
Charu C. Aggarwal, Peixiang Zhao, and Gewen He

Florida State University

IBM T J Watson Research Center

Edge Classification in Networks

ICDE Conference, 2016

Introduction

• We consider in this paper the edge classification problem in

networks, which is defined as follows.

• Given a graph-structured network G(N,A), where N is a set

of vertices and A ⊆ N×N is a set of edges, in which a subset

Al ⊆ A of edges are properly labeled a priori.

• Determine for those edges in Au = A \ Al the edge labels

which are unknown.

Applications

• The edge classification problem has numerous applications

in a wide array of network-centric scenarios:

– A social network may contain relationships of various types

such as friends, families, or even rivals. A subset of the

edges may be labeled with the relevant relationships. The

determination of unlabeled relationships can be useful for

making targeted recommendations.

– An adversarial or terrorist network may contain unknown

relationships between its participants although a subset of

the relationships have been known already.

– In some cases, the edges may have numerical quantities

associated with them corresponding to strengths of rela-

tionships, specification of ratings, likes, or dislikes.

Contributions

• We formulate the edge classification problem and the edge
regression problem in graph-structured networks.

• We propose a structural similarity model for edge classifica-
tion.

• In order to support edge classification in large-scale networks
that are either disk-resident or stream-like, we devise prob-
abilistic, min-hash based edge classification algorithms that
are efficient and cost-effective without comprising the clas-
sification accuracy significantly;

• We carry out extensive experimental studies in different real-
world networks, and the experimental results verify the effi-
ciency and accuracy of our edge classification techniques.

Problem Definition

• We provide a formal model for edge classification in networks.

• We assume that we have an undirected network G = (N,A),

where N denotes the set of vertices, A denotes the set of

edges, and n = |N |, m = |A|.

• A subset of edges in A, denoted by Al, are associated with

edge labels.

• The label of the edge (u, v) is denoted by luv.

• The remaining subset of unlabeled edges is denoted by Au =

A \Al.

Formal Definitions

• Given an undirected network G = (N,A), and a set Al ⊆ A

of labeled edges, where each edge (u, v) ∈ Al has a label luv,
the edge classification problem is to determine the labels for
the edges in Au = A \Al.

• In some scenarios, it is also possible for the edges in A to be
labeled with numeric quantities.

• As a result, edge classification turns out to be the edge re-
gression problem in networks, defined as follows,

• Consider an undirected network G = (N,A), and a set Al ⊆ A

of edges, each of which is annotated by numerical labels,
denoted by luv ∈ R. The edge regression problem is to de-
termine the numerical labels for the edges in Au = A \Al.

Overview

• We will propose a structural similarity model for edge classi-

fication.

• This approach shares a number of similarities with the nearest

neighbor classification, except that the structural similarity of

one edge to another is much harder to define in the context

of a network.

Overview of Steps

• Consider an edge (u, v) ∈ Au, which needs to be classified

within the network G = (N,A).

– The top-k most similar vertices to u, denoted by S(u) =

{u1 . . . uk}, are first determined based on a structural sim-

ilarity measure discussed slightly later.

– The top-k most similar vertices to v, denoted by S(v) =

{v1 . . . vk}, are determined based on the same structural

similarity measure as in the case of vertex u;

– The set of edges in Al ∩ [S(u) × S(v)] are selected and

the dominant class label of these edges is assigned as the

relevant edge label for the edge (u, v).

Similarity Computation

• How are the most similar vertices to a given vertex u ∈ N are

determined in a network?

• Here the key step is to define a pair-wise similarity function

for vertices.

• We consider Jaccard coefficient for vertex-wise similarity

quantification.

Similarity Computation

• Let I−(u) ⊆ N be the set of vertices incident on the vertex

u belonging to the edge label −1.

• Let I+(u) ⊆ N be the set of vertices incident on u belonging

to the edge label 1.

• The Jaccard coefficient of vertices u and v, J+(u, v), on the

positive edges (bearing the edge label 1) is defined as follows:

J+(u, v) =
|I+(u) ∩ I+(v)|
|I+(u) ∪ I+(v)| (1)

Similarity Computation (Contd.)

• The Jaccard coefficient on the negative edges can be defined

in an analogous way, as follows:

J−(u, v) =
|I−(u) ∩ I−(v)|
|I−(u) ∪ I−(v)| (2)

• As a result, the similarity between vertices u and v can be

defined by a weighted average of the values of J+(u, v) and

J−(u, v).

• The most effective way to achieve this goal is to use the

fraction of vertices belonging to the two classes.

Weighted Jaccard

• The fraction of vertices incident on u belonging to the edge

label 1 is given by f+u = |I+(u)|
|I+(u)|+|I−(u)|.

• Similarly, the value of f−(u) is defined as (1− f+(u)).

• The average fraction across both vertices is defined by

f+(u, v) = (f+(u) + f+(v))/2, and f−(u, v) = (f−(u) +

f−(v))/2.

• Therefore, the overall Jaccard similarity, J(u, v), of the ver-

tices u and v is defined by the weighted average:

J(u, v) = f+(u, v) · J+(u, v) + f−(u, v) · J−(u, v) (3)

Differential Weight

• An important variation of the edge classification process is

that all edges are not given an equal weight in the process

of determining the dominant edge label.

• Consider the labeled edge (ur, vq), where ur ∈ S(u), and vq ∈
S(v). The weight of the label of the edge (ur, vq) can be set

to J(u, ur)×J(v, vq) in order to ensure greater importance of

edges, which are more similar to the target vertices u and v.

• It is also interesting to note that the above approach can

easily be extended to the k-way case by defining a separate

Jaccard coefficient on a class-wise basis, and then aggregat-

ing in a similar way, as discussed above.

Sparse Labeling

• In real-world cases, the edges are often labeled rather
sparsely, which makes it extremely difficult to compute simi-
larities with only the labeled edges.

• In such cases, a separate component of the similarity,
J0(u, v), between vertices u and v is considered only with
unlabeled edges, just like J+(u, v) and J−(u, v) which are the
Jaccard coefficients with positive and negative edges, respec-
tively.

J(u, v) = f+(u, v)·J+(u, v)+f−(u, v)·J−(u, v)+µJ0(u, v) (4)

• Here, µ is a discount factor less than 1, which is used to pre-
vent excessive impact of the unlabeled edges on the similarity
computation.

Numerical Labels

• The case of numerical class variables in edge regression is

similar to that of binary or categorical class variables in edge

classification, except that the vertex similarities and the class

averaging steps are computed differently in order to account

for the numerical class variables.

• Let I+(u) be the set of all vertices incident on a particular

vertex u, such that for each v ∈ I+(u), the edge (u, v) has

a numerical label whose value is greater than the average of

the labeled edges incident on u.

• The remaining vertices incident on u, whose labeled edge

values are below the average, are put in another set, I−(u).

• The similarity values J+(u, v), J−(u, v), and J(u, v) can be

defined in an analogous way according to the previous binary

edge classification case.

Classification with Numeric Labels

• In order to determine the numeric label of an edge (u, v),

a similar procedure is employed as in the previous case.

The first step is to determine the closest k vertices S(u) =

{u1 . . . uk} to u, and the closest k vertices {v1 . . . vk} to v with

the use of the aforementioned Jaccard similarity function.

• Then, the numeric labels of the edges in Al ∩ [S(u) × S(v)]

are averaged.

• As in the case of edge classification, different edges can be

given different weights in the regression process.

Challenges

• The main problem with the exact approaches discussed in

the previous section is that they work most efficiently when

the entire graph is memory-resident.

• However, when the graph is very large and disk-resident, the

computation of par-wise vertex similarity is likely to be com-

putationally expensive because all the adjacent edges of dif-

ferent vertices need to be accessed, thus resulting in a lot of

random accesses to hard disks.

• In many real-world dynamic cases, the graph where edge

classification is performed is no long static but evolving in a

fast speed.

Basic Approach

• Use synopsis structure to summarize the graph

• Synopsis structure can be efficiently updated in real time

• Synopsis structure can be leveraged to efficiently perform

classification

Broad Approach

• In order to achieve this goal, we will consider a probabilistic,

min-hash based approach, which can be applied effectively

for both disk-resident graphs and graph streams.

• In this min-hash approach, the core idea is to associate a

succinct data structure, termed min-hash index, with each

vertex, which keeps track of the set of adjacent vertices.

• Specifically, the positive, negative, and unlabeled edges (and

their incident adjacent vertices) of a given vertex are handled

separately in different min-hash indexes.

Min-Hash Technique

• The use of the min-hash index is standard in these settings

• Details of the use of the min-hash index in paper

• Theoretical bounds provided in paper

Experimental Results

• Experimental studies demonstrate the effectiveness and ef-

ficiency of our proposed edge classification methods in real-

world networks.

• We consider a variety of effectiveness and efficiency metrics

on diverse networked data sets to show the broad applicability

of our methods.

Data Sets

• Epinions (binary)

• Slashdot (binary)

• Wikipedia (binary)

• Youtube (multiple labels)

Metrics

• Accuracy: we randomly select 1,500 edges from each net-
work dataset and examine the average accuracy of classifi-
cation for these edges w.r.t. the true labels provided in the
network;

• Time: we gauge the average time consumed for edge clas-
sification for the 1,500 edges selected randomly from within
the networks;

• Space: as opposed to the exact methods that need explic-
itly materialize the whole networks for edge classification,
the probabilistic methods build space-efficient min-hash in-
dexes, which are supposed to be succinct in size and memory-
resident. We record the total space cost (in megabytes) of
min-hash structures in the probabilistic methods, which need
not store the entire graphs for edge classification.

Accuracy

 50

 60

 70

 80

 90

 100

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
cc

ur
ac

y
(%

)

Edge Classification Methods

 50

 60

 70

 80

 90

 100

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
cc

ur
ac

y
(%

)

Edge Classification Methods

(a) Epinion (b) Slashdot

 50

 60

 70

 80

 90

 100

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
cc

ur
ac

y
(%

)

Edge Classification Methods

 0

 10

 20

 30

 40

 50

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
cc

ur
ac

y
(%

)

Edge Classification Methods

(c) Wikipedia (d) Youtube

Running Time

 0

 1

 2

 3

 4

 5

 6

 7

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
ve

ra
ge

 R
un

tim
e

(s
ec

.)

Edge Classification Methods

 0

 1

 2

 3

 4

 5

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
ve

ra
ge

 R
un

tim
e

(s
ec

.)

Edge Classification Methods

(a) Epinion (b) Slashdot

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
ve

ra
ge

 R
un

tim
e

(s
ec

.)

Edge Classification Methods

 0

 2

 4

 6

 8

 10

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
ve

ra
ge

 R
un

tim
e

(s
ec

.)

Edge Classification Methods

(c) Wikipedia (d) Youtube

Effect of the number of nearest
neighbors

 65

 70

 75

 80

 85

 90

 95

 100

40 60 80 100

A
cc

ur
ac

y
(%

)

The Number of Top Similar Neighbors (k)

ExtUF

ExtWF

ExtWP

ProbUF

ProbWF

ProbWP

 50

 60

 70

 80

 90

 100

40 60 80 100

A
cc

ur
ac

y
(%

)

The Number of Top Similar Neighbors (k)

ExtUF

ExtWF

ExtWP

ProbUF

ProbWF

ProbWP

(a) Epinion (b) Slashdot

 60

 65

 70

 75

 80

 85

 90

 95

 100

40 60 80 100

A
cc

ur
ac

y
(%

)

The Number of Top Similar Neighbors (k)

ExtUF

ExtWF

ExtWP

ProbUF

ProbWF

ProbWP

 10

 15

 20

 25

 30

 35

 40

 45

 50

40 60 80 100

A
cc

ur
ac

y
(%

)

The Number of Top Similar Neighbors (k)

ExtUF

ExtWF

ExtWP

ProbUF

ProbWF

ProbWP

(c) Wikipedia (d) Youtube

Effect of hash functions

 20

 30

 40

 50

 60

 70

 80

 90

 100

Epinion Slashdot Wikipedia Youtube

A
cc

ur
ac

y
(%

)

Networks

20
30
40
50

 0

 0.2

 0.4

 0.6

 0.8

 1

Epinion Slashdot Wikipedia Youtube

A
ve

ra
ge

 R
un

tim
e

(s
ec

.)

Networks

20
30
40
50

(a) Accuracy (b) Runtime

 0

 10

 20

 30

 40

 50

 60

 70

 80

Epinion Slashdot Wikipedia Youtube

Sp
ac

e
C

os
t (

M
B

)

Networks

20
30
40
50

(c) Space

Effect of the number of unlabeled edges

 60

 65

 70

 75

 80

 85

 90

 95

 100

10% 30% 50% 70%

A
cc

ur
ac

y
(%

)

The Percentage of Unlabeled Edges (t)

ExtWP

ProbWP

 60

 65

 70

 75

 80

 85

 90

 95

 100

10% 30% 50% 70%

A
cc

ur
ac

y
(%

)

The Percentage of Unlabeled Edges (t)

ExtWP

ProbWP

(a) Epinion (b) Slashdot

 60

 65

 70

 75

 80

 85

 90

 95

 100

10% 30% 50% 70%

A
cc

ur
ac

y
(%

)

The Percentage of Unlabeled Edges (t)

ExtWP

ProbWP

 0

 10

 20

 30

 40

 50

10% 30% 50% 70%

A
cc

ur
ac

y
(%

)

The Percentage of Unlabeled Edges (t)

ExtWP

ProbWP

(c) Wikipedia (d) Youtube

Conclusions

• New technique for edge classification in networks

• Uses probabilistic min-hash data structures for efficient clas-

sification

