data Sample Only)

Figure: Average Relative Error

Figure: Number of Effective Queries

Query Estimation Accuracy of Edge Queries (Data and Query Workload Samples)

Figure: Average Relative Error (Zipf Skewness $\alpha = 1.5$)

Figure: Number of Effective Queries (Zipf Skewness $\alpha = 1.5$)

Query Estimation Accuracy of Edge Queries (Data and Query Workload Samples)

Figure: Average Relative Error (1G Memory)

Figure: Number of Effective Queries (1G Memory)

Query Estimation Accuracy of Aggregate Subgraph Queries

Figure: Data Sample Only

Figure: Data & Workload Samples ($\alpha = 1.5$)

Figure: Data & Workload Samples (Memory = 1G)

Query Efficiency

Figure: Sketch Construction Time (Seconds)

Figure: Query Processing Time (Seconds)

Effects of New Vertices/Edges

			Memory		Size	
		128M	256M	512M	1G	2G
Average	gSketch	58.5968	20.381	8.0068	3.9345	0.7257
relative error	Outlier sketch	58.5971	20.392	8.0081	3.9557	0.7837

Table: Average Relative Error of gSketch and Outlier Sketch in GTGraph

Conclusions

 gSketch: a Partition-based sketch method for better query estimation in massive graph streams

- Adaptation of well-known sketching methods in conventional data streams
- Leveraging common structural characteristics of massive graphs
- Achieving up to an order of magnitude improvement in estimation accuracy

Future directions

- Computation of complex functions of edge frequencies in subgraph queries
- Structural queries

Thank you Qteran

zhao@cs.fsu.edu charu@us.ibm.com min.wang6@hp.com

Difference in the second s