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Abstract Free tree, as a special undirected, acyclic and connected graph, is ex-
tensively used in computational biology, pattern recognition, computer networks,
XML databases, etc. In this paper, we present a computationally efficient algorithm
F3TM (Fast Frequent Free Tree Mining) to find all frequently-occurred free trees
in a graph database, D = {g1, g2, · · · , gN}. Two key steps of F3TM are candidate
generation and frequency counting. The frequency counting step is to compute how
many graphs in D containing a candidate frequent free tree, which is proved to be
the subgraph isomorphism problem in nature and is NP-complete. Therefore, the
key issue becomes how to reduce the number of false positives in the candidate
generation step. Based on our observations, the cost of false positive reduction
can be prohibitive itself. In this paper, we focus ourselves on how to reduce the
candidate generation cost and minimize the number of infrequent candidates being
generated. We prove a theorem that the complete set of frequent free trees can
be discovered from a graph database by growing vertices on a limited range of
positions of a free tree. We propose two pruning algorithms, namely, automorphism-
based pruning and canonical mapping-based pruning, which significantly reduce the
candidate generation cost. We conducted extensive experimental studies using a real
application dataset and a synthetic dataset. The experiment results show that our
algorithm F3TM outperforms the up-to-date algorithms by an order of magnitude in
mining frequent free trees in large graph databases.
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1 Introduction

The past decade has witnessed an explosive growth of the World Wide Web. As
a global information potpourri, the Web flooded us with a substantial amount of
data and information, which is frequently modeled as structural patterns like graphs,
lattices and trees, etc. [3, 4]. Thus, structural pattern mining was introduced and fulled
studied to help discover high quality information and uncover knowledge buried in
the World Wide Web.

Graph, a general data structure to represent relations among entities, has been
widely used in a broad range of areas such as computational biology, chemistry,
pattern recognition, computer networks, etc. In recent years data mining on complex
structural patterns has attracted a lot of research interests [11, 20]. The idea of
discovering frequent patterns in large graph databases has led to several specialized
algorithms for mining frequent subgraphs in graph databases. However, discovering
frequent subgraphs from a large graph database comes with high cost. Two com-
putationally expensive operations are unavoidable: (1) to check if a graph contains
another graph (in order to determine the frequency of a pattern) is an instance of
the subgraph isomorphism problem, which is NP-complete [10]; and (2) to tell if two
graphs are isomorphic (in order to avoid creating a candidate multiple times) is an
instance of the graph isomorphism problem, which is not known to be either P or
NP-complete [10].

With the advent of World Wide Web and the need for mining semi-structured
XML data, a particularly useful family of general graph—free tree, has been studied
intensively in various areas. Free tree—the connected, acyclic and undirected graph,
is a generalization of linear sequential patterns, so that it reserves plenty of structural
information of datasets to be mined. At the same time, it is a specialization of
general graph, therefore avoids undesirable theoretical properties and algorithmic
complexity incurred by graph. As the middle ground between these two extremes,
free tree has been widely used in networks, bioinformatics, chemistry, computer
vision, etc.

In Web content mining, since XML allows the modeling of a wide variety of
databases as tree-structured XML documents, XML thus forms an important data
mining domain, and it is valuable to extract frequent patterns from such data. Given
a set of such XML documents, lots of applications discover the commonly-occurred
subtrees that appear in the collection [21, 26, 27].

In Web usage mining [5, 8], given a database of web access logs from a popular site,
one can perform several mining tasks. The simplest is to ignore all link information
from the logs, and to mine only the frequent sets of pages accessed by users. It is
also possible to look at the entire forward accesses of a user, and to mine the most
frequently accessed trees at that site.

In computer networking, multicast free trees are mined and used for packet rout-
ing [9]. When there are concurrent multicast groups in the network storing routing
tables for all the groups independently, it usually requires considerable space at each
router. One possible strategy is to partition the multicast groups and only build a
separate routing table for each partition. Here frequent subtrees among the multicast
routing trees of different multicast groups offer hints on how to form the partition.

Tree patterns also arise in bioinformatics. In analysis of molecular evolution, an
evolutionary free tree, a.k.a. phylogeny, is used to describe the evolution history
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of certain species [12]. Rückert et al. [18] showed how additional constraints can
be incorporated into a free tree miner for biochemical databases. Those frequently
occurred fragments provide chemists more insight into Quantitative Structure–
activity Relationships (QSARs). In pattern recognition, a free tree called shape axis
tree is used to represent shapes [16]. Free tree has provided us a good compromise
between the more expressive, but computationally harder general graph and the
faster but less expressive path in data mining research.

1.1 Related work

In recent years data mining on complex structural patterns has attracted a lot of
research interests [11, 20]. The idea of discovering frequent patterns in large graph
databases has led to several specialized algorithms for mining frequent subgraphs in
graph databases. Two algorithms by Inokuchi et al. [14] and Kuramochi et al. [15]
take advantage of an a priori-like approach [1] to mine frequent subgraphs in a graph
database. Yan et al. [24, 25] and Huan et al. [13] present subgraph mining algorithms
based on a vertical mining approach, which traverses the search space in a depth-
first fashion, as opposed to the breath-first traversal used inherently in a priori-like
algorithms.

Compared with the frequent graph mining problem, mining frequent free trees is
computationally less expensive and is proved to be viable in a wide range of appli-
cations. In particular, if the background database is composed of trees, determining
whether a tree t1 (a candidate frequent pattern) is contained in another tree t2 (a

member tree of a tree database) can be solved in O
(

m3/2n
logm

)
, where m and n (m < n)

are the sizes of t1 and t2 [19]. Meanwhile, to determine whether a free tree, t1, is
isomorphic to the other, t2, can be efficiently solved in linear time, w.r.t. the free tree
size [2]. Termier et al. [21] present an algorithm to find a subset of frequent trees in
a set of tree-structured XML data. Chi et al. [6, 7] present an a priori-like algorithm
to discover all frequently occurred subtrees in a database of free trees .

If the background database is composed of graphs, there is a need to determine
whether a tree pattern is isomorphic to some subtrees of a graph, i.e., a costly tree-
in-graph testing which is still NP-complete. Rückert et al. propose an algorithm [18]
for mining frequent free trees in graph databases. It is important to note that current
graph mining algorithms can not be effectively used to tackle the free tree mining
problem because they do not fully utilize the characteristics of free tree during mining
process. New algorithms should be carefully designed for this special kind of graph
to maximize performance.

1.2 Our approach

In this paper, we study the issue of mining frequent free trees in a graph database.
As a specialized structural pattern mining problem, discovering the complete set of
frequent free trees from a graph database has two key steps: candidate generation
and frequency counting. For candidate generation, potential frequent free trees,
a.k.a candidates are generated from the graph database. The primary operation
in this step is free tree isomorphism checking, which can be efficiently done in
linear time. For frequency counting, the occurrence of each candidate is computed
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by traversing the graph database. Infrequent free trees, a.k.a. false positives, are
eliminated while frequent ones are preserved for further candidate generation.
The primary operation in this step is the costly tree-in-graph testing, which is the
NP-complete subgraph isomorphism problem in nature. Therefore, the focus of our
paper is on candidate generation, because the more the false positives pruned, the
less the costly tree-in-graph testings executed. We also observe that the cost of
candidate generation itself can be high. In order to solve the free tree mining problem
efficiently and effectively, we concentrate ourselves on reducing both the candidate
generation cost and the number of candidates to be generated.

The main contributions of our work are summarized below. We propose a vertical
mining algorithm, called F3TM for Fast Frequent Free Tree Mining to discover
the complete set of frequent free trees from a graph database by a pattern-growth
approach. Pattern-growth means F3TM generates candidates by growing one vertex
each time on a frequent free tree. First, we prove that all frequent free trees
can be discovered by pattern-growth on the extension frontier, a limited range of
positions, of frequent free trees. Second, the automorphism-based pruning algorithm
is proposed to assist us to determine if we need to generate a new candidate from
a given frequent free tree by checking the tree itself. Third, the canonical mapping-
based pruning algorithm is presented during candidate generation. Since there exists
a large number of mappings from a free tree to each of its occurrences in a graph,
to ensure the completeness of frequent free tree patterns being mined, existing
algorithms have to generate a new candidate based on all possible mappings. With
canonical mapping, we ensure that there is a unique mapping from a free tree to each
of its occurrences in a graph. Therefore, the redundant cost of candidate generation
and frequency counting can be significantly reduced. Our extensive experimental
studies confirm that our algorithm F3TM significantly outperforms the up-to-date
algorithms [6, 7, 18] by an order of magnitude in mining frequent free trees from
large graph databases.

1.3 Roadmap

The rest of the paper is organized as follows. In Section 2, we give our problem
statement. Section 3 outlines two existing algorithms for mining frequent free trees
in tree and graph databases. We discuss our new algorithm F3TM in Section 4, and
report results of our extensive performance studies in Section 5. Finally, Section 6
concludes our work.

2 Problem statement

A graph G = (V, E, �, λ) is defined as a undirected labeled graph where V is a set of
vertices, E is a set of edges (unordered pairs of vertices), � is a set of labels, and λ is
a labeling function, λ : V ∪ E → �, that assigns labels to vertices and edges. A free
tree, denoted ftree, is a special undirected labeled graph that is connected and acyclic.
A rooted unordered tree is a ftree where a special vertex, which is often referred to as
root, is distinguished from among vertices in V. A rooted ordered tree is a ftree where
root is oriented and the order among children of each vertex is explicitly predefined.
In a rooted unordered tree, if vertex p is on the path from the root to vertex c then p
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is an ancestor of c and c is a descendent of p. If in addition p and c are adjacent, then
p is the parent of c and c is a child of p. Notice that a ftree is a unrooted unordered
tree. Below, we call a ftree with n vertices a n-ftree.

Let t and s be two ftrees, and g be a graph. t is a subtree of s (or s is the supertree
of t), denoted t ⊆ s, if t can be obtained from s by repeatedly removing vertices with
degree 1, a.k.a leaves of the tree. Similarly, t is a subtree of a graph g, denoted t ⊆ g, if
t can be obtained by repeatedly removing vertices and edges from g. Ftrees t and s are
isomorphic to each other if there is a one-to-one mapping from vertices of t to vertices
of s that preserves vertex labels, edge labels, and adjacency. An automorphism is an
isomorphism that maps from a ftree to itself. A subtree isomorphism from t to g is an
isomorphism from t to some subtree(s) of g.

Given a graph database D = {g1, g2, . . . , gN} where gi is a graph (1 ≤ i ≤ N). The
problem of frequent ftree mining is to discover the complete set of frequent ftrees. A
ftree, t, is frequent if the ratio of graphs in D, that has t as its subtree, is no less than a
user-given threshold φ. Formally, let t be a ftree and gi be a graph. We define

ς(t, gi) =
{

1 if t ⊆ gi

0 otherwise

and

σ
(
t,D

) =
∑
gi∈D

ς(t, gi)

σ (t,D) denotes the frequency of t in D, which is also known as support of t. A ftree t
is frequent if (1) holds.

σ
(
t,D

) ≥ φN (1)

In a frequent ftree mining algorithm, two main tasks are candidate generation and
frequency counting. Candidate generation is to generate potential frequent ftrees
(candidates) in the graph database. Frequency counting is to calculate σ(t,D), where
t is a candidate ftree. The most important issue of mining frequent ftrees in a graph
database is to reduce the number of candidate frequent ftrees to be generated and
counted with minimum overhead, which is the focus of our paper to be studied.

3 Two existing algorithms

In this section, we introduce two existing frequent ftree mining algorithms. The
algorithm proposed by Chi et al. [6] is to discover frequent ftrees in a tree database.
The algorithm proposed by Rückert et al. [18] is to find frequent ftrees in a graph
database. We call the former FT (free tree mining in tree databases), and the latter
FG (free tree mining in graph databases) in this paper. It is worth noting that we
study mining frequent ftrees in a graph database. But our algorithm can be naturally
extended to solve the problem of mining frequent ftrees in a tree database. We
outline the two algorithms below in brief.

FT is an a priori-based algorithm. A conceptual enumeration lattice is built to
enumerate all frequent ftrees in the graph database. In each step, FT generates
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candidate frequent ftrees level-wise. That is, in level (n+1) of the enumeration lattice,
all candidates of frequent (n+1)-ftrees are generated using frequent n-ftrees found in
level n. In detail, FT follows a pattern–join approach to generate candidate frequent
ftrees. Two frequent n-ftrees which share the same frequent (n–1)-ftree, which is often
referred to as the core, are joined to generate a candidate (n+1)-ftree. FT leverages
the anti-monotone property of frequent patterns in pruning certain branches of the
search space. According to this property, no super trees of an infrequent ftree can be
frequent.

FT is initially proposed to discover all frequent ftrees in a database of labeled
ftrees. When applied in graph databases, this a priori-based algorithm is not likely
to achieve good performance because the exponential growth of potential frequent
ftrees will inevitably require a huge memory consumption in the mining process.

FG is a vertical mining algorithm which follows the pattern-growth principle to
generate candidate frequent ftrees. Given a frequent n-ftree t, FG first counts its
frequency by traversing the graph database. At the same time, all vertices at the
bottom layer of t are selected as extension points to generate candidate (n + 1)-
ftrees. A data structure called extension table is maintained to record extension points
and support values w.r.t. t. FG builds an enumeration tree upon which the mining
algorithm depth-first traverses to discover all frequent ftrees. The enumeration tree
guarantees an easy pattern-growth process to generate candidate frequent ftrees and
a backtracking process to efficiently prune the search space. In detail, the mining
process may be terminated and backtracked on some branches of the enumeration
tree, if the same frequent ftree has been found already or the candidate ftree is
infrequent.

The advantage of the vertical mining algorithm FG over the a priori-based
algorithm FT is its relatively small memory consumption. Notice that in order to
enumerate candidate frequent (n + 1)-ftrees by FT, all frequent n-ftrees must be
held in memory. The large memory consumption costs a great number of physical
page swaps between main memory and disk. However, there still exist several
disadvantages for FG. First, the candidate generation process to grow vertices on the
extension points of a frequent ftree may generate redundant candidates, which incurs
repetitive computations if no pre-pruning is provided. Second, during each database
scan for frequency counting, all occurrences of a ftree in the graph database should
be computed from scratch, if no further optimization techniques are provided.

4 A new fast algorithm: F3TM

In this section, we present our frequent ftree mining algorithm F3TM (Fast Frequent
Free Tree Mining). F3TM is a vertical mining algorithm using the pattern-growth
approach for candidate generation. We focus ourselves on efficient pruning strategies
during candidate generation. Two pruning algorithms, automorphism-based pruning
and canonical mapping-based pruning are proposed to facilitate the candidate gen-
eration process and they contribute a dramatic speedup to the final performance of
frequent ftree mining. Our algorithm F3TM can be up to an order of magnitude faster
than FT and FG in mining frequent ftrees in large graph databases.

Below, we discuss the following issues of F3TM: (1) canonical forms of ftree, (2)
the enumeration tree, (3) candidate generation, and (4) frequency counting.
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4.1 Canonical form

Because a ftree is unrooted and unordered, it can be possibly represented in multiple
ways (We have different choices for the root, and for each non-leaf vertex of the ftree,
the order of its children is also undetermined). Among multiple representations, we
want to select one as canonical form to uniquely represent the ftree . The canonical
form of ftrees have the following property: two ftrees t1 and t2 share the same canon-
ical form if and only if t1 is isomorphic to t2. The concept of canonical form greatly
facilitates storage, indexing and manipulation of ftrees. More importantly, during
frequent ftree mining, only ftrees in their canonical form need to be considered, while
ftrees in non-canonical forms are redundancy and hence can be efficiently pruned.

A canonical form of a ftree can be obtained in a two-step algorithm: (1) nor-
malizing a ftree to be a rooted ordered tree; (2) assigning a string, as its code, to
represent the normalized rooted ordered tree. The final code derived from the two-
step algorithm is the canonical form of the ftree. Both steps of the algorithm are O(n),
for a n-ftree [2]. The details are listed below.

Normalization The normalization of a ftree is based on a root-orientation, children-
ordering procedure to transform the tree into a rooted ordered tree. First, the
center(s) of a ftree t is distinguished from among vertices of t and is selected as root.
Then, children of each non-leaf vertex are ordered and rearranged in a pre-defined
order. Figure 1 shows two examples: a central ftree with one center (Figure 1a) and
a bicentral ftree with two centers (Figure 1b). Recall that a ftree is either a central
ftree or a bicentral ftree [23]. In Figure 1a and b, the left trees are original ftrees and
center(s) are represented as grey node(s). The middle trees are rooted unordered
trees after the center(s) of ftrees is distinguished as root (represented as grey node).
The right trees are the normalized trees which are both rooted and ordered. The time
complexity of normalization of a n-ftree is O(n) [2].

Code Assignment In the literature, there exist several codes, also known as canon-
ical string representations for rooted ordered trees, such as BFCS (Breadth-first
Canonical String), DFCS (Depth-first Canonical String) [7], canonical form [18] and
isomorphic code [23] etc. The canonical string sequentializes normalized ftrees for the
purpose of efficient manipulation and compact storage. Our algorithm is not sensitive

Figure 1 Central/bicentral
ftrees and their canonical
forms.

a

b
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to canonical string representations. Any canonical string can be used in our algorithm
effectively.

Given a ftree in its canonical form, a.k.a. canonical ftree, without loss of generality,
we assume that all edge labels of the ftree are identical. Because each edge connects
a vertex with its parent and we can consider an edge, together with its label, as a
part of the child vertex. (For the root of the ftree, we can assume that there is a
null edge connecting to it from above.) In the reminder of the paper, if not specified
purposefully, a ftree is a canonical ftree, and its canonical form or canonical string
representation can be used interchangeably.

4.2 The enumeration tree

An enumeration tree, T(V, E), is a tree structure representing all frequent ftrees of
a graph database. Here, V is a set of vertices representing frequent ftrees, E is a
set of edges representing a subtree-supertree relationship between frequent ftrees.
The root of T is a virtual vertex, which represents the 0-ftree. Children of the root
are all frequent 1-ftrees. According to the pattern-growth principle, a vertex can
be appended to an 1-ftree t and candidate frequent 2-ftrees originated from t are
generated. This procedure continues iteratively, i.e., all (n+1)-ftrees originated from
a n-ftree t can be obtained from t by the patten-growth approach. In the enumeration
tree, the level n contains all frequent n-ftrees of the graph database. By a depth-first
traversal of the enumeration tree, F3TM can discover all frequent ftrees in the graph
database.

Figure 2 shows an example of the enumeration tree. Here, the root node is labeled
with ∅, which has three children representing three ftrees with label a, b, and c,
provided that they are only possible labels. The 1-ftree with vertex a can grow to
three 2-ftrees, a-a, a-b, and a-c. As shown in Figure 2, there may be duplicated
ftrees in the enumeration tree, which means that a ftree can be possibly grown from
different ancestors in the enumeration tree. For example, the shaded 2-ftree, a-b, can
be grown either from 1-ftree, a, by appending a vertex with label b, or from 1-ftree,
b, by appending a vertex with label a.

Our F3TM algorithm traverses the enumeration tree T in a depth-first manner.
When it finds that a ftree has been discovered before as a frequent ftree, it does not
need to mine the duplicated ftree and all its descendants again. As discussed above,
the key issue is to reduce the possibility of generating duplicated ftrees to minimum.
We will discuss it in the next section on candidate generation.

Figure 2 The enumera-
tion tree.
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Figure 3 The extension
frontier of a ftree t.

4.3 Candidate generation

Given a frequent n-ftree t, a naive pattern-growth algorithm to generate candidate
frequent (n+1)-ftrees is to add one vertex on each of n vertices of t. Obviously,
this naive algorithm will generate a number of duplicated candidate frequent (n+1)-
ftrees. In the following, we prove that the completeness of frequent ftrees in a graph
database can be guaranteed even if we grow vertices on the predefined positions
of frequent ftrees, which are called extension frontier. Similar techniques were also
applied in [7, 18], which reduces the number of duplicated candidate frequent ftrees.
To our best knowledge, there is no proof in the reported studies. Below, we first
define concepts of leg, last-leg, and extension-frontier of a ftree.

Definition 1 Given a ftree t, leaves at the bottom level are called legs. Among all legs,
the rightmost leaf is the last leg and the parent of the last leg is denoted as pl(t).

Definition 2 Given a ftree t, the extension-frontier of t is composed of three parts:

(1) all legs;
(2) the parent of the last leg, pl(t), and
(3) leaves at the second but last level, whose order are no less than pl(t), or in other

words, appear after pl(t).

As shown in Figure 3, the legs of the ftree t are vertices f and g. The last leg is
vertex g, and the parent of the last leg is vertex c = pl(t). The leaves at the second
last level, whose order are no less than pl(t), are vertices d and e. So the extension-
frontier of the ftree t is composed of vertices c, d, e, f and g.

Lemma 1 Given a n-ftree t, for n > 2. Let t′ be a canonical (n–1)-ftree after deleting the
last-leg l from t. The position of vertex pl(t) of t in t′ can only have three possibilities:
(Case-1) pl(t) is a leg of ftree t′, (Case-2) pl(t) = pl(t′) and (Case-3) pl(t) appears in
the extension-frontier of t′, where Case-1 and Case-2 do not hold.

Figure 4 shows the three cases. We prove Lemma 1 in Appendix.

Theorem 1 All frequent ftrees of a graph database can be found by growing vertices
on the extension frontier of ftrees in the enumeration tree.

Proof We prove Theorem 1 by induction. It is obvious that the extension frontier of a
frequent 1-ftree is its sole root, and all frequent 2-ftrees can be grown on the extension
frontiers of 1-ftrees. Assume that all frequent n-ftrees can be grown a vertex on the
extension frontiers of their corresponding frequent (n–1)-ftrees. Given a frequent
(n+1)-ftree, t, after deleting the last leg l from t, we get a canonical n-ftree, t′. Based
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Figure 4 Three possibilities
of lp(t) in t′.

on Lemma 1, pl(t) is located on the extension frontier of t′. So t can be grown with
one more vertex l on the extension frontier of t′. Therefore, Theorem 1 holds. 
�

Theorem 1 demonstrates all legal positions of a frequent n-ftree t′ on which an
additional vertex, i.e., the last leg, can be grown to achieve a new candidate frequent
(n+1)-ftree t, while no frequent ftrees are omitted during this frontier-extending
process.

4.4 Automorphism-based pruning

Based on the specialized pattern-growth approach mentioned above, we can gener-
ate the complete set of frequent ftrees of a graph database. Suppose there is a set of
candidate frequent ftrees found already, denoted T . Given a candidate ftree t ∈ T ,
in order to reduce the cost of frequency counting, we firstly check if there is a ftree
t′ ∈ T such as t = t′ (ftree isomorphim). If it is true, there is no need to count it again.
Note: ftree isomorphism can be computed in polynomial time, whereas tree-in-graph
testing is NP-complete. In other words, it is cost-effective to check whether t = t′, for
every t′ ∈ T . However, when T becomes large, the cost of checking t = t′ for every
t′ ∈ T can possibly become the dominating cost.

Figure 5 illustrates a concrete example. The leftmost ftree t is a frequent 7-ftree,
where vertices are identified with a unique number as vertex id. Since vertex 3 and
vertex 5 of t are both located in the extension frontier, we can grow a vertex on either
of them to generate a candidate frequent 8-ftree. Growing a new vertex on vertex 3
of t generates a candidate frequent 8-ftree t′ ∈ T , shown in the middle of Figure 5.
While growing the same vertex on vertex 5 of t generates another candidate frequent
8-ftree t′′, shown on the right of Figure 5. Since t′, t′′ ∈ T and t′ = t′′ in the sense of
ftree isomorphism, the candidate t′′ can be pruned for further frequency checking.
However, if T is large, the cost of ftree isomorphism checking can be prohibitive.
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Figure 5 Automorphism-
based pruning.

Based on the observation mentioned above, we need a way to make it possible
to grow a new vertex from either vertex 3, or vertex 5 of t, but not both, without
checking all candidate frequent ftrees of T in advance. Because the candidate
frequent ftree set, T , may be large. We propose an automorphism-based pruning
algorithm in this section to efficiently prune redundant candidates in T and avoid
checking if a candidate frequent ftree has existed in T already, repetitively. Below,
we define an equivalence relation of ftree based on ftree automorphism.

Definition 3 Two vertices, u and v, of a ftree t satisfy an equivalence relation based
on automorphism, if and only if (1) u and v are at the same level of t, (2) subtrees
rooted from u and v are isomorphic, and (3) u and v share the same parent or their
parents hold the equivalence relation based on automorphism.

It is easy to see that the equivalence relation based on automorphism is reflexive,
symmetric and transitive. An equivalence class is a set of vertices of a ftree where
every two vertices in the same equivalence class hold the equivalence relation based
on automorphism. All vertices in a given ftree can be partitioned into different
equivalence classes. Figure 6 illustrates how to partition vertices of a ftree (left tree)
into four equivalence-classes (right tree).

It is worth noting that during candidate generation, we only need to grow vertices
from one representative of each equivalence class of the ftree, if vertices of an
equivalence class are in the extension frontier of the ftree. In other words, given two
vertices u and v of a frequent n-ftree t, and assume that they are in the extension-
frontier of t and in the same equivalence-class, any candidate frequent (n+1)-ftree
that is generated by growing a vertex x on u is isomorphic to a candidate frequent
(n+1)-ftree that is generated by growing x on v.

The equivalence classes of a ftree can be obtained based on the normalization
procedure mentioned in Section 4.1. We explain it using Figure 6. The left ftree is
normalized where every vertex is associated with a number representing its relative
order in a given level of the ftree. To compute equivalence classes, we breadth-first
traverse the canonical ftree and do the following operations in a top-down fashion:
first, the root of the ftree is the only member of an equivalence class; second, all
vertices with the same order at a given level belong to the same equivalence class
if their parents belong to the same equivalence class. The procedure continues

Figure 6 Equivalence
classes of a ftree.
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recursively until all vertices of the ftree are partitioned to some equivalence classes.
Obviously, we can compute equivalence classes of a n-ftree in O(n).

The similar concept of equivalence class is also used in FT [6]. The equivalence
class in FT is to guide how to join two frequent ftrees and is to ensure the complete-
ness of candidate frequent ftrees to be generated. However, it does not necessarily
mean that any candidate frequent ftree being generated will appear as a subtree in
the graph database, i.e., a lot of false positives may be generated during candidate
generation, which deteriorates the final performance of the mining algorithm. In
our case, the equivalence class based on automorphism is used for pruning. When
we select a representative vertex of an equivalence class which is located on the
extension frontier of a frequent ftree for candidate generation, there is at least one
graph in the database that contains the newly generated candidate as subtrees. The
cost for counting a ftree that does not even appear in the graph database can be
significantly reduced in our algorithm.

4.5 Canonical mapping-based pruning

With the concept of equivalence class, we show which vertex of a frequent ftree is
selected to be grown during candidate generation. The selection of such a vertex as
a representative of its equivalence class can be determined entirely by the ftree itself.
As shown in Figure 5, vertex 3 and vertex 5 are in the extension frontier of a ftree
and in the same equivalence class. We can select either of the two, but not both, to
generate candidate frequent ftrees. The blank vertex in Figure 5 is the new vertex to
be grown, which can be attached with any possible label of the graph database. In
this section, we discuss how to assign a reasonable label to, for example, the blank
vertex in Figure 5.

A label of a vertex to be grown can be selected from all possible labels appeared
in every graph of the graph database, i.e. the alphabet set �. However, this method
is infeasible because the number of labels in a graph database might be very large
while a majority of candidates generated in this way have little chance to be frequent
in the graph database. So a huge number of unnecessary tree-in-graph testings are
introduced which is costly as we have discussed above.

In practice, existing algorithms select labels that are truly appeared in the graph
database. We outline the idea below. Consider a frequent n-ftree t and a graph gi ∈ D
and suppose that t occurs k times in gi. The algorithms maintain mappings from ftree
t to all its k occurrences in gi. Based on these mappings, it is possible to know which
labels, that appear in graph gi, can be selected and assigned to generate a candidate
frequent (n+1)-ftree.

Figure 7 illustrates a simple graph database with two graphs, D = {g1, g2}, and
a frequent ftree t. Each vertex in ftree t and graph g1, g2 is identified by its vertex
id. Every mapping between t and an occurrence of t, denoted t′, a subtree of gi

(i = 1, 2) is shown in a mapping list in Figure 7. Suppose the pre-order sequence
of vertex ids of t is in a form of [u1, u2, · · · ], an entry of the mapping list is shown as
[id(gi) : v1, v2, · · · ], where id(gi) is the graph identifier of gi ∈ D and vi is the vertex
id of gi so that ui of t is mapped to vi of gi. Namely, one mapping entry records one
occurrence information between t and t′ ⊆ gi. Since the pre-order sequence of vertex
ids of t is [1, 2, 3], there are four mappings from t to its two occurrences in g1 (the
first four entries in the mapping list) and two mappings from t to its one occurrence
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Figure 7 Mapping and
canonical mapping.

in g2 (the last two entries in the mapping list). Existing algorithms will pick up the
label of a vertex that connects to the frequent ftree and use it as a legal vertex for
candidate generation. This method can significantly reduce the number of potential
labels assigned to frequent ftrees for candidate generation. For example, consider
ftree t in Figure 7, if we grow a vertex from b(2) of t (this representation format
means a vertex has a label b and its vertex id is 2), the label to be assigned can be
a based on the first entry in the mapping list, where label a is the label of vertex
3 of g1.

However, as shown in Figure 7, there are redundant mappings in the mapping
list. Since vertices b(2) and b(3) of t are in the same equivalence class, the first
and second entry in the mapping list: (1 : 1, 2, 4) and (1 : 1, 4, 2) describe the same
occurrence of t in g1 with the only difference of mapping order. It will significantly
improve the efficiency of candidate generation, if we remove such redundant map-
pings. In this section, we propose the concept of canonical mapping to efficiently
avoid multiple mappings from a ftree to the same occurrence of a graph gi ∈ D.

Definition 4 Two mappings are equivalent from ftree t to the same occurrence t′ of t
in a graph g, based on all equivalence classes, C1, C2, · · · , of t, if the set of vertices in
Ci, for i = 1, 2, · · · , maps to the same set of vertices in t′. A canonical mapping is one
of such equivalent mappings.

As shown in Figure 7, for the ftree t, a(1) itself is in an equivalence class, C1, and
b(2) and b(3) are in the same equivalence class, C2. There are two mappings from
t to an occurrence of t′ in graph g1, (1 : 1, 2, 4) and (1 : 1, 4, 2). The two mappings
are equivalent, because in two mappings, a(1) in C1 of t maps to the same a(1)
of g1, and both b(2) and b(3) in C2 of t map to the same vertices b(2) and b(4)
of g1. We use (1 : 1, 2, 4) as the canonical mapping based on the sorting order of
each equivalence class. After orienting frequent ftree t to its canonical mapping t′ of
gi ∈ D, We can select potential labels from graph gi for candidate generation, while
other non-canonical mappings of t are efficiently pruned.

Given a n-ftree t, and assume that the number of equivalence classes of t is c, and
the number of vertices in each equivalence class Ci is ni, for 1 ≤ i ≤ c. The number of
mappings between a ftree t and an occurrence t′ in graph gi is up to

∏c
i=1 (ni)!, i.e., the

multiplication of all possible permutations of vertices from all equivalence classes
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of t. When either the number of equivalence classes, or the number of vertices in
some equivalence class is large, or t frequently occurs in the graph database D, the
number of mappings of t in graphs of D can be huge. With the concept of canonical
mapping, we only need to consider one out of

∏c
i=1 (ni)! mappings for candidate

generation.

4.6 Frequency counting

Given a ftree t, the frequency counting step is to check whether σ(t,D) ≥ φN
Equation (1) holds, which needs to compute tree-in-graph testing, t ⊆ gi for gi ∈ D.
Ullmann’s backtracking algorithm [22] or Mckay’s Nauty algorithm [17] can be
applied to tackle this NP complete problem. We design our frequency counting
procedure based on Ullmann’s approach, but it combines the tree-in-graph testing
and candidate generation into one process, thus saving a lot of computations.

Algorithm 1 F3TM (D, φ).

Input: the graph database D, the minimum support threshold φ

Output: all frequent ftrees T satisfying (1)
1: let T contain all frequent 1-ftrees and 2-ftrees found in D;
2: let L(t) be a list of graph identifiers id(gi) for the frequent 2-ftree t, such that

t ⊆ gi and gi ∈ D;
3: for all frequent 2-ftree t ∈ T do
4: V-Mine(D, T , t);
5: return T

4.7 The F3TM algorithm

We outline our F3TM algorithm for mining frequent ftrees from a graph database in
Algorithm 1. It takes two parameters, a graph database D and a minimum threshold
φ. In Algorithm 1, we first find all frequent 1-ftrees and 2-ftrees and maintain them in
T , the set of frequent ftrees. Since the number of frequent 1-ftrees and 2-ftrees is not
large, we scan the graph database once to find and count all distinct vertices and edges
instead of following the candidate generation and frequency counting procedure,
which is time-consuming (line 1). For a frequent ftree or a candidate frequent ftree t
in the mining algorithm, we maintain a list of graph identifiers id(gi) ∈ L(t), if t ⊆ gi,
for gi ∈ D (line 2). For each frequent 2-ftree t, we call V-Mine to discover all frequent
n-ftrees t′ (n > 2) that is a supertree of t by a depth-first traversal of the enumeration
tree. Here V-Mine implies vertical mining (lines 3–4). The algorithm V-Mine takes
three parameters, the graph database D, the frequent ftrees currently found in T ,
and the frequent ftree t to be examined. V-Mine returns the complete set of frequent
ftrees in line 5.

The V-Mine is outlined in Algorithm 2, which recursively generates candidate
frequent ftrees with one-vertex-growth each time and counts frequency for each
candidate iteratively. Suppose the frequent ftree t passed to V-Mine is a n-ftree. Let
X denote the set of all candidate (n+1)-ftrees that are supertrees of t with one-vertex-
growth. Initially, X is set ∅ (line 1). In line 2, the algorithm partitions the extension
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frontier of t into different equivalence classes Fi, for i = 1, 2, · · · , which is discussed in
Section 4.4. Because we only need to find frequent (n+1)-ftrees originated from t, V-
Mine considers the graphs in L(t) as the projected graph database for both candidate
generation and frequency counting. The candidate generation is given in lines 3–14,
and frequency counting is given in lines 15–18.

Candidate Generation the algorithm considers all graphs g if id(g) ∈ L(t) as the
projected database for candidate generation (line 3). For each occurrence of t, i.e.,
t′ in graph g, canonical mapping (Section 4.5) ensures that it only needs to consider
one mapping from t to t′, and all other non-canonical mappings are efficiently pruned.
(line 5). For each extension frontier Fi, the algorithm attempts to grow one additional
vertex on Fi of t. First, it determines a ftree tc to be a candidate ftree with one
additional vertex v (with no label assigned yet) to be grown on a vertex u in Fi of

Algorithm 2 V-Mine(D, T , t).

Input: the graph database D, the set of frequent ftrees T , and a frequent ftree t;
Output: all frequent ftrees originated from t;

1: X ← ∅;
2: partition the extension frontier of t into equivalence classes, Fi, for i = 1, · · · ;
3: for all graph g if id(g) ∈ L(t) do
4: for all occurrences t′ of t in g do
5: if the mapping from t to t′ is a canonical mapping then
6: for all Fi of t do
7: let tc be a candidate ftree with one additional vertex v grow from a

vertex, u, in Fi;
8: for all potential label l do
9: let v in tc be assigned with label l;

10: canonicalize tc;
11: L(tc) ← ∅;
12: if tc ∈ T then
13: L(tc) ← L(tc) ∪ {id(g)};
14: X ← X ∪ {tc};
15: for all tc ∈ X do
16: if support(tc) ≥ φ|D| then
17: T ← T ∪ {tc};
18: V-Mine(D, T , tc);

t (line 7). This step can be achieved by selecting one representative from among
vertices of Fi and appending the unlabeled vertex upon it. Second, the algorithm
selects and assigns a label l to the vertex v grown on t from the potential label set of
the corresponding neighbor vertices of the occurrence t′ in g, based on the canonical
mapping (line 9). The algorithm canonicalizes tc into its canonical form(line 10), and
creates an empty list of graph identifiers L(tc) for the graphs that contain tc (line 11).
If tc has been found in T already, there is no need to process it further. Otherwise,
the graph identifier id(g) is added to L(tc), and tc is appended into X , the candidate
frequent ftree set, for further frequency counting.
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Frequency Counting For each candidate frequent ftrees tc in X , the frequency
counting procedure computes its frequency, support(tc), on L(tc), its projected graph
database. If it is frequent (line 16), the algorithm adds tc to T , and call V-Mine
recursively. Otherwise, infrequent ftrees are pruned to avoid further consideration.

4.8 Algorithm analysis

In this section, we sketch a rough complexity analysis for our frequent ftree mining
algorithm F3TM. Notice that one of the most important operations in F3TM is ftree
manipulation. Given a n-ftree t, the time complexities of canonicalizing t, computing
equivalence class of t, and identifying canonical mappings of t can all be obtained
in O(n).

Let |T | be the number of frequent ftrees in D. Algorithm 2 will be called |T | times.
Let M be the maximum number of canonical mappings of a ftree in any graphs of
D, F be the maximum number of equivalence classes of the extension frontier of a
frequent ftree, and K be the maximum number of labels to be assigned to a vertex in
an equivalence class of the extension-frontier. The number of tree operations during
candidate generation is bounded by a factor of |T | · |D| · M · F · K. Since F can be
bounded by n, where n is the maximum size (measured by vertex number) of frequent
ftrees discovered in D, while K can be bounded by |�|, the operations in candidate
generation can be bounded by a factor of |T | · |D| · M · n · |�|.

In Algorithm 2, let |X | be the maximum number of candidate ftrees for a given
frequent ftree t, the number of tree-in-graph testing is bounded by a factor of
|T | · |X |. As mentioned above, given a frequent ftree t, for each equivalence class
of its extension frontier, we can grow an additional vertex to generate a candidate
for frequency counting. Since the maximum number of equivalence classes of the
extension frontier of t, i.e., F, is bounded by n, the maximum size of frequent ftrees
discovered in D, and the possible number of potential labels is bounded by |�|, so |X |
can be bounded by n · |�|. The final tree-in-graph testing during frequency counting
can be bounded by a factor of |T | · n · |�|.

5 Performance studies

In this section, we report a systematic performance study that validates the effective-
ness and efficiency of our frequent free tree mining algorithm: F3TM. We use both a
real dataset and a synthetic dataset in our experiments. We implemented FT based
on [6] and FG based on [18] for performance comparison. All experiments were done
on a 3.4 GHz Intel Pentium IV PC with 2 GB main memory, running MS Windows
XP operating system. All algorithms are implemented in C++ using the MS Visual
Studio compiler.

5.1 Real dataset

The experiments described in this section use the AIDS antiviral screen dataset
from the Developmental Theroapeutics Program in NCI/NIH.1 This 2D structure

1http://dtp.nci.nih.gov/docs/aids/aids_data.html

http://dtp.nci.nih.gov/docs/aids/aids_data.html
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Figure 8 Characteristics of the real dataset.

dataset contains 42,390 compounds retrieved from DTP’s Drug Information System.
There are total 63 kinds of atoms in this dataset, most of which are C, H, O, S, etc.
Three kinds of bonds are popular in these compounds: single-bond, double-bond and
aromatic-bond. We take atom types as vertex labels and bond types as edge labels.
On average, compounds in the dataset has 43 vertices and 45 edges. The graph of
maximum size has 221 vertices and 234 edges. In the following experiments, n is the
size of frequent ftrees represented as vertex number. N denotes the database size,
i.e., |D| and φ denotes the minimum threshold.

We show the characteristics of the real dataset being tested. First, we randomly
generated a dataset with N = 1,000 graphs from the AIDS antiviral screen database,
and show the number of frequent ftrees that have a certain number of vertices for
a given minimum threshold φ in Figure 8a. As shown in Figure 8a, most frequent
ftrees have 13, 9 and 7 vertices, when φ = 0.1, 0.2, 0.3. respectively. Two conclusions
can be made: (1) the number of small ftrees with vertex number less than 5 is quite
limited and most of them are frequent; (2) although the number of ftrees with vertex
number greater than 17 grows exponentially, few of them are frequent in the graph
database. Second, we use the same randomly selected 1,000 graphs, and show how
the number of frequent ftrees decreases while varying the minimum threshold φ 0.05
to 1 in Figure 8b. Third, we fix φ = 0.1 and increase the number of graphs sampled
from the AIDS antiviral screen database, and show that the number of frequent ftrees
increases linearly with the size of the graph database, when N increases up to 10,000.

We examine the mining performance of our F3TM with FT and FG, and report
the findings in Figure 9. We increase the number of graphs, sampled from the
AIDS antiviral screen dataset, from 1,000 to 10,000. Figure 9a, b and c show the
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Figure 10 Performance
comparisons between F3TM
and AP, CP, NOAPCP.

0

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000 10000

T
ot

al
 r

un
ni

ng
 ti

m
e 

(s
ec

)

Size of datasets

F3TM
CP
AP

NoAPCP

mining performance of three algorithms with three different minimum thresholds,
φ = 0.1, 0.2, 0.5, respectively. All the three algorithms scale linearly with the size of
the graph database. However, F3TM outperforms FT-algorithm and FG-algorithm
by an order of magnitude in all experimental settings. These experiments also
confirm that F3TM can successfully handle large real application data with a broad
range of support thresholds.

We also test how much our pruning techniques contribute to the final performance
of our mining algorithm. We set φ = 0.1 and vary the graph database size from
1,000 to 100,000. In Figure 10, we use AP, CP, and NoAPCP for automorphism-
based pruning enabled, canonical mapping-based pruning enabled, and neither of
such pruning techniques enabled, respectively, in addition to F3TM, which enables
two pruning strategies. As shown in Figure 10, the automorphism-based pruning
brings 2.5 to three times speedup for the final performance of our mining algorithm,
whereas the canonical mapping-based pruning boosts the final mining performance
for four to six times, w.r.t. the trivial mining algorithm, NoAPCP.

5.2 Synthetic dataset

We generated our synthetic datasets using the widely-used graph generator [15]. The
synthetic dataset is characterized by the following parameters: |D|, the number of
graphs in the database; T, the average size of each graph (in terms of the edge
number); I, the average size of frequent subgraphs (in terms of edge number); L,
the number of frequent subgraphs with average size I and V, the number of distinct
vertex labels in the dataset. Since during graph generation, L is always set to 200, we
omit this factor.

Figure 11 shows characteristics of the synthetic database. First, we fix T = 10,
I = 5, V = 5, and φ = 0.1. We show in Figure 11a that the number of frequent ftrees
increases linearly with the size of datasets, when |D| increases from 1,000 to 10,000.
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Figure 11 Characteristics of the synthetic dataset.
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Figure 12 Performance comparisons by varying |D|, I and φ.

Second, we fix |D| = 1,000, T = 10, V = 5 and φ = 0.1, and show in Figure 11b that
the number of frequent ftrees grows exponentially when I increases from 1 to 10.
Recall: when the average size of frequent subgraphs increases, all their underlying
subtrees become frequent in graph datasets. Third, we fix |D| = 1,000, T = 10, I = 5
and V = 5, and show in Figure 11c that the number of frequent free trees drops
exponentially when φ increases, which is similar to the results we have got in the real
dataset experiments.

We test the mining performance of F3TM, and compare it with FT and FG
in various experimental settings. First, we show the runtime comparison among
these three algorithms with fixed T = 10, I = 5, V = 5, and φ = 10%, when the size
of datasets varies from |D| = 1,000 to 10,000. As shown in Figure 12a, all three
algorithms scale linearly with the size of graph datasets, while F3TM outperforms
the other two mining algorithms roughly in an order of magnitude. Second, we test
the impact of I upon the runtime of three algorithms. As shown in Figure 12b, all
three algorithms grow exponentially when I increases. According to the algorithm
analysis proposed in Section 4.8, the running time depends on the number of frequent
ftrees in the graph database (the factor |T |). When I increases, the total number of
frequent ftrees grows exponentially and hence affects the running time noticeably.
The final experiment presents how the running time of algorithms is affected by L,
i.e., the size of � in our problem definition. When |�| is small, both the number of
frequent ftrees and the canonical mappings between a ftree and subtrees in a graph
become large, therefore it has a great impact on the total running time. As shown in
Figure 12c, we set |D| = 10,000 T = 10, I = 5, and φ = 0.1. When L increases, the
running time drops exponentially.

6 Conclusion

In this paper, we investigate issues of mining frequent free trees in a graph database.
Free tree has several computational advantages over general graph, which make
it a suitable candidate for computational biology, pattern recognition, computer
networks, XML databases, etc.

We proposed a novel frequent free tree mining algorithm F3TM to discover all
frequent free trees in a graph database with the focus on reducing the cost for
candidate generation. We proved an theorem to guarantee that the complete set
of frequent free trees can be achieved based on our pattern-growth approach. We



90 World Wide Web (2008) 11:71–92

also proposed two pruning algorithms in candidate generation: automorphism-based
pruning and canonical mapping based pruning. They both facilitate the frequent
free tree mining process drastically. Our experimental studies demonstrates that
F3TM outperforms the up-to-date existing free tree mining algorithms by an order
of magnitude, and F3TM is scalable to mine frequent free trees in a large graph
database with a low minimum support threshold.

Acknowledgment This work was supported by a grant of RGC, Hong Kong SAR, China
(No. 418206).

Appendix

In this section, we give a detailed proof of Lemma 1 used in proving Theorem 1.
Before presenting the lemma, we introduce some basic concepts in graph theory,
which will be used in the proof. Given a free tree t, any two vertices u, v of t
share a unique path and the length of path is defined as the number of edges in
the path. The length of the path from vertex u to v is denoted d(u, v), accordingly.
The eccentricity of a vertex u is defined as e(u) = maxv∈V[t]{d(u, v)}. The radius of t,
denoted as rad(t), is defined as rad(t) = minu∈V[t]{e(u)}. The center of t is defined as
center(t) = {u|e(u) = rad(t)}. As mentioned in Section 4, the center of t is either one
vertex or two adjacent vertices of t, and correspondingly t is denoted as central tree
or bicentral tree. We prove Lemma 1 by examining how eccentricity of each vertex
changes after l is removed from t and determining the new root of t′ and the final
positions of lp(t) in t′.

Proof If l is the unique leg of t, we denote the path from r (the root of t) to l as p
and the length of p, i.e., d(r, l) is equal to c. So d(r, lp(t)) = c − 1. Before l is deleted
from t, all vertices in t, except those on the path p, have eccentricities strictly larger
than c; e(r) is equal to c and all vertices in p except r have eccentricities no less
than c. After l is deleted, all vertices in t, except those on the path p, decrease their
eccentricities uniformly by 1, so their eccentricities are strictly larger than (c − 1).
r’s eccentricity changes to (c − 1) and all vertices in p except r do not change their
eccentricities, i.e., their eccentricities are still no less than c. Above all, the minimum
value of eccentricities for all vertices of t′ is (c − 1), and the center of t′ is r. Since
d(lp(t), r) = c − 1, lp(t) must be at the bottom level of t′, i.e., lp(t) is a leg of t′
(Case-1).

If there are more than one leg besides l in t, we denote them as l1, l2, · · · , lk.
There are paths from root r to l1, l2, · · · , lk, we denote them as p1, p2, · · · , pk. So
d(r, l1) = d(r, l2) = · · · d(r, lk) = d(r, l) = c, i.e., the length of path p1, p2, · · · , pk and
p are uniformly equal to c and d(r, lp(t)) = c − 1. Vertices on each path pi (1 ≤ i ≤ k)
adjacent to r are referred to as a1, a2, · · · , ak. Before l is deleted from t, all vertices in
t have eccentricities no less than c, and e(r) = c. After l is deleted from t, all vertices
which are not in path p as well as p1, p2, · · · , pk, do not change their eccentricities,
i.e., their eccentricities are still no less than c in t′. Vertices on path p excluding r
do not change their eccentricities either. e(r) is not changed and e(r) = c. Vertices in
path p1, p2, · · · , pk may (or may not) change their eccentricities but their eccentricity
value are strictly greater than (c − 1), i.e., rad(t) = c. So in t′, e(r) = c and e(ai) = c
or (c + 1), (1 ≤ i ≤ k). If (1) ∀ai, where 1 ≤ i ≤ k, e(ai) = (c + 1), then r is selected
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as root of t′. Since d(r, lp(t)) = c − 1, lp(t) is still in the second but last level and the
relative order of lp(t) at this level of t′ does not decrease. If there is some child l′ of
lp(t) (l′ = l) in t, after l is deleted, l′ becomes the last leg of t′, i.e., lp(t) = lp(t′) (Case-
2). Otherwise, l is the sole child of lp(t). After l is deleted, lp(t) satisfies Case-3. If (2)
∃ai (1 ≤ i ≤ k), e(ai) = c, and if ai is selected as root of r′, since d(ai, lp(t)) = c, lp(t)
is located at the bottom layer of t′, i.e., lp(t) is a leg of t′ (Case-1). 
�
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