
Link Prediction in Graph Streams

Peixiang Zhao
Florida State University

Tallahassee, Florida 32306
zhao@cs.fsu.edu

Charu Aggarwal
IBM Watson Research Center

Yorktown Heights, New York 10598
charu@us.ibm.com

Gewen He
Florida State University

Tallahassee, Florida 32306
he@cs.fsu.edu

Abstract—Link prediction is a fundamental problem that aims
to estimate the likelihood of the existence of edges (links) based
on the current observed structure of a graph, and has found
numerous applications in social networks, bioinformatics, E-
commerce, and the Web. In many real-world scenarios, however,
graphs are massive in size and dynamically evolving in a fast
rate, which, without loss of generality, are often modeled and
interpreted as graph streams. Existing link prediction methods
fail to generalize in the graph stream setting because graph
snapshots where link prediction is performed are no longer
readily available in memory, or even on disks, for effective graph
computation and analysis. It is therefore highly desirable, albeit
challenging, to support link prediction online and in a dynamic
way, which, in this paper, is referred to as the streaming link
prediction problem in graph streams. In this paper, we consider
three fundamental, neighborhood-based link prediction target
measures, Jaccard coefficient, common neighbor, and Adamic-
Adar, and provide accurate estimation to them in order to address
the streaming link prediction problem in graph streams. Our
main idea is to design cost-effective graph sketches (constant
space per vertex) based on MinHash and vertex-biased sampling
techniques, and to propose efficient sketch based algorithms
(constant time per edge) with both theoretical accuracy guarantee
and robust estimation results. We carry out experimental studies
in a series of real-world graph streams. The results demonstrate
that our graph sketch based methods are accurate, efficient, cost-
effective, and thus can be practically employed for link prediction
in real-world graph streams.

I. INTRODUCTION

Link prediction is a long-standing, fundamental problem in
data mining, machine learning, and network sciences, due in
particular to its significance and wide applications in social
networks [1], [2], [3], biology [4], [5], and the Web [6],
[7]. The basic instance of the link prediction problem is to
make use of the current structure of a graph to predict unseen
edges arising in the forseeable future [3]. Formally, given a
snapshot G(t) of a graph at time t (or a series of graph
snapshots till t), link prediction is to determine which new
edges (links) will arise in the future graph G(t′) within the time
interval [t, t′], where t′ > t. Existing link prediction solutions,
regardless of supervised [8], [9], [10] or unsupervised [11], [3],
typically build on a key, snapshot-based assumption, where
graph snapshots should fit either in memory or on disks such
that they are always readily available for graph computation
in link prediction.

However, in many real-world scenarios, graphs where link
prediction is performed are often too massive to be safely
maintained in main memory or on disks. Furthermore, real-
world graphs are dynamically evolving in extremely fast
speed, thus making themselves unavailable in their entirety

at any particular moment of time. Without loss of generality,
such graphs can naturally be modeled and interpreted as
graph streams [12], [13], [14], [15], [16], [17], [18], where
a potentially infinite sequence (e0, e1, . . . , et, . . .) of edges
ei = (u, v), i ≥ 0, u, v ∈ V , representing high-speed
interactions between entities of underlying graphs, are received
and updated dynamically. In the graph stream context, link
prediction turns out to be a new and more challenging stream-
ing link prediction problem, which, interestingly enough, has
found a wide range of real-world applications:

• In social networks, interactions between participants
including friend requests, document/photo sharing,
and message exchanges are fast, transient, and of
very large scale. It is desirable to support online link
prediction in social graph streams for user/commodity
recommendation, market analysis, and business intel-
ligence [19], [20], [21], [22];

• Studies in network evolution have been widely applied
in trend analysis and topology discovery in Internet
and communication networks [23], [24], [25]. In prin-
ciple, each network evolution model corresponds to a
link prediction instance in graph streams;

• In intrusion monitoring and counter-terrorism appli-
cations, continuous communication between IP-pairs
or individuals constitute basic interactive patterns of
underlying dynamic graphs. It is of special interest
to employ intrusion history to predict in real time
malicious communication that could happen in the
future in order to circumvent large-scale outbreaks of
cyber-attacks and crime [26], [27], [15].

Unfortunately, state-of-the-art link prediction solutions fail
to generalize in graph streams due in particular to two critical
reasons. First, existing link prediction methods rely primarily
on the computation and exploration of static graph snapshots.
In fast evolving graph streams, however, such methods become
clearly inaccurate in detecting and capturing seasonal changes
of linkage patterns in real time. Streaming link prediction
is inherently a dynamic problem, which is supposed to be
supported online and in a dynamic way in parallel with the
rapid changes and evolutions of underlying graph streams.
Second, a typical graph stream contains a potentially endless
sequence of edges that are too massive to be explicitly materi-
alized in memory or on hard disks [13]. It is therefore hard to
support multi-pass traversals of the underlying graph for any
nontrivial graph-based computation [17], [15], [16]. Consider,
for instance, a typical communication network containing 108

vertices. The number of possible vertex-pairs, which constitute

the problem space to be explored for link prediction, is of
the order of 1015 (in petabyte-scale). Although the number
of real edges occurring in the graph stream turns out to
be significantly smaller due to graph sparsity, it remains
challenging to compute and maintain on such a large graph
crucial graph measures and structure-aware properties, such as
common neighbor, shortest path, random walk, and personal-
ized PageRank, which have been widely adopted in existing
link prediction solutions [3]. As a result, the snapshot-based
assumption for existing link prediction solutions simply does
not hold in the graph stream setting, whereas new techniques
are in an urgent need to address the challenging streaming link
prediction problem in graph streams.

In this paper, we consider three elementary, neighborhood-
based link prediction measures, Jaccard coefficient, common
neighbor, and Adamic-Adar [7], and design efficient and cost-
effective graph sketches for accurate estimation to them in
graph streams. Although simple in their formulations, these
target measures are effective means for link prediction and
have proven to outperform many complicated, learning-based
link prediction methods in terms of prediction accuracy [11],
[9] with theoretical justification [28]. The broad idea of our
work is to identify structural correlations of different target
measures from within the neighborhood of vertices in a graph
stream, and encode such salient, structure-aware correlations
into different space-efficient graph sketches (constant space
complexity per vertex) for streaming link prediction. Specif-
ically, we design MinHash [29] based graph sketches to
estimate the Jaccard coefficient measure, and vertex-biased
reservoir sampling [30], [31] based graph sketches to esti-
mate the common neighbor and Adamic-Adar measures. For
Adamic-Adar, an alternative, truncated Adamic-Adar measure
is further proposed, which offers almost identically accurate
link prediction results as the original Adamic-Adar measure,
while it can be computed exactly based on our graph sketches.
Efficient approximate, graph sketch based algorithms (constant
time complexity per edge) are further proposed to estimate the
target measures with both theoretical guarantee and empirically
robust and accurate estimation results.

The main contributions of this work are briefly summarized
as follows,

1) We formalize the streaming link prediction problem
in graph streams and identify a series of fundamen-
tal, neighborhood-based link prediction measures, in-
cluding Jaccard coefficient, common neighbor, and
Adamic-Adar, as target measures for streaming link
prediction. To the best of our knowledge, this is the
first work addressing the link prediction problem in
the graph stream setting;

2) We design MinHash based graph sketches to esti-
mate Jaccard coefficient and vertex-biased reservoir
sampling based graph sketches to estimate common
neighbor and Adamic-Adar with both theoretical
guarantee and empirically robust and accurate estima-
tion. The proposed graph sketches and corresponding
estimation algorithms are efficient, cost-effective, and
of theoretical and practical interest in their own right
in graph streams;

3) We carry out extensive experimental studies on
three real-world graph streams. Experimental results

clearly demonstrate the effectiveness and efficiency
of the proposed graph sketches and corresponding
estimation algorithms, in comparison with a series
of existing snapshot-based link prediction methods,
for streaming link prediction in graph streams.

The remainder of this paper is organized as follows. We
will first brief the related work in Section II. In Section III,
we will formally define the streaming link prediction problem
in graph streams, and review the neighborhood-based target
measures for streaming link prediction. In Section IV, we will
discuss in detail the MinHash based graph sketches for Jaccard
coefficient estimation. In Section V and Section VI, we will
examine the vertex-biased sampling based graph sketches to
estimate common neighbor and Adamic-Adar, respectively, in
graph streams. We will present our experimental studies and
results in Section VII. The concluding remarks will be further
summarized in Section VIII.

II. RELATED WORK

Link prediction. The problem of link prediction has
been extensively studied in data mining, machine learning,
recommendation systems, and network sciences [32], [11],
[33]. Many unsupervised link prediction solutions are based
on the computation of graph proximity measures or structure-
aware heuristics [9], [34], [3]. It was further verified that none
of these measures or heuristics is particularly dominant in
different situations [9]. However, the simple neighborhood-
based measures, such as common neighbor, Jaccard coefficient,
and Adamic-Ada, often outperform more complicated link
prediction methods in terms of prediction performance [9], [3]
with theoretical justification [28]. Link prediction has also been
explored more generally in the context of classification [10],
[35], as it can be treated as a special case of supervised learning
in which features and class labels (corresponding to existence
or absence of edges) are associated with the edges of a graph.
This opened the door to a variety of machine learning and
data mining techniques for link prediction [6], [22], [9], [36].
Research on link prediction across multiple networks has also
been discussed [5], [20], [30]. It is worth mentioning that,
state-of-the-art link prediction methods, regardless of super-
vised or unsupervised, are primarily designed for dynamic
graphs with an underlying snapshot-based assumption, where
each graph snapshot is static and can be explicitly material-
ized either in memory or on disks before link prediction is
performed. This assumption however does not hold in real-
world graph streams that are of excessively large scale and
with a fast evolving rate.

Graph streams. Over the last decade, there has been
considerable interest in processing massive graphs in the data
stream model motivated in particular by the fact that real-
world dynamic graphs are often too large to be stored in main
memory or disks of a single machine [13]. A typical graph
stream consists of edges of the underlying graph as a fast
input stream, and algorithms in this model process the stream
in the order it arrives with short response time and limited
space. Noteworthy examples of computation in graph streams
include, but are not limited to, graph connectivity and sparsifi-
cation [12], maximal matching and vertex cover [37], triangle
counting and sampling [38], [39], event pattern matching [40],
query processing [15], outlier detection [17], and PageRank

estimation [18]. A common practice for graph stream process-
ing is to build and maintain cost-effective data summaries,
termed as graph sketches or graph synopses [41], for efficient
and accurate estimation of graph-based functions or metrics.
Technical challenges stem primarily from the intrinsic trade-
off between time/space cost of graph sketches and accuracy
attained for online approximate estimation [13]. Graph streams
have proven to have deep connections with a variety of
research areas including graph data management, big data,
communication complexity, and approximation algorithms.

There exist a number of important graph-theoretic prob-
lems, including link prediction, left unsolved in the graph
stream setting. The streaming link prediction problem in
graph streams is considered particularly difficult, as there
is no way to materialize snapshots of underlying graphs
in memory or on disks for multi-pass graph traversal and
computation. Meanwhile, no existing work has been proposed
to estimate critical graph proximity measures that have been
extensively used for link prediction. A scalable method [34]
was proposed to estimate path-based proximity measures in
social networks, including Katz, rooted PageRank, and escape
probability. However, this method is based on the multi-pass
traversal of underlying graphs and a series of costly, matrix-
based operations, thus making it impossible to be employed
in graph streams. Therefore, it is crucial to design efficient,
cost-effective, and highly accurate graph sketch based methods
that can encode the core structural information and intrinsic
properties of dynamic graphs to address the streaming link
prediction problem in graph streams.

III. STREAMING LINK PREDICTION: DEFINITIONS AND

TARGET MEASURES

In this paper, we consider the streaming link predic-
tion problem in a graph stream that receives a sequence
(e0, e1, . . . , et, . . .) of edges, each of which is in the form of
ei = (u, v) at the time point i, where u, v ∈ V are incident
vertices of the edge ei. For simplicity of exposition, we assume
the underlying graph is undirected, where the ordering of u and
v of the edge is insignificant. The proposed graph sketches
and corresponding estimation algorithms can be generalized
to directed graphs with minor revision.

At any given moment of time t, the edges seen thus far
from the graph stream imply a conceptual graph G(t) =
(V (t), E(t)), where V (t) is the set of vertices, and E(t) is the
set of distinct edges up to time t. We use τ(u, t) to represent
the set of adjacent vertices of the vertex u in the graph G(t).
That is, τ(u, t) contains the distinct vertices adjacent to u
in the graph stream till t, and the degree of u is denoted
as d(u, t) = |τ(u, t)|. To explicitly store a graph stream,
we potentially need O(|V (t)|2) space, which is prohibitive.
To circumvent this challenge, most of existing work focused
on the semi-streaming model [13], [42], where graph stream
algorithms are permitted O(|V (t)| × poly(log|V (t)|)) space,
as most graph-theoretic problems turn out to be provably in-
tractable if the available space is sub-linear in |V (t)|, whereas
they become feasible if the memory is roughly proportional to
the number of vertices in the graph. In this paper, we adopt
this well-accepted semi-streaming model for graph streams.

The streaming link prediction problem in graph streams
can be formalized as follows,

Definition 1 (Streaming Link Prediction). Given a graph
stream G(t) at time t, the streaming link prediction problem
is to predict whether there is or will be an edge e = (u, v) for
any pair of vertices u, v ∈ V (t) and e �∈ E(t).

The streaming link prediction problem is challenging be-
cause the potential problem space is (V (t)×V (t))\E(t), and
we cannot materialize the graph stream as snapshots for link
prediction. Instead, we have only one chance to examine each
edge in the graph stream and make predictions online and in
a dynamic way.

To this end, we will examine a series of elementary,
neighborhood-based graph proximity measures and provide
accurate estimation to them in order to address the streaming
link prediction problem in graph streams. These measures lie
at the heart of link prediction, and represent the ideal goals
we aim to compute, although they are of course impossible to
be derived exactly from the fast, massive graph streams. We
refer to these graph measures as target measures for streaming
link prediction. The most well-known neighborhood-based
measures in link prediction were first discussed in the seminal
paper [3], including preferential attachment, common neigh-
bor, Jaccard coefficient, and Adamic-Adar:

Definition 2 (Target Measures). In a graph stream G(t) and
for any u, v ∈ V (t), the target measures for streaming link
prediction are defined as follows,

1) Preferential attachment: |τ(u, t)| × |τ(v, t)|;
2) Common neighbor: |τ(u, t) ∩ τ(v, t)|;
3) Jaccard coefficient: |τ(u,t)∩τ(v,t)|

|τ(u,t)∪τ(v,t)| ;

4) Adamic-Adar:
∑

w∈τ(u,t)∩τ(v,t)
1

log(|τ(w,t)|)

Although many path or random-walk based graph prox-
imity measures including Katz, hitting-time, rooted PageRank,
and SimRank have also been employed for link prediction [33],
[9], [3], neighborhood-based measures have proven to perform
competitively well, or even better, in comparison with those
path and random-walk based ones in existing link prediction
solutions [28], [3] (Our experimental studies in Section VII
further verifies this point). Meanwhile, it is straightforward to
generalize the neighborhood-based measures as a first step in
the challenging graph stream scenario.

For preferential attachment, it requires an accurate estima-
tion of the number of distinct edges incident on each vertex,
i.e., |τ(u, t)|, u ∈ V (t). This is not as easy as it sounds because
the distinct edges cannot be explicitly maintained and updated
for exact counting in a graph stream. Nevertheless, existing
methods such as Count-Min [43] and gSketch [15] can be
directly employed to estimate |τ(u, t)| for the computation of
preferential attachment in graph streams.

The other three neighborhood based measures, however,
are even harder to estimate in graph streams, because they
require pairwise vertex tracking rather than a clean product of
vertex-centric distinct element cardinalities, as formulated in
preferential attachment. Common neighbor, as the name liter-
ally dictates, counts the number of common incident vertices of
both u and v in a graph stream. Jaccard coefficient normalizes
for the common neighbors of u and v between which the

link is to be predicted. Adamic-Adar [7] penalizes the “spam”
vertices having high vertex degrees with low weights. That
is, if two vertices u and v share a common neighbor w
with a larger degree, w is then weighted less in Adamic-
Adar because of the term-weighting 1/log(|τ(w, t)|) of w.
In the sequel, we will consider Jaccard coefficient, common
neighbor, and Adamic-Adar as our main target measures, and
discuss how each of them can be estimated accurately in graph
streams by efficient and cost-effective graph sketches. We will
provide both theoretical guarantees and empirical analysis on
the accuracy of our estimation algorithms. Note that these
target measures are so representative that many neighborhood-
based link prediction measures, such as Salton index, Sørensen
index, hub promoted index, and hub depressed index [33], are
just their variations or special cases. As a result, the proposed
graph sketches and approximate algorithms can be extended
effortlessly to estimate a family of neighborhood-based link
prediction measures in graph streams.

IV. JACCARD COEFFICIENT ESTIMATION

In this section, we design MinHash based graph sketches to
estimate the first target measure, Jaccard coefficient, in graph
streams. MinHash [29] has been employed in a series of data
mining tasks, such as community detection, itemset counting,
and classification, to approximate Jaccard coefficient [44],
[16]. We generalize the idea of MinHash in the graph stream
setting for streaming link prediction.

Our algorithm adapts a hash function H : u ∈ V → [0, 1]
with the vertex identifier u as the argument, and a hashed
value in the range [0, 1] as output. Given a graph stream, we
maintain a MinHash based graph sketch for each vertex u with
two key values: the minimum adjacent hash value, H(u), and
the minimum adjacent hash index, I(u). The former maps on
to the minimum hash value H(v) at some adjacent vertex v of
u, v ∈ τ(u, t), and the latter maps on to the index v:

H(u) = minH(v), (u, v) ∈ E(t) (1)

I(u) = argminH(v), (u, v) ∈ E(t) (2)

Note these two values are rather easy to maintain and
update, as shown in Algorithm 1. This algorithm starts off
by initializing H(·) to ∞, and I(·) to NULL for every vertex
in the graph stream (Lines 1-2). For each new incoming edge
(u, v) in the graph stream, we update MinHash-based graph
sketches for vertices u and v, respectively (Lines 4-7). An
immediate observation is the following:

Lemma 1. The probability that I(u) = I(v) is exactly equal
to Jaccard coefficient between vertices u and v.

Proof: The number of possible values of I(u) (or I(v))
is equal to the size of the adjacent set τ(u, t) (or τ(v, t)). So
the number of possible values for either I(u) or I(v) is equal
to |τ(u, t) ∪ τ(v, t)|, as both I(u) and I(v) follow the same
sorting order with the use of an identical hash function, H(·),
and all such values appear with equal probability. The number
of possibilities for which I(u) = I(v) is |τ(u, t) ∩ τ(v, t)|.
Therefore, the overall probability for I(u) = I(v) is

Pr(I(u) = I(v)) =
|τ(u, t) ∩ τ(v, t)|
|τ(u, t) ∪ τ(v, t)| (3)

Algorithm 1: Basic MinHash Based Graph Sketches

Input : A graph stream G(t)
Output: MinHash based graph sketches
// Sketch initialization

1 foreach vertex u ∈ G(t) do
2 H(u) ← ∞; I(u) ← NULL

// Sketch maintenance and update
3 while an edge (u, v) ∈ G(t) do
4 if H(v) < H(u) then
5 H(u) ← H(v); I(u) ← v

6 if H(u) < H(v) then
7 H(v) ← H(u); I(v) ← u

which is exactly equal to Jaccard coefficient.

Furthermore, the above result provides an immediate, but
stronger, way to estimating Jaccard coefficient as a probabil-
ity by considering K (K > 1) independent, minwise hash
functions H1(·), . . . ,HK(·). Consequently, multiple minimum
hash values H1(·), . . . , HK(·) and the corresponding indices
I1(·), . . . , IK(·) are maintained accordingly in MinHash based
graph sketches for each vertex. These key values are analo-
gously initialized and updated for each k ∈ {1 . . .K}:

if Hk(v) < Hk(u), then Hk(u) = Hk(v) and Ik(u) = v

if Hk(u) < Hk(v), then Hk(v) = Hk(u) and Ik(v) = u

Therefore, K operations need to be performed for every
vertex u (and v) of each incoming edge et = (u, v) in the
graph stream. The overall time and space complexity of this
algorithm is O(K) per edge, which is constant. It is also easy
to generalize Lemma 1 for the following theorem:

Theorem 1. Let r ≤ K be the number of minwise hash
functions for which Ik(u) = Ik(v), 1 ≤ k ≤ K. Jaccard
coefficient can be estimated by r/K.

This theorem follows immediately from Lemma 1. It
remains to establish theoretical bounds on the quality of the
estimated Jaccard coefficient, as follows,

Theorem 2. Let the estimate J ′(u, v) of Jaccard coefficient
of a pair of vertices (u, v) based on Theorem 1 have the true
expected value J̄(u, v). It can be shown that, for any δ ∈
(0, 1),

Pr(J ′(u, v)− J̄(u, v) < (1− δ)J̄(u, v)) ≤ e−K·J̄(u,v)·δ2/2
(4)

and for any δ′ ∈ (0, 2e− 1),

Pr(J ′(u, v)− J̄(u, v) > (1 + δ′)J̄(u, v)) ≤ e−K·J̄(u,v)·δ′2/4
(5)

Proof: The estimate J ′(u, v) can be expressed as an
average of K i.i.d. Bernoulli random variables X1 . . . XK ,

J ′(u, v) =
K∑

k=1

Xk/K (6)

The value of Xk (1 ≤ k ≤ K) is 1, if the k-th MinHash
indexes Ik(u) and Ik(v) are equal for vertices u and v. Each
of these K Bernoulli random variables takes on the value of 1
with probability of J̄(u, v) according to Lemma 1. Therefore,
we can apply the lower- and upper-tail Chernoff bounds to
derive the aforementioned results [45].

It is important to note that because K, the number of
minwise hash functions, occurs in the exponent of Equation 4
and Equation 5, the probability of the bounds being violated
falls off exponentially. This implies that, for relatively modest
values of K, one can obtain tight bounds on the accuracy of
the estimated Jaccard coefficient based on the MinHash based
graph sketches.

V. COMMON NEIGHBOR ESTIMATION

To estimate common neighbors of two vertices in a graph
stream, a natural question arises: whether a sample of edges
from the graph stream are good enough to estimate this
target measure accurately? Unfortunately, unbiased sampling
provides a negative answer to this question mainly due to
the power-law degree distribution of real-world graphs [46].
For example, consider a graph in which the top 1% of the
high-degree vertices (degrees greater than 10) contain 99% of
the edges. A down-sampling with a rate of 10% will capture
the neighborhood information of such top 1% high-degree
vertices robustly, but may not capture even a single edge for
the remaining 99% low-degree vertices, which, however, are
very important in streaming link prediction because many new
edges occur between these low-degree vertices.

To address this issue, we design the vertex-biased sampling
based graph sketches, where for each vertex u ∈ G(t), a reser-
voir S(u) of budget L is associated to dynamically sample L
incident edges of u (Note if an edge (u, v) is sampled, the
vertex v, not the edge itself, is maintained and updated in u’s
reservoir, S(u)). This sampling approach is biased, because
the number of sampled edges, L, is fixed for all vertices in
the graph stream, and is therefore disproportionately higher
for low-degree vertices than high-degree ones. While sampling
L incident edges of each vertex can be implemented by the
traditional reservoir sampling method [31], another problem
arises for high-degree vertices instead: for two vertices with
degrees larger than L, the number of common neighbors is
hard to estimate accurately from their independent samples.
For example, consider the case where the budget is L = 10,
and the two vertices u and v have a degree 1, 000 each with
all such 1, 000 incident vertices being common neighbors of u
and v. Then, if 10 adjacent neighbors of u and v are sampled
independently, the expected number of common neighbors of
u and v is 10 ∗ 10/1000 = 0.1, which definitely is not an
accurate estimation.

To this end, we adopt this constant budget-based sampling
approach with an important caveat: random samples in dif-
ferent reservoirs of vertices are forced to be dependent on
each other. To model this dependency, we consider an implicit
sorting order of vertices to impose a priority order on the
vertex set of the graph stream. Such a priority order is enforced
with the use of a hash function G : u ∈ V → (0, 1), where
the argument u is a vertex identifier, and the output is a real
number in the range (0, 1) with lower values indicating higher

Algorithm 2: Vertex-biased Sampling Graph Sketches

Input : A graph stream G(t)
Output: Vertex-biased sampling based graph sketches
// Sketch initialization

1 foreach vertex u ∈ G(t) do
2 η(u) = η(u) = 1, S(u) ← ∅

// Sketch maintenance and update
3 while a new edge (u, v) ∈ G(t) do
4 if v �∈ S(u) then
5 if |S(u)| < L then
6 S(u) ← S(u) ∪ {v}
7 else
8 if G(v) ≤ η(u) then
9 k ← argmaxG(w), w ∈ S(u)

10 S(u) ← S(u) \ {k}
11 S(u) ← S(u) ∪ {v}
12 η(u) ← G(k)
13 k∗ ← argmaxG(w), w ∈ S(u)
14 η(u) ← G(k∗)

15 if u �∈ S(v) then
16 if |S(v)| < L then
17 S(v) ← S(v) ∪ {u}
18 else
19 if G(u) ≤ η(v) then
20 k ← argmaxG(w), w ∈ S(v)
21 S(v) ← S(v) \ {k}
22 S(v) ← S(v) ∪ {u}
23 η(v) ← G(k)
24 k∗ ← argmaxG(w), w ∈ S(v)
25 η(v) ← G(k∗)

priority. Specifically, vertices retained in the reservoir S(u) are
those having the highest L priority orders among all incident
neighbors of u. In order to dynamically maintain and update
S(u) when the graph stream evolves, it is important to note
that, if the degree of the vertex u satisfies d(u, t) > L, only
a fraction η(u, t) = L/d(u, t) of all the incident vertices of
u can be retained in the sketch S(u). To account for this, we
define a threshold of the priority value G(·) for each incident
neighbor of u that can survive in the reservoir S(u) as

η(u, t) = min{1, L/d(u, t)} (7)

Unfortunately, it is impossible to online pick L incident
vertices whose priority values are less than η(u, t) (L incident
vertices with the highest-L priority), because the degree d(u, t)
is unknown in advance1. Alternatively, we choose to dynami-
cally maintain a lower estimate, η(u), and an upper estimate,
η(u), (η(u) ≤ η(u)) of the priority threshold, η(u, t), for each
vertex u in order to regulate the selection of prioritized incident
vertices in the reservoir S(u).

Algorithm 2 illustrates the construction and maintenance
of vertex-biased sampling based graph sketches for a graph

1After all, streaming link prediction can be executed at any moment
in the lifetime of a graph stream, and we cannot stop the stream and
calculate key statistics, such as d(u, t), offline.

stream G(t). It starts with an initialization for every vertex
u in the graph stream, η(u) = η(u) = 1, because all
incident neighbors of u are eligible candidates to be potentially
included in the empty reservoir, S(u) at the beginning. To
account for this case, we set the priority thresholds equal to
the maximum possible value, 1, representing the lowest priority
(Lines 1-2). For each new edge (u, v) in the graph stream, S(u)
and S(v) are updated accordingly. In the following, only the
update for the sketch S(u) is described (Lines 4-14), though
the procedure for updating the sketch S(v) is very similar
(Lines 15-25).

When an edge (u, v) is received from the graph stream,
it is first checked whether v has already been in the reservoir
S(u) of u (Line 4). If so, nothing needs to be done. Otherwise,
we further check if S(u) is full to its capacity L (Line 5). If
not, v can be safely added to S(u) (Line 6), and both η(u) and
η(u) remain unchanged. Otherwise, if S(u) is indeed full, it
is further checked if G(v) ≤ η(u), meaning the edge (u, v) is
with the highest L priority and well qualified to be maintained
in S(u) (Line 8). However, another vertex k ∈ S(u) with the
largest value of G(k) (i.e., lowest priority) has to be ejected first
from S(u) before v is added (Lines 9-11). The value of η(u)
is correspondingly reduced to the current largest hash value of
the vertex k∗ remaining in the modified reservoir S(u), and
the value of η(u) is set to the hash value G(k) of the ejected
vertex k (Lines 12-14).

We remark that the use of a universal hash function G(·) in
biased sampling ensures that a common incident vertex w of
both u and v will be given the same priority in the reservoirs,
S(u) and S(v). For example, in the previous example of two
vertices with degree 1000 each (all of which are common
neighbors), both vertices will have exactly the same reservoirs,
which provide an accurate indication that 100% of the incident
edges of each vertex respectively will contribute to the same
set of common neighbors. This is a crucial property of our
vertex-biased sampling based graph sketches.

The space complexity of Algorithm 2 is O(L) per vertex,
and its time complexity is O(1) for each edge in the graph
stream, which is constant. Theoretically, if the number of com-
mon neighbors in the reservoirs S(u) and S(v) is |S(u)∩S(v)|,
the real number of common neighbors of u and v can be
estimated based on the following theorem:

Theorem 3. Let η(u, t) and η(v, t) be the fraction (threshold)
of incident neighbors of u and v, respectively, which are
sampled. The number of common neighbors, Cuv , of u and
v is

Cuv =
|S(u) ∩ S(v)|

max{η(u, t), η(v, t)} (8)

Proof: because vertices in the two reservoirs S(u) and
S(v) are selected in the same priority order, sampling these
two reservoirs at the rates of η(u, t) and η(v, t) respectively
will produce the same expected result as sampling each at
the rate of max{η(u, t), η(v, t)}. The max{η(u, t), η(v, t)}
fraction of vertices are expected to be common from each
reservoir. It means that the expected value of |S(u) ∩ S(v)|
is Cuv · max{η(u, t), η(v, t)}, so the above result holds.

The last unsolved issue is about the determination of
the hypothetical sampling parameter η(u, t), which cannot be

computed exactly, but can be estimated by the lower and upper
estimates, η(u) and η(u), as follows,

Theorem 4. Given a graph stream, the reservoir S(u) of the
vertex u provides a biased sample of the edges incident on u
with the sampling parameter η(u, t) that can be estimated as
follows,

η(u, t) = (η(u) + η(u))/2 (9)

Proof: The biased nature of the samples follows naturally
from the hash function G(·) used for selection of incident
edges. All edges with hash values less than η(u) are maintained
in S(u). The value of η(u) underestimates the sampling
probability η(u, t). A symmetric argument can be constructed
demonstrating that η(u) is an upper-bound estimate by exam-
ining the conceptual reservoir consisting of edges with hash
values greater than η(u) only. This corresponds to a reservoir
with the sampling probability (1 − η(u, t)). Because of the
symmetry of the argument, the true estimated value of η(u, t)
is therefore (η(u) + η(u))/2.

As a result, once the value of η(u, t) is determined, the
number of common neighbors between a pair of vertices can
be estimated accurately, according to Theorem 3, in a graph
stream.

VI. ADAMIC-ADAR ESTIMATION

An important observation of Adamic-Adar is that the
common neighbor w of vertices u and v with a higher vertex-
degree is weighted less, because of its proclivity to be a noisy
vertex, as accounted for in the term 1/log(|τ(w, t)|) [7]. Such
a weighting strategy makes it very challenging to estimate
Adamic-Adar in graph streams. In this section, we consider
an approximate variation of Adamic-Adar, which truncates
the insignificant high-degree common neighbors of u and v
for streaming link prediction, because they contribute little in
the computation of Adamic-Adar. It turns out that such an
approximation still preserves the accuracy of Adamic-Adar, but
can be computed exactly based on the vertex-biased sampling
based graph sketches, as proposed in Section V.

Definition 3 (Truncated Adamic-Adar). The truncated
Adamic-Adar, denoted as AA(u, v), between two vertices u
and v, is defined in the same way as Adamic-Adar, except
that the components contributed by common neighbors with
degrees greater than dmax are eliminated:

AA(u, v) =
∑

{w∈τ(u,t)∩τ(v,t):|τ(w,t)|≤dmax}

1

log(|τ(w, t)|)
(10)

The truncated Adamic-Adar can be computed exactly by
vertex-biased sampling based graph sketches, as presented in
Algorithm 3. The core idea is that each of the components in
Equation 10 can be directly computed if both vertices u and v
are present in the graph sketch S(w) of their common neighbor
w, whose degree is no larger than dmax. At the beginning,
we initialize the capacity of the reservoirs, L = dmax, for all
vertices (Lines 1-2). This is because vertices whose degrees are
larger than dmax will not be considered in the computation
of truncated Adamic-Adar . We then examine all the graph
sketches one by one. For each vertex w, both vertices u and v

Algorithm 3: Truncated Adamic-Adar Estimation

Input : An edge (u, v) in the graph stream G(t), the
degree threshold dmax

Output: Truncated Adamic-Adar, AA(u, v)
// Sketch initialization

1 foreach vertex w ∈ G(t) do
2 L ← dmax

// Truncated Adamic-Adar estimation
3 AA(u, v) ← 0
4 foreach vertex w ∈ G(t) do
5 if u ∈ S(w) and v ∈ S(w) then
6 if η(w) = 1 and η(w) = 1 then
7 AA(u, v) ← AA(u, v) + 1

log|S(w)|

need be present in S(w) (Line 5). It is further checked whether
w has a degree at most dmax by examining if the values of
η(w) and η(w) equal to 1, indicating that the graph sketch
S(w) is not full yet (Line 6). If so, (1/log(|τ(w, t)|)) is added
to AA(u, v) (Line 7). Note that the degree value, |τ(w, t)|, is
equal to the current reservoir size, |S(w)|.

The main computational bottleneck of Algorithm 3 is that
the graph sketches of all vertices need to be scanned once
for each incoming new edge (u, v) in the graph stream. To
alleviate this problem, we consider adopting inverted indexes
to facilitate the computation of truncated Adamic-Ada. Specif-
ically, for each vertex u in the graph stream, an auxiliary
inverted index structure, L(u), is built to maintain vertex
identifiers of v whose graph sketch S(v) contains u, i.e.,
v ∈ L(u) if and only if u ∈ S(v). Note that such inverted
indexes have drastically different sizes, but the summation of
their sizes is exactly equal to the summation of the sizes for
all graph sketches:
∑

u∈G(t)

|L(u)| =
∑

u∈G(t)

|S(u)| ≤
∑

u∈G(t)

dmax = |V (t)| ∗ dmax

(11)
The inverted index structures can be maintained accordingly
when graph sketches are updated in graph streams: (1) when
the vertex v is added to the sketch S(u), the vertex u is main-
tained into the inverted index L(v) simultaneously; (2) when
v is removed from the reservoir S(u), u should be removed
from the corresponding inverted index L(v) as well. Based on
these inverted indexes, we need not scan all vertices of the
graph stream to compute truncated Adamic-Adar. Instead, the
common neighbor w of u and v can be efficiently retrieved
from inverted indexes of u and v, w ∈ L(u) ∩ L(v). As a
result, the time complexity of this index-based method turns
out to be O(|L(u)| + |L(v)|), and its space complexity is
O(|L(u)| + |L(v)| + 2 ∗ dmax), while the average-case time
and space complexity is simply O(dmax).

VII. EXPERIMENTS

In this section, we present our experimental studies for
the streaming link prediction problem in a series of real-
world graph streams. We demonstrate the accuracy, efficiency,
and cost of our graph sketch based estimation methods in
comparison with a variety of snapshot-based link prediction
techniques. All our experiments were carried out on a desktop

PC with Intel Quad Core 3.20GHz CPU and 8GB memory
running Windows 7 operating system. All the methods were
implemented in C++.

A. Datasets

We chose three real-world, publicly available graph
datasets in our experimental studies. Note that their edges
are attached with timestamps indicating when they are first
created in the graphs, and thus can be ordered, formulated,
and processed in a form of graph streams:

1. DBLP. We extracted all conference papers with publica-
tion dates ranging from 1956 to 2008 in DBLP database2.
There were 595, 406 authors and 602, 684 papers in total.
For each paper, the authors are listed in a specific order as
a1, a2, . . . , ak, and unordered author-pairs (ai, aj) are gener-
ated as collaboration edges (1 ≤ i < j ≤ k). There are a total
of 1, 954, 776 author-pairs, thus forming a graph stream on the
underlying co-authorship graph;

2. Amazon Product Co-purchasing Network. This dataset
was collected from Amazon based on the customers-who-
bought-this-item-also-bought feature3. Namely, if an item i
is purchased together with another item j, the co-purchase
graph will contain an edge between i and j, and the time
of this co-purchase transaction is imposed on the edge, thus
forming a large graph stream comprising 410, 271 vertices and
11, 179, 587 edges;

3. Wikipedia. This dataset models the growth and evolotion of
the online knowledge base, Wikipedia4. Vertices are Wikipedia
articles, and there exists an edge if article i references article j,
affiliated with a time-stamp for this reference. A graph stream
thus contains a large number of reference edges between
Wikipedia articles with 1, 870, 709 vertices and 39, 953, 145
edges in total.

B. Evaluation Methods

Given a graph stream G(t), we consider two specific time-
stamps t0 and t1, t0 ≤ t1, and apply different streaming
link prediction methods upon G(t0) to generate a list of
predicted edges not present in G(t0) but expected to appear
in G(t1). We refer to the time interval [0, t0] as the training
interval and [t0, t1] as the test interval. For a graph stream,
we further denote ρ as the ratio of the training interval w.r.t.
the whole lifetime of the graph stream, and ρ is set 50% if
not specified otherwise, meaning that the training interval and
the test interval is temporally partitioned evenly for the whole
graph stream: |t0| = |t1 − t0|. We choose a set Core ⊆ V (t0)
of vertices that show up in both the training interval and the
test interval for streaming link prediction, because for new
vertices arising in the test interval (during the time period of
[t0, t1]), it is impossible to predict the edges incident to them
at the training interval as they have not even shown up yet
(before the timestamp t0). Moreover, we denote Eold as the
set of edges (u, v) ∈ E(t0), u, v ∈ Core, and Enew as the
set of edges (u′, v′) ∈ E(t1) \E(t0), u

′, v′ ∈ Core. So Enew

contains all the edges that arise in the test interval but not in

2http://www.informatik.uni-trier.de/∼ley/db/
3https://snap.stanford.edu/data/index.html
4http://socialnetworks.mpi-sws.org/data-wosn2008.html

TABLE I: Link prediction accuracy of 12 methods on the DBLP graph stream

Methods Ext-Ja App-Ja Ext-CN App-CN Ext-Adar App-Adar
Accuracy 120.57 104.25 112.66 108.91 93.47 92.57

Methods Katz Preferential
Attachment PropFlow Rooted

PageRank
Shortest-Path

Count SimRank

Accuracy 100.48 114.97 96.76 59.82 107.49 74.85

TABLE II: Link prediction accuracy of 12 methods on the Amazon co-purchasing graph stream

Methods Ext-Ja App-Ja Ext-CN App-CN Ext-Adar App-Adar
Accuracy 116.15 106.74 121.07 109.70 116.57 116.15

Methods Katz Preferential
Attachment PropFlow Rooted

PageRank
Shortest-Path

Count SimRank

Accuracy 88.38 116.23 98.75 71.48 147.70 110.95

TABLE III: Link prediction accuracy of 6 methods on the Wikipedia graph stream

Methods Ext-Ja App-Ja Ext-CN App-CN Ext-Adar App-Adar
Accuracy 8.19 8.04 9.27 9.08 10.55 11.90

the training interval, and thus is the target set of edges we seek
to predict in the graph streams.

For any link prediction method p, its output is a ranked
list Lp of vertex-pairs in the set (CORE × CORE) \ Eold,
which contains the predicted (but not verified) edges in a
decreasing order of predictive values. The accuracy of p is
then determined from the resultant ranked list Lp: we take the
first |Enew| vertex-pairs from Lp, and consider the percentage
of vertex-pairs that truly arise as edges in Enew. In order
to compare different methods for streaming link prediction,
we adopt the evaluation metric in the classical paper [3],
which considers the prediction accuracy in a relative term to
a random predictor. This predictor chooses vertex pairs (u, v)
from CORE that have no edges in the training interval, and
predicts at random there will be (or there will not be) an
edge between u and v in the test interval. In other words,
the probability of the random predictor being correct for the
prediction of an edge (u, v) in the test interval is:

Pr(u, v) =
1

(|Core|
2

)− |Eold|
(12)

As a result, the link prediction accuracy is expressed in terms
of relative improvement to this random predictor. This way,
different streaming link prediction methods can be compared
on a fair basis.

We extensively examine a series of methods for streaming
link prediction, including the exact versions of our approximate
methods. Specifically, Ext-CN denotes the exact common
neighbor method, and App-CN is the vertex-biased sampling
based graph sketch method (in Section V, L = 80 by default);
Ext-Ja denotes the exact Jaccard coefficient method, and App-
Ja is the MinHash based graph sketch method (in Section IV,
K = 50 by default); Ext-Adar denotes the exact Adamic-Adar
method, and App-Adar is the truncated, inverted index based
Adamic-Adar method (in Section VI, L = 80 by default). We
also consider a series of existing link prediction methods5 [8],
[9], including Katz (with default parameters of the maximum

5https://github.com/rlichtenwalter/LPmade

shortest path distance l = 3 and the damping factor β = 0.05.
Note shorter-distance paths usually offer better link prediction
accuracy results [9]), Preferential Attachment, PropFlow [9]
(with a default parameter of the maximum distance l =
3), Rooted PageRank (with a default random walk restart
parameter α = 0.5), ShortestPath Count (with a default
parameter of the maximum path distance l = 3) and SimRank
(with a default parameter of the damping factor C = 0.8).
It is worth noting that, except for the graph sketch based
methods as proposed in this paper, including App-CN, App-
Ja, and App-Adar, all the other nine methods are snapshot-
based, so we have to explicitly materialize graph streams in the
training interval, G(t0), before link prediction is performed.
These snapshot-based link prediction methods have a “built-
in” advantage to examine the global graph structure many
times without consideration of streaming constraints during
link prediction. Nevertheless, we will demonstrate that the
prediction accuracy of our graph sketch based methods is as
competitive as, or sometimes even better than that of snapshot-
based link prediction methods. Moreover, our methods are
extremely fast, space-efficient, and can be practically employed
as high-quality solutions to the streaming link prediction
problem in graph streams.

C. Experimental Results

In our experimental studies, we mainly focus on the
following evaluation metrics: (1) link prediction accuracy as
defined in Section VII-B, (2) runtime cost for streaming link
prediction, and (3) space cost of graph sketches or graph
snapshots consumed by approximate or exact link prediction
methods, respectively. We also evaluate these performance
metrics in terms of key parameters in different link prediction
methods, including the graph stream size S, the training
interval ratio ρ, the number of minwise hash functions, K,
in MinHash based graph sketches, and the reservoir budget
size, L, in vertex-biased sampling based graph sketches.

C.1 Link Prediction Accuracy

We first evaluate the link prediction accuracy of different
methods in the three graph streams. The results are illustrated

 20
 40
 60
 80

 100
 120
 140

0.4M 0.6M 0.8M 1M 1.2M AllLi
nk

 P
re

di
ct

io
n

A
cc

ur
ac

y

Graph Stream Size

App-Ja
Ext-Ja

(a) App-Ja vs. Ext-Ja

 20
 40
 60
 80

 100
 120
 140

0.4M 0.6M 0.8M 1M 1.2M AllLi
nk

 P
re

di
ct

io
n

A
cc

ur
ac

y

Graph Stream Size

App-CN
Ext-CN

(b) App-CN vs. Ext-CN

 20
 40
 60
 80

 100
 120
 140

0.4M 0.6M 0.8M 1M 1.2M AllLi
nk

 P
re

di
ct

io
n

A
cc

ur
ac

y

Graph Stream Size

App-Adar
Ext-Adar

(c) App-Adar vs. Ext-Adar

Fig. 1: Accuracy of exact and approximate methods w.r.t. the graph stream size S on DBLP graph stream

 50
 100
 150
 200
 250
 300
 350

50% 60% 70% 80% 90%Li
nk

 P
re

di
ct

io
n

A
cc

ur
ac

y

Training Interval Ratio

App-Ja
Ext-Ja

(a) App-Ja vs. Ext-Ja

 50

 100

 150

 200

 250

50% 60% 70% 80% 90%Li
nk

 P
re

di
ct

io
n

A
cc

ur
ac

y

Training Interval Ratio

App-CN
Ext-CN

(b) App-CN vs. Ext-CN

 50

 100

 150

 200

 250

50% 60% 70% 80% 90%Li
nk

 P
re

di
ct

io
n

A
cc

ur
ac

y

Training Interval Ratio

App-Adar
Ext-Adar

(c) App-Adar vs. Ext-Adar

Fig. 2: Accuracy of exact and approximate methods w.r.t. the training interval ratio ρ on DBLP graph stream

 0
 20
 40
 60
 80

 100
 120
 140

10 20 35 50 100Li
nk

 P
re

di
ct

io
n

A
cc

ur
ac

y

Number of Min-hash Functions

DBLP
Amazon
Wikipedia

(a) App-Ja: accuracy in terms of K

 0
 20
 40
 60
 80

 100
 120
 140

15 30 60 80 100Li
nk

 P
re

di
ct

io
n

A
cc

ur
ac

y

Reservoir Budget

DBLP
Amazon
Wikipedia

(b) App-CN: accuracy in terms of L

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

15 30 60 80 100Li
nk

 P
re

di
ct

io
n

A
cc

ur
ac

y

Reservoir Budget

DBLP
Amazon
Wikipedia

(c) App-Adar: accuracy in terms of L

Fig. 3: Accuracy of approximate methods w.r.t. algorithm parameters

in Tables I, II, III, respectively. Note for the largest Wikipedia
stream (Table III), path-based link prediction methods, in-
cluding Katz, PropFlow, Rooted PageRank,, ShortestPath
Count, and SimRank, cannot finish within 4 hours, so we
only list the experimental results for neighborhood based target
measures. Our first observation is that neighborhood-based
graph proximity measures (listed as the first row of each table),
including common neighbor, Jaccard coefficient, and Adamic-
Adar, can make prediction with high accuracy, compared with
advanced, non-neighborhood based methods. Although there
is no method that can outperform all the others in all different
graph streams, exact neighborhood based methods and their
approximate counterparts perform consistently well for link
prediction. Independent of the main results in this paper,
this observation is interesting because it suggests that simple
neighborhood-based methods can be as competitive as, or even
better than the advanced methods, which is in accordance with
previous studies [3].

The second significant observation is that the approximate,
graph sketch based methods can make prediction with very
close accuracy to their corresponding exact methods in all
the three graph streams. For instance, in the DBLP graph
stream, the exact Jaccard coefficient method, Ext-Ja, offers the
highest accuracy with 120.57. Its approximate version, App-
Ja, provides a similar accuracy result with 104.25, based on

the estimation from the MinHash based graph sketches. Similar
evidences are witnessed for Ext-CN versus App-CN, and Ext-
Adar versus App-Adar, which validate the effectiveness of our
graph sketch-based methods. Interestingly, on the Wikipedia
graph stream, App-Adar (11.90) yields higher accuracy results
than Ext-Adar (10.55). This is mainly because the truncated
Adamic-Adar method can effectively preclude high-degree
vertices, which are noisy and may bring negative effects for
streaming link prediction, especially in large graph streams.

Henceforth, we will mainly focus on the experimental
studies of the exact and approximate methods for the target
measures, i.e., common neighbor, Jaccard coefficient, and
Adamic-Adar.

We further examine the link prediction accuracy of ex-
act methods, including Ext-Ja, Ext-CN, and Ext-Adar, and
their approximate, graph sketch based counterparts, including
App-Ja, App-CN, and App-Adar, with respect to different
algorithm parameters. We mainly report experimental results
in the DBLP graph for brevity of exposition, while we have
drawn similar conclusions from the other two graph streams.
First, we generate a series of graph streams with varied lengths
by tuning the number of edges ranging from 400, 000 to All
including all 1.95 million edges of the stream. We test link
prediction methods in graph streams of varied size S, as
shown in Figure 1. Specifically, We compare App-Ja with

TABLE IV: Runtime cost w.r.t. graph stream size S on DBLP

Runtime Cost Graph Stream Size S
(in seconds) 0.4M 0.8M 1.2M All

App-Ja 0.004 0.04 0.09 0.12
Ext-Ja 21.68 135.16 833.50 2748.40

App-CN 0.007 0.048 0.09 0.395
Ext-CN 18.0 194.31 801.72 2935.22

App-Adar 0.29 4.45 5.05 19.86
Ext-Adar 16.44 260.13 1193.77 3308.26

TABLE V: Runtime cost on Amazon

Runtime Cost

App-Ja 0.223 sec. Ext-Ja > 2 hours
App-CN 0.139 sec. Ext-CN > 2 hours

App-Adar 22.644 sec. Ext-Adar > 2 hours

Ext-Ja in Figure-1a, App-CN with Ext-CN in Figure-1b,
and App-Adar with Ext-Adar in Figure-1c, respectively. It is
interesting to note that when the graph stream scales up, the
link prediction accuracy of different methods gets improved ac-
cordingly, because more graph structural information encoded
in the stream can be leveraged for streaming link prediction.
More importantly, the prediction accuracy of approximate
methods is consistently close to that of their corresponding
exact methods. This observation further verifies that our graph
sketch based methods can achieve very close high-accuracy
link prediction results in comparison with their corresponding
exact counterparts defined in the snapshot-based scenario.

We then examine how the training interval ratio, ρ, will
affect the link prediction accuracy in graph streams. We choose
the DBLP graph stream and tune the value of ρ from 50%
up to 90% for different link prediction methods, and the link
prediction accuracy results are shown in Figure 2. We note for
Jaccard coefficient (Figure-2a), common neighbor (Figure-2b),
and Adamic-Adar (Figure-2c), when ρ increases, both exact
and approximate methods can yield link prediction results
with higher accuracy. The main reason is that more graph
structural information in ever-growing training intervals can
be leveraged for streaming link prediction. When ρ = 90%,
the relative improvement of link prediction accuracy can be at
least 200x for all methods. Meanwhile, for different values of
ρ, the differences of link prediction accuracy between exact
methods and their corresponding approximate methods are
very small, especially for the common neighbor and Adamic-
Adar measures. This again suggests that the graph sketch
based, approximate methods are high-accuracy surrogates of
the corresponding exact methods for streaming link prediction
in graph streams.

We further examine the link prediction accuracy w.r.t. core
parameters of the approximate, graph sketch based methods
on three graph streams. In Figure-3a, we regulate the number
of minwise hash functions, K, for App-Ja. In Figure-3b and
Figure-3c, we modify the reservoir size budget, L, for App-CN
and App-Adar. We observe that the link prediction accuracy
of all three methods is enhanced with larger values of K
and L, especially in DBLP and Amazon graph streams. In
Wikipedia graph stream, however, the approximate methods
are not sensitive to the changes of these parameters, partially

TABLE VI: Runtime cost on Wikipedia

Runtime Cost

App-Ja 0.297 sec. Ext-Ja > 2 hours
App-CN 0.385 sec. Ext-CN > 2 hours

App-Adar 109.35 sec. Ext-Adar > 2 hours

because of the extreme sparsity of the underlying graph,
in which little neighborhood information can be used for
streaming link prediction for most vertices. It also suggests
that the choices of parameters depend on the characteristics of
graph streams to be examined.

C.2 Link Prediction Efficiency

An important factor for streaming link prediction is the
efficiency of the graph sketch based algorithms. Because real-
world graph streams are usually massive and fast evolving
all the time, we expect streaming link prediction can be
performed efficiently without explicitly storing dynamic graphs
in advance. All the existing link prediction methods, how-
ever, are snapshot based and not designed specifically for
the streaming scenario. Therefore, in order to enable a fair
comparison of different link prediction methods, we explicitly
allow the storage of the graph stream snapshots for the exact
methods. For our sketch-based estimation methods, however,
streaming link prediction can be performed online without
materializing the graph streams. Note that other advanced link
prediction methods, such as Katz, PropFlow, Rooted PageR-
ank, ShortestPath Count, and SimRank, have to traverse
the underlying graph snapshots, thus rendering them extremely
time-consuming (often in multiple hours) and impractical for
streaming link prediction. As a result, we mainly focus on the
runtime cost based on the target measures (including both exact
methods and approximate methods) in different graph streams:
Jaccard coefficient, common neighbor, and Adamic-Adar, and
the runtime cost reported below is the overall time to predict
all edges in the Core set of graph streams.

In Table IV, we report the runtime cost of both exact and
approximate, graph sketch based link prediction methods by
increasing the graph stream size, S, of the DBLP graph stream.
All approximate link prediction methods are significantly faster
than their exact counterparts, and the speedup can be at
least two orders of magnitude. The differences of streaming
link prediction performance between approximate and exact
methods are especially more significant for larger streams.
This is one of the most crucial benefits of our graph sketch
based methods. We remark that the differences of streaming
link prediction accuracy are small between approximate and
exact methods. However, approximate methods are much more
efficient than their exact counterparts, and thus are more
suitable for streaming link prediction in graph streams.

Table V and VI illustrate the runtime cost of graph sketch
based methods and their exact counterparts in Amazon and
Wikipedia graph streams, respectively. Note all exact methods
cannot accomplish the streaming link prediction task within
two hours. However, the approximate methods finish all the
link prediction workload almost in real time. One exception
is App-Ja, which takes slightly more time on the retrieval
of inverted indexes for the computation of truncated Adamic-
Adar. As a result, in very large graph streams, the graph sketch

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

10 20 35 50 100

Sp
ac

e
C

os
t (

M
B

)

Number of Min-hash Functions

DBLP
Amazon
Wikipedia

(a) App-Ja: space cost in terms of K

 0
 0.5

 1
 1.5

 2
 2.5

 3

15 30 60 80 100

Sp
ac

e
C

os
t (

M
B

)

Reservoir Budget

DBLP
Amazon
Wikipedia

(b) App-CN: space cost in terms of L

 4
 6
 8

 10
 12
 14
 16
 18

15 30 60 80 100

Sp
ac

e
C

os
t (

M
B

)

Reservoir Budget

DBLP
Amazon
Wikipedia

(c) App-Adar: space cost in terms of L

Fig. 4: Space cost of sketch based methods w.r.t. algorithm parameters

TABLE VII: Space cost on different graph streams

Space Cost
(in MB)

DBLP Amazon Wikipeida

App-Ja 2.27 2.51 2.60
App-CN 0.90 0.95 1.67

App-Adar 6.77 10.93 13.83

based methods become the only feasible choice for streaming
link prediction.

C.3 Space Cost

As described in the above sections, we make use of concise
graph sketches to approximate target measures for streaming
link prediction. Such sketches are expected to be space-
efficient and easy to maintain and update in main memory.
In this experiment, we report the total memory consumption
of the graph sketches used in each of the approximate link
prediction methods. As shown in Table VII, the memory used
(in megabytes) by App-Ja, App-CN, and App-Adar is very
small for all real-world graph streams. Specifically, the space
cost of App-Adar is the highest because we need to maintain
both a vertex-biased sampling based reservoir and an inverted
index for each vertex in graph streams as its graph sketch.
However, the overall space cost is still much affordable even
for very large graph streams. For example, on the Wikipedia
graph stream, the memory consumed for the graph sketches in
App-Adar is only 13.83MB. In comparison with the exact
methods and other snapshot-based link prediction methods,
which need to explicitly materialize a series of entire graph
snapshots from the graph streams, our proposed graph sketches
are very concise with small space cost.

The space requirement of App-Ja , App-CN, and App-
Adar is also closely related to the algorithmic parameters,
such as the number of minwise hash functions, K, and the
size budget of reservoirs, L. We then examine the space cost
of different graph sketch based algorithms with respect to
these key parameters in the three real-world graph streams. As
shown in Figure 4, by increasing the number K of minwise
hash functions for App-Ja, and the budge size L for App-
CN and App-Adar, the memory consumption grows slightly
in all three graph streams. The total space requirement for
graph sketches, however, is still much affordable (within 14MB
for the largest Wikipedia graph stream). Therefore, our graph
sketch based methods are very space-efficient for streaming
link prediction in graph streams.

VIII. CONCLUSION

In this paper, we considered a new streaming link pre-
diction problem that is defined in large-scale, dynamic graph
streams. Graph streams have been pervasive in a wide range of
real-world networked applications. They comprise a huge num-
ber of fast, transient, and dynamic interactions among entities
over time. In this paper, we demonstrated how the elementary,
neighborhood-based link prediction measures, such as common
neighbor, Jaccard coefficient, and Adamic-Adar, can be accu-
rately estimated and efficiently computed in order to address
the streaming link prediction problem in graph streams. We
designed the MinHash based graph sketches to estimate Jac-
card coefficient, and the vertex-biased sampling based graph
sketches to estimate common neighbor and Adamic-Adar with
both theoretically guaranteed accuracy and highly accurate
empirical results. Our experimental studies demonstrated that
the proposed graph sketches and their corresponding estima-
tion algorithms have enabled streaming link prediction in a
series of real-world graph streams without significant loss in
link prediction accuracy. Moreover, the graph sketch based
methods are extremely efficient and cost-effective, and thus
can be practically employed for streaming link prediction in
real-world graph streams.

REFERENCES

[1] N. Barbieri, F. Bonchi, and G. Manco, “Who to follow and why: Link
prediction with explanations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD’14), 2014, pp. 1266–1275.

[2] C. Lee, B. Nick, U. Brandes, and P. Cunningham, “Link prediction
with social vector clocks,” in Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD’13), 2013, pp. 784–792.

[3] D. Liben-Nowell and J. Kleinberg, “The link prediction problem for
social networks,” in Proceedings of the Twelfth International Conference
on Information and Knowledge Management (CIKM’03), 2003, pp.
556–559.

[4] J. Menche, A. Sharma, M. Kitsak, S. D. D. Ghiassian, M. Vidal,
J. Loscalzo, and A.-L. L. Barabási, “Uncovering disease-disease re-
lationships through the incomplete interactome,” Science, vol. 347, no.
6224, 2015.

[5] Y. Dong, J. Zhang, J. Tang, N. V. Chawla, and B. Wang, “CoupledLP:
Link prediction in coupled networks,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’15), 2015, pp. 199–208.

[6] P. Sarkar, D. Chakrabarti, and M. I. Jordan, “Nonparametric link pre-
diction in dynamic networks.” in Proceedings of the 29th International
Conference on Machine Learning (ICML’12), 2012, pp. 1687–1694.

[7] L. A. Adamic and E. Adar, “Friends and Neighbors on the Web,” Social
Networks, vol. 25, pp. 211–230, 2001.

[8] R. N. Lichtenwalter and N. V. Chawla, “LPmade: Link prediction made
easy,” J. Mach. Learn. Res., pp. 2489–2492, 2011.

[9] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla, “New perspectives
and methods in link prediction,” in Proceedings of the 16th ACM
SIGKDD International Conference (KDD’10), 2010, pp. 243–252.

[10] Z. Lu, B. Savas, W. Tang, and I. S. Dhillon, “Supervised link prediction
using multiple sources,” in Proceedings of the IEEE International
Conference on Data Mining (ICDM’10), 2010, pp. 923–928.

[11] M. A. Hasan and M. J. Zaki, “A survey of link prediction in social
networks,” in Social network data analytics, 2011, pp. 243–275.

[12] S. Guha, A. McGregor, and D. Tench, “Vertex and hyperedge con-
nectivity in dynamic graph streams,” in Proceedings of the 34th ACM
Symposium on Principles of Database Systems (PODS’15), 2015, pp.
241–247.

[13] A. McGregor, “Graph stream algorithms: A survey,” SIGMOD Rec.,
vol. 43, no. 1, pp. 9–20, 2014.

[14] S. Pan and X. Zhu, “Continuous top-k query for graph streams,” in
Proceedings of the 21st ACM International Conference on Information
and Knowledge Management (CIKM’12), 2012, pp. 2659–2662.

[15] P. Zhao, C. C. Aggarwal, and M. Wang, “gSketch: On query estimation
in graph streams,” Proc. VLDB Endow., vol. 5, no. 3, pp. 193–204,
2011.

[16] C. C. Aggarwal, “On classification of graph streams,” in SIAM SDM
Conference, 2011, pp. 652–663.

[17] C. C. Aggarwal, Y. Zhao, and P. S. Yu, “Outlier detection in graph
streams,” in Proceedings of the IEEE 27th International Conference on
Data Engineering (ICDE’11), 2011, pp. 399–409.

[18] A. Das Sarma, S. Gollapudi, and R. Panigrahy, “Estimating PageRank
on graph streams,” in Proceedings of the Twenty-seventh ACM Sympo-
sium on Principles of Database Systems (PODS’08), 2008, pp. 69–78.

[19] C. C. Aggarwal, “Mining text and social streams: A review,” SIGKDD
Explor. Newsl., vol. 15, no. 2, pp. 9–19, 2014.

[20] J. Zhang, P. S. Yu, and Z.-H. Zhou, “Meta-path based multi-network
collective link prediction,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD’14), 2014, pp. 1286–1295.

[21] J. Tang, T. Lou, and J. Kleinberg, “Inferring social ties across het-
erogenous networks,” in Proceedings of the Fifth ACM International
Conference on Web Search and Data Mining (WSDM’12), 2012, pp.
743–752.

[22] L. Backstrom and J. Leskovec, “Supervised random walks: Predicting
and recommending links in social networks,” in Proceedings of the
Fourth ACM International Conference on Web Search and Data Mining
(WSDM’11), 2011, pp. 635–644.

[23] C. Aggarwal and K. Subbian, “Evolutionary network analysis: A
survey,” ACM Comput. Surv., vol. 47, no. 1, pp. 1–36, 2014.

[24] C. Budak, D. Agrawal, and A. El Abbadi, “Structural trend analysis
for online social networks,” Proc. VLDB Endow., vol. 4, no. 10, pp.
646–656, 2011.

[25] R. V. Oliveira, B. Zhang, and L. Zhang, “Observing the evolution
of internet as topology,” in Proceedings of the 2007 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM’07), 2007, pp. 313–324.

[26] W. Yu, C. C. Aggarwal, S. Ma, and H. Wang, “On anomalous hotspot
discovery in graph streams,” in 2013 IEEE 13th International Confer-
ence on Data Mining (ICDM’13), 2013, pp. 1271–1276.

[27] Y. Sun, J. Han, C. C. Aggarwal, and N. V. Chawla, “When will
it happen? — relationship prediction in heterogeneous information
networks,” in Proceedings of the Fifth ACM International Conference
on Web Search and Data Mining (WSDM’12), 2012, pp. 663–672.

[28] P. Sarkar, D. Chakrabarti, and A. W. Moore, “Theoretical justification of
popular link prediction heuristics,” in Proceedings of the Twenty-Second

International Joint Conference on Artificial Intelligence (IJCAI’11),
2011, pp. 2722–2727.

[29] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-
wise independent permutations,” in Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing (STOC’98), 1998, pp. 327–
336.

[30] C. C. Aggarwal, T. Huang, and G.-J. Qi, “Link prediction across
networks by biased cross-network sampling,” in Proceedings of the 2013

IEEE International Conference on Data Engineering (ICDE’13), 2013,
pp. 793–804.

[31] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math.
Softw., vol. 11, no. 1, pp. 37–57, 1985.

[32] F. Gao, K. Musial, C. Cooper, and S. Tsoka, “Link prediction methods
and their accuracy for different social networks and network metrics,”
Sci. Program., vol. 2015, pp. 1:1–1:1, 2015.

[33] L. Lv and T. Zhou, “Link prediction in complex networks: A survey,”
Physica A, vol. 390, no. 6, pp. 1150–1170, 2011.

[34] H. H. Song, T. W. Cho, V. Dave, Y. Zhang, and L. Qiu, “Scalable
proximity estimation and link prediction in online social networks,”
in Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement Conference (IMC’09), 2009, pp. 322–335.

[35] H. Kashima and N. Abe, “A parameterized probabilistic model of
network evolution for supervised link prediction,” in Proceedings of
the Sixth International Conference on Data Mining (ICDM’06), 2006,
pp. 340–349.

[36] J. Kunegis and A. Lommatzsch, “Learning spectral graph transforma-
tions for link prediction,” in Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning (ICML’09), 2009, pp. 561–568.

[37] R. Chitnis, G. Cormode, M. Hajiaghayi, and M. Monemizadeh, “Param-
eterized streaming: Maximal matching and vertex cover,” in Proceed-
ings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’15), 2015, pp. 1234–1251.

[38] Y. Lim and U. Kang, “Mascot: Memory-efficient and accurate sampling
for counting local triangles in graph streams,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’15), 2015, pp. 685–694.

[39] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu, “Counting and
sampling triangles from a graph stream,” Proc. VLDB Endow., vol. 6,
no. 14, pp. 1870–1881, 2013.

[40] C. Song, T. Ge, C. Chen, and J. Wang, “Event pattern matching over
graph streams,” Proc. VLDB Endow., vol. 8, no. 4, pp. 413–424, 2014.

[41] S. Guha and A. McGregor, “Graph synopses, sketches, and streams: A
survey,” Proc. VLDB Endow., vol. 5, no. 12, pp. 2030–2031, 2012.

[42] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, “On
graph problems in a semi-streaming model,” Theor. Comput. Sci., vol.
348, no. 2, pp. 207–216, 2005.

[43] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: The count-min sketch and its applications,” J. Algorithms, vol. 55,
no. 1, pp. 58–75, 2005.

[44] C. C. Aggarwal, Y. Xie, and P. S. Yu, “Towards community detection in
locally heterogeneous networks,” in SIAM SDM Conference (SDM’11),
2011, pp. 391–402.

[45] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

[46] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” in Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM’99), 1999, pp. 251–262.

