
Peixiang Zhao, Charu C. Aggarwal, and Gewen He

Florida State University

IBM T J Watson Research Center

Link Prediction in Graph Streams

ICDE Conference, 2016

Graph Streams

• Graph Streams arise in a wide variety of applications

– Activity-centric social and information networks

– Communication networks

– Chat networks

• Graph streams are ubiquitous in settings in which activity is

overlaid on network structure

Challenges

• Difficult to store the entire graph on disk because of high

volume stream

• Graph applications such as link prediction require structural

understanding of the graph

• Key is to design probabilistic summaries that can work in the

link-prediction setting

The Link Prediction Problem

• Given a network G = (N,A), determine the most likely pairs

of nodes that receive a link between them.

• Typical classes of algorithms:

– Neighborhood-based

– Matrix factorization

– Supervised

Contributions of this Work

• Link prediction algorithm for graph streams

• Design summarization schemes to use small-space data

structures for prediction

• Is able to achieve results closer to their exact counterparts

• Design the real-time analogs to Jaccard, Adamic-Adar, and

common neighbor.

Key Techniques Used

• We design MinHash based graph sketches to estimate Jac-

card coefficient.

• Vertex-biased reservoir sampling based graph sketches to es-

timate common neighbor and Adamic-Adar.

– Provide theoretical guarantees to exact estimation

– Robust performance with respect to exact estimation

Streaming Setting

• We consider the streaming link prediction problem in a graph

stream that receives a sequence (e0, e1, . . . , et, . . .) of edges.

– Each of which is in the form of ei = (u, v) at the time

point i, where u, v ∈ V are incident vertices of the edge ei.

• We assume the underlying graph is undirected, where the

ordering of u and v of the edge is insignificant.

• The proposed graph sketches and corresponding estimation

algorithms can be generalized to directed graphs with minor

revision.

Formalization

• At any given moment of time t, the edges seen thus far
from the graph stream imply a conceptual graph G(t) =
(V (t), E(t)), where V (t) is the set of vertices, and E(t) is the
set of distinct edges up to time t.

• We use τ(u, t) to represent the set of adjacent vertices of the
vertex u in the graph G(t).

– In other words, τ(u, t) contains the distinct vertices adja-
cent to u in the graph stream till t, and the degree of u

is denoted as d(u, t) = |τ(u, t)|.

• Given a graph stream G(t) at time t, the streaming link
prediction problem is to predict whether there is or will be
an edge e = (u, v) for any pair of vertices u, v ∈ V (t) and
e �∈ E(t).

Target Measures

• In a graph stream G(t) and for any u, v ∈ V (t), the target

measures for streaming link prediction are defined as follows,

1. Preferential attachment: |τ(u, t)| × |τ(v, t)|;

2. Common neighbor: |τ(u, t) ∩ τ(v, t)|;

3. Jaccard coefficient: |τ(u,t)∩τ(v,t)|
|τ(u,t)∪τ(v,t)|;

4. Adamic-Adar:
∑

w∈τ(u,t)∩τ(v,t) 1
log(|τ(w,t)|)

Observations

• These measures seem to be relatively trivial to compute in

the static setting.

• However, in the streaming setting, we do not have a global

view of the graph at any given time.

– This makes simple computations surprisingly difficult

• As an example, let us look at the simplest measure of pref-

erential attachment

Preferential Attachment

• Preferential attachment, it requires an accurate estimation

of the number of distinct edges incident on each vertex, i.e.,

|τ(u, t)|, u ∈ V (t).

– This is not as easy as it sounds because the distinct edges

cannot be explicitly maintained and updated for exact

counting in a graph stream.

• Streaming methods for distinct element counting may be

employed.

• Other neighborhood methods are much harder and will be

the focus of the paper.

Jaccard Coefficient

• Natural approach is the min-hash index: has been used earlier

in various applications for computation of Jaccard coefficient

(Broder et al)

• Given a graph stream, we maintain a MinHash based graph

sketch for each vertex u with two key values: the minimum

adjacent hash value, H(u), and the minimum adjacent hash

index, I(u).

H(u) = minH(v), (u, v) ∈ E(t) (1)

I(u) = argminH(v), (u, v) ∈ E(t) (2)

• The Jaccard coefficient between a pair of nodes is equal to

the probability that their min-hash indices are the same

Basic Intuition

• Consider two columns in a binary matrix

• if you sort the rows randomly, what is the probability that

both columns show values of 1, when at least one of them

shows values of 1

– Simulated by the Jaccard coefficient

– Also captured by the min-hash index: Each hash function

simulates a sort and multiple hash functions are used for

robustness

– Can use Chernoff bound to provide guarantee

Common Neighbor Estimation

• To estimate common neighbors of two vertices in a graph

stream, a natural question arises: whether a sample of edges

from the graph stream are good enough to estimate this

target measure accurately?

– Unfortunately, unbiased sampling provides a negative an-

swer to this question mainly due to the power-law degree

distribution of real-world graphs.

Example

• For example, consider a graph in which the top 1% of the

high-degree vertices (degrees greater than 10) contain 99%

of the edges.

• A down-sampling with a rate of 10% will capture the neigh-

borhood information of such top 1% high-degree vertices

robustly, but may not capture even a single edge for the

remaining 99% low-degree vertices.

– Result: poor predictions!

Solution: Vertex-biased Sampling

• To address this issue, we design the vertex-biased sampling

based graph sketches, where for each vertex u ∈ G(t), a

reservoir S(u) of budget L is associated to dynamically sam-

ple L incident edges of u.

• Note if an edge (u, v) is sampled, the vertex v, not the edge

itself, is maintained and updated in u’s reservoir, S(u)).

• This sampling approach is biased, because the number of

sampled edges, L, is fixed for all vertices in the graph stream,

and is therefore disproportionately higher for low-degree ver-

tices than high-degree ones.

Issues

• Sampling L incident edges of each vertex can be implemented
by the traditional reservoir sampling method.

• Another problem arises for high-degree vertices instead: for
two vertices with degrees larger than L, the number of com-
mon neighbors is hard to estimate accurately from their in-
dependent samples.

• For example, consider the case where the budget is L = 10,
and the two vertices u and v have a degree 1,000 each with
all such 1,000 incident vertices being common neighbors of
u and v.

• Then, if 10 adjacent neighbors of u and v are sampled in-
dependently, the expected number of common neighbors of

u and v is 10 ∗ 10/1000 = 0.1, which definitely is not an

accurate estimation.

Solutions

• To this end, we adopt this constant budget-based sampling

approach with an important caveat: random samples in dif-

ferent reservoirs of vertices are forced to be dependent on

each other.

• To model this dependency, we consider an implicit sorting

order of vertices to impose a priority order on the vertex set

of the graph stream.

• Such a priority order is enforced with the use of a hash func-

tion G : u ∈ V → (0,1), where the argument u is a vertex

identifier, and the output is a real number in the range (0,1)

with lower values indicating higher priority.

• Specifically, vertices retained in the reservoir S(u) are those

having the highest L priority orders among all incident neigh-

bors of u.

Sampling Rate

• In order to dynamically maintain and update S(u) when the

graph stream evolves, it is important to note that, if the

degree of the vertex u satisfies d(u, t) > L, only a fraction

η(u, t) = L/d(u, t) of all the incident vertices of u can be

retained in the sketch S(u).

• To account for this, we define a threshold of the priority

value G(·) for each incident neighbor of u that can survive in

the reservoir S(u) as

η(u, t) = min{1, L/d(u, t)} (3)

Estimating number of common neighbors

• Let η(u, t) and η(v, t) be the fraction (threshold) of incident

neighbors of u and v, respectively, which are sampled. The

number of common neighbors, Cuv, of u and v is

Cuv =
|S(u) ∩ S(v)|

max{η(u, t), η(v, t)} (4)

• Paper discusses the trick to dynamically maintain η(u, t) and

η(v, t).

Adamic-Adar

• An important observation of Adamic-Adar is that the com-

mon neighbor w of vertices u and v with a higher vertex-

degree is weighted less, because of its proclivity to be a noisy

vertex, as accounted for in the term 1/log(|τ(w, t)|).

• Such a weighting strategy makes it very challenging to esti-

mate Adamic-Adar in graph streams.

• Very high-degree vertices contribute noice.

Truncated Adamic-Adar

• We consider an approximate variation of Adamic-Adar, which
truncates the insignificant high-degree common neighbors of
u and v for streaming link prediction, because they contribute
little in the computation of Adamic-Adar.

• It turns out that such an approximation still preserves the ac-
curacy of Adamic-Adar, but can be computed exactly based
on the vertex-biased sampling based graph sketches.

• The truncated Adamic-Adar, denoted as AA(u, v), between
two vertices u and v, is defined in the same way as Adamic-
Adar, except that the components contributed by common
neighbors with degrees greater than dmax are eliminated:

AA(u, v) =
∑

{w∈τ(u,t)∩τ(v,t):|τ(w,t)|≤dmax}

1

log(|τ(w, t)|) (5)

Approach

• The core idea is that each of the components in the equation

can be directly computed if both vertices u and v are present

in the graph sketch S(w) of their common neighbor w, whose

degree is no larger than dmax.

• At the beginning, we initialize the capacity of the reservoirs,

L = dmax, for all vertices.

• This is because vertices whose degrees are larger than dmax

will not be considered in the computation of truncated

Adamic-Adar

Truncated Adamic-Adar

• We then examine all the graph sketches one by one. For

each vertex w, both vertices u and v need be present in S(w)

(Line 5).

• It is further checked whether w has a degree at most dmax by

examining if the values of η(w) and η(w) equal to 1, indicating

that the graph sketch S(w) is not full yet .

• If so, (1/log(|τ(w, t)|)) is added to AA(u, v) .

• Note that the degree value, |τ(w, t)|, is equal to the current

reservoir size, |S(w)|.

Handling computational bottlenecks

• The main computational bottleneck is that the graph
sketches of all vertices need to be scanned once for each
incoming new edge (u, v) in the graph stream.

• To alleviate this problem, we consider adopting inverted in-
dexes to facilitate the computation of truncated Adamic-
Adar.

• Specifically, for each vertex u in the graph stream, an auxiliary
inverted index structure, L(u), is built to maintain vertex
identifiers of v whose graph sketch S(v) contains u, i.e., v ∈
L(u) if and only if u ∈ S(v).

• Inverted indices are dynamically maintained and they double
the memory requirement.

Experimental Results

• We chose three real-world, publicly available graph datasets

in our experimental studies.

• Note that their edges are attached with timestamps indicat-

ing when they are first created in the graphs, and thus can

be ordered, formulated, and processed in a form of graph

streams

– DBLP, Amazon Product co-purchasing, Wikipedia cita-

tion network

Prediction Accuracy

• Compute accuracy with respect to a random predictor

• Ratio of the accuracy to that of a random predictor

• Values greater than 1 are good.

DBLP Results
Methods Ext-Ja App-Ja Ext-CN App-CN Ext-Adar App-Adar
Accuracy 120.57 104.25 112.66 108.91 93.47 92.57

Methods Katz PrefAttach PropFlow R-PRank Short-Path SimRank
Accuracy 100.48 114.97 96.76 59.82 107.49 74.85

Amazon Co-Purchasing Network

Methods Ext-Ja App-Ja Ext-CN App-CN Ext-Adar App-Adar
Accuracy 116.15 106.74 121.07 109.70 116.57 116.15

Methods Katz PrefAttach PropFlow R-PRank Short-Path SimRank
Accuracy 88.38 116.23 98.75 71.48 147.70 110.95

Progression with Stream Size (DBLP)

 20
 40
 60
 80

 100
 120
 140

0.4M 0.6M 0.8M 1M 1.2M All

L
in

k
Pr

ed
ic

tio
n

A
cc

ur
ac

y

Graph Stream Size

App-Ja
Ext-Ja

 20
 40
 60
 80

 100
 120
 140

0.4M 0.6M 0.8M 1M 1.2M All

L
in

k
Pr

ed
ic

tio
n

A
cc

ur
ac

y

Graph Stream Size

App-CN
Ext-CN

(a) Jaccard (b) Common neighbor

 20
 40
 60
 80

 100
 120
 140

0.4M 0.6M 0.8M 1M 1.2M All

L
in

k
Pr

ed
ic

tio
n

A
cc

ur
ac

y

Graph Stream Size

App-Adar
Ext-Adar

(c) Adamic-Adar

Performance with respect to algorithm
parameters

 0
 20
 40
 60
 80

 100
 120
 140

10 20 35 50 100

L
in

k
Pr

ed
ic

tio
n

A
cc

ur
ac

y

Number of Min-hash Functions

DBLP
Amazon

Wikipedia

 0
 20
 40
 60
 80

 100
 120
 140

15 30 60 80 100

L
in

k
Pr

ed
ic

tio
n

A
cc

ur
ac

y
Reservoir Budget

DBLP
Amazon

Wikipedia

(a) Jaccard (b) Common Neighbor

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

15 30 60 80 100

L
in

k
Pr

ed
ic

tio
n

A
cc

ur
ac

y

Reservoir Budget

DBLP
Amazon

Wikipedia

(c) Adamic-Adar

Space with respect to algorithm
parameters

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

10 20 35 50 100

Sp
ac

e
C

os
t (

M
B

)

Number of Min-hash Functions

DBLP
Amazon

Wikipedia

 0

 0.5

 1

 1.5

 2

 2.5

 3

15 30 60 80 100

Sp
ac

e
C

os
t (

M
B

)
Reservoir Budget

DBLP
Amazon

Wikipedia

(a) Jaccard (b) Common Neighbor

 4
 6
 8

 10
 12
 14
 16
 18

15 30 60 80 100

Sp
ac

e
C

os
t (

M
B

)

Reservoir Budget

DBLP
Amazon

Wikipedia

(c) Adamic-Adar

Runtime Cost vs Graph Stream Size

Runtime Cost Graph Stream Size S
(in seconds) 0.4M 0.8M 1.2M All

App-Ja 0.004 0.04 0.09 0.12
Ext-Ja 21.68 135.16 833.50 2748.40

App-CN 0.007 0.048 0.09 0.395
Ext-CN 18.0 194.31 801.72 2935.22

App-Adar 0.29 4.45 5.05 19.86
Ext-Adar 16.44 260.13 1193.77 3308.26

Conclusions

• New method for link prediction in graph streams

• Generalizes common neighborhood methods for graph

streams

• Future work will also generalize more advanced techniques

for graph streams

• Design methods for incorporating content in link prediction

