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Introduction

« Graph, a general data structure to represent relations
among entities, has been widely used in a broad range of

areas
« Computational biology
* Chemistry
 Pattern recognition
« Computer networks
* ctc.

« Mining frequent sub-graphs in a graph database

« [falarge graph contains another small graph : the sub-graph
isomorphism problem ( NP-complete )

» Iftwo graphs are isomorphic : the graph isomorphism problem (either
P or NP-complete)
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Introduction

* Free Tree (ftree)

* Connected, acyclic and undirected graph
* Widely used in bioinformatics, computer vision, networks, etc.

« Specialization of general graph avoiding undesirable theoretical

properties and algorithmic complexity incurred by graph
— determining whether a tree ¢, 1s contained in another tree ¢, can be solved in
O(m>2n/logm) time
— determining whether ¢, is isomorphic to ¢, can be solved in O(n)

— determining whether a tree is iIsomorphic to some sub-trees of a graph, a

costly tree-in-graph testing which is still NP-Complete
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Introduction

* Frequent free tree mining
* (@iven a graph database D= { g,, g,, ..., gy} The problem of frequent

free tree mining is to find the set of all frequent free trees where a ftree,
t, is frequent if the ratio of graphs in D, that has ¢ as its sub-tree, is

greater than or equal to a user-given threshold @

« Two key concepts
— Candidate generation
— Frequency counting

e Qur focus

» The less number of candidates generated, the less number of times to
apply costly tree-in-graph testing

* the cost of candidate generation itself can be high
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Existing Approaches

FT-Algorithm
 Apriori-based algorithm

« Builds a conceptual enumeration lattice to enumerate frequent
ftrees 1n the database

» Follows a pattern-join approach to generate candidate
frequent ftrees

FG-Algorithm

A vertical mining algorithm

* Builds an enumeration tree and traverses it in a depth-first
fashion

» Takes a pattern-growth approach to generate candidate
frequent ftrees

ICDM Workshop MCDO06 6 Dec. 18", 2006



Our Algorithm: F3TM

 F3TM (Fast Frequent Free Tree Mining)

A vertical mining algorithm

— Requires a relatively small memory to maintain the frequent ftrees

being found
 Uses the pattern-growth approach for candidate generation

« Two pruning algorithms are proposed to facilitate candidate generation
and they contribute a dramatic speedup to the final performance of our

ftree mining algorithm
— Automorphism-based pruning

— Canonical mapping-based pruning
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Canonical Form of Free Tree

« A unique representation of a ftree

* two ftrees, ¢, and t,, share the same canonical form if and only if 7, 1s

1somorphic to ¢,

« Only free trees in their canonical form need to be considered

In frequent ftree mining process

« A two-step algorithm

* normalizing a ftree to be a rooted ordered tree

 assigning a string, as its code, to represent the normalized rooted ordered
tree

» Both steps of the algorithm are O(n), for a n-ftree
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Candidate Generation

» Theorem: the completeness of frequent ftrees is ensured if we
grow vertices from the predefined positions of a ftree, called
extension frontier

« Extension frontier represents all legal positions of an n-ftree ¢’
on which a new vertex can be appended to achieve the new
(n+1)-ftree ¢, while no ftrees are omitted during this frontier-

extending process
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Automorphism-Based Pruning

« Given a candidate ftreet in T (the candidates set), in order
to reduce the cost of frequency counting, we firstly check if
there is a candidate ftreet'in T suchast=t"

 There 1s no need to count redundancies

 When T becomes large, the cost of checking t = t' for every
t' in T can possibly become the dominating cost

O O
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Automorphism-Based Pruning

« Automorphism-based pruning

« efficiently prunes redundant candidates in 7" while avoids checking if a
ftree has existed in T already, repetitively

« All vertices of a free tree can be partitioned into different equivalence
classes base on automorphism

* We only need to grow vertices from one representative of an
equivalence class, if vertices of the equivalence class are in the

extension frontier of the ftree
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Canonical Mapping-based Pruning

« How to select potential labels to be grown on the frequent
ftrees during candidate generation?

 Existing algorithms maintain mappings from a ftree ¢ to all its &

occurrences in g;

* Based on these mappings, it 1s possible to know which labels, that
appear in graph g;, can be selected and assigned to generate a candidate
(n+1)-ftree

* there are a lot of redundant mappings between a ftree ¢ and occurrences

In g;
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Canonical Mapping-based Pruning
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Canonical Mapping-based Pruning

« Canonical mapping

« efficiently avoid multiple mappings from a ftree to the same
occurrence of the tree in a graph g; of D

 After orienting frequent ftree ¢ to its canonical mapping ¢’ of g; in D, We
can select potential labels from graph g; for candidate generation

« Given a n-ftree ¢, and assume that the number of equivalence classes of ¢
is ¢, and the number of vertices in each equivalence class C;is n; (1 <i
< ¢)

— The number of mappings between ¢ and an occurrence ¢’ in graph g;

is up to H(n )!

— With canomcal mapping, we only need to consider one out of H(n )!

i=1

mappings for candidate generation
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Performance Studies

« The Real Dataset

« The AIDS antiviral screen dataset from Developmental Theroapeutics

Program in NCI/NIH
e 42390 compounds retrieved from DTP's Drug Information System
* 63 kinds of atoms in this dataset, most of which are C, H, O, S, etc.

» Three kinds of bonds are popular in these compounds: single-bond,

double-bond and aromatic-bond
* On average, compounds in the dataset has 43 vertices and 45 edges.

e The graph of maximum size has 221 vertices and 234 edges
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Total running time (sec)

Real Data Set

* Performance comparisons (with different minimum
threshold: 10%, 20%, 50%0)
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Conclusion

* Free tree has computational advantages over general graph,
which makes it a suitable candidate for computational biology,

pattern recognition, computer networks, XML databases, etc.

« F3TM discovers all frequent free trees in a graph database with
the focus on reducing the cost of candidate generation

« F3TM outperforms the up-to-date existing free tree mining algorithms by

an order of magnitude

» F3TM i1s scalable to mine frequent free trees in a large graph dataset with a

low minimum support threshold
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