
The Chinese University of Hong Kong

Fast Frequent Free Tree Mining
in Graph Databases

Peixiang Zhao Jeffrey Xu Yu

The Chinese University of Hong Kong

December 18th , 2006

ICDM Workshop MCD06

Dec. 18th, 2006ICDM Workshop MCD06 2

Synopsis

• Introduction

• Existing Approaches

• Our Algorithm: F3TM

• Performance Studies

• Conclusions

Dec. 18th, 2006ICDM Workshop MCD06 3

Introduction
Graph, a general data structure to represent relations
among entities, has been widely used in a broad range of
areas
• Computational biology
• Chemistry
• Pattern recognition
• Computer networks
• etc.

Mining frequent sub-graphs in a graph database
• If a large graph contains another small graph : the sub-graph

isomorphism problem (NP-complete)
• If two graphs are isomorphic : the graph isomorphism problem (either

P or NP-complete)

•

•

Dec. 18th, 2006ICDM Workshop MCD06 4

Introduction
• Free Tree (ftree)

• Connected, acyclic and undirected graph

• Widely used in bioinformatics, computer vision, networks, etc.

• Specialization of general graph avoiding undesirable theoretical

properties and algorithmic complexity incurred by graph

– determining whether a tree t1 is contained in another tree t2 can be solved in

O(m3/2n/logm) time

– determining whether t1 is isomorphic to t2 can be solved in O(n)

– determining whether a tree is isomorphic to some sub-trees of a graph, a

costly tree-in-graph testing which is still NP-Complete

Dec. 18th, 2006ICDM Workshop MCD06 5

Introduction
• Frequent free tree mining

• Given a graph database D = { g1, g2, …, gN}. The problem of frequent
free tree mining is to find the set of all frequent free trees where a ftree,
t, is frequent if the ratio of graphs in D, that has t as its sub-tree, is
greater than or equal to a user-given threshold Φ

• Two key concepts
– Candidate generation
– Frequency counting

• Our focus
• The less number of candidates generated, the less number of times to

apply costly tree-in-graph testing

• the cost of candidate generation itself can be high

Dec. 18th, 2006ICDM Workshop MCD06 6

Existing Approaches
• FT-Algorithm

• Apriori-based algorithm
• Builds a conceptual enumeration lattice to enumerate frequent

ftrees in the database
• Follows a pattern-join approach to generate candidate

frequent ftrees

• FG-Algorithm
• A vertical mining algorithm
• Builds an enumeration tree and traverses it in a depth-first

fashion
• Takes a pattern-growth approach to generate candidate

frequent ftrees

Dec. 18th, 2006ICDM Workshop MCD06 7

Our Algorithm: F3TM
• F3TM (Fast Frequent Free Tree Mining)

• A vertical mining algorithm

– Requires a relatively small memory to maintain the frequent ftrees

being found

• Uses the pattern-growth approach for candidate generation

• Two pruning algorithms are proposed to facilitate candidate generation

and they contribute a dramatic speedup to the final performance of our

ftree mining algorithm

– Automorphism-based pruning

– Canonical mapping-based pruning

Dec. 18th, 2006ICDM Workshop MCD06 8

Canonical Form of Free Tree

• A unique representation of a ftree
• two ftrees, t1 and t2, share the same canonical form if and only if t1 is

isomorphic to t2

• Only free trees in their canonical form need to be considered

in frequent ftree mining process

• A two-step algorithm
• normalizing a ftree to be a rooted ordered tree

• assigning a string, as its code, to represent the normalized rooted ordered
tree

• Both steps of the algorithm are O(n), for a n-ftree

Dec. 18th, 2006ICDM Workshop MCD06 9

Candidate Generation
• Theorem: the completeness of frequent ftrees is ensured if we

grow vertices from the predefined positions of a ftree, called
extension frontier

• Extension frontier represents all legal positions of an n-ftree t’
on which a new vertex can be appended to achieve the new
(n+1)-ftree t, while no ftrees are omitted during this frontier-
extending process

a

b c d e

f g

Dec. 18th, 2006ICDM Workshop MCD06 10

Automorphism-Based Pruning
• Given a candidate ftree t in T (the candidates set), in order

to reduce the cost of frequency counting, we firstly check if
there is a candidate ftree t' in T such as t = t'

• There is no need to count redundancies

• When T becomes large, the cost of checking t = t' for every
t' in T can possibly become the dominating cost

a

b b

c d c d

0

1 2

3 4 5 6

a

b b

c d c d

a

b b

c d c d

Dec. 18th, 2006ICDM Workshop MCD06 11

Automorphism-Based Pruning
• Automorphism-based pruning

• efficiently prunes redundant candidates in T while avoids checking if a
ftree has existed in T already, repetitively

• All vertices of a free tree can be partitioned into different equivalence
classes base on automorphism

• We only need to grow vertices from one representative of an
equivalence class, if vertices of the equivalence class are in the
extension frontier of the ftree

a

b b

c d c d

0

0 0

0 1 0 1

a

b b

c d c d

Dec. 18th, 2006ICDM Workshop MCD06 12

Canonical Mapping-based Pruning
• How to select potential labels to be grown on the frequent

ftrees during candidate generation?

• Existing algorithms maintain mappings from a ftree t to all its k

occurrences in gi

• Based on these mappings, it is possible to know which labels, that

appear in graph gi, can be selected and assigned to generate a candidate

(n+1)-ftree

• there are a lot of redundant mappings between a ftree t and occurrences

in gi

Dec. 18th, 2006ICDM Workshop MCD06 13

Canonical Mapping-based Pruning

a b

ab

1

2 3

4

g1

a

b

a

b

1

2

3 4

g2

a

b b

1

2 3

t
(1;1,2,4)

(1;1,4,2)

(1;3,2,4)

(1;3,4,2)

(2;2,3,4)

(2;2,4,3)

mapping list

Dec. 18th, 2006ICDM Workshop MCD06 14

Canonical Mapping-based Pruning
• Canonical mapping

• efficiently avoid multiple mappings from a ftree to the same
occurrence of the tree in a graph gi of D

• After orienting frequent ftree t to its canonical mapping t’ of gi in D, We
can select potential labels from graph gi for candidate generation

• Given a n-ftree t, and assume that the number of equivalence classes of t
is c, and the number of vertices in each equivalence class Ci is ni (1 ≤ i
≤ c)

– The number of mappings between t and an occurrence t' in graph gi

is up to

– With canonical mapping, we only need to consider one out of
mappings for candidate generation

1

()!
c

i
i

n
=
∏

1

()!
c

i
i

n
=
∏

Dec. 18th, 2006ICDM Workshop MCD06 15

Performance Studies
• The Real Dataset

• The AIDS antiviral screen dataset from Developmental Theroapeutics

Program in NCI/NIH

• 42390 compounds retrieved from DTP's Drug Information System

• 63 kinds of atoms in this dataset, most of which are C, H, O, S, etc.

• Three kinds of bonds are popular in these compounds: single-bond,

double-bond and aromatic-bond

• On average, compounds in the dataset has 43 vertices and 45 edges.

• The graph of maximum size has 221 vertices and 234 edges

Dec. 18th, 2006ICDM Workshop MCD06 16

Real Data Set

• Performance comparisons (with different minimum
threshold: 10%, 20%, 50%)

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Size of datasets

F3TM
FG
FT

0

5000

10000

15000

20000

0 2000 4000 6000 8000 10000

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Size of datasets

F3TM
FG
FT

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Size of datasets

F3TM
FG
FT

Dec. 18th, 2006ICDM Workshop MCD06 17

Conclusion
• Free tree has computational advantages over general graph,

which makes it a suitable candidate for computational biology,

pattern recognition, computer networks, XML databases, etc.

• F3TM discovers all frequent free trees in a graph database with

the focus on reducing the cost of candidate generation

• F3TM outperforms the up-to-date existing free tree mining algorithms by

an order of magnitude

• F3TM is scalable to mine frequent free trees in a large graph dataset with a

low minimum support threshold

The Chinese University of Hong Kong

Thank you

	Fast Frequent Free Tree Mining in Graph Databases
	Synopsis
	Introduction
	Introduction
	Introduction
	Existing Approaches
	Our Algorithm: F3TM
	Canonical Form of Free Tree
	Candidate Generation
	Automorphism-Based Pruning
	Automorphism-Based Pruning
	Canonical Mapping-based Pruning
	Canonical Mapping-based Pruning
	Canonical Mapping-based Pruning
	Performance Studies
	Real Data Set
	Conclusion
	Thank you

