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ABSTRACT. BlueGene/P (BG/P) is the second generation 

BlueGene architecture from IBM, succeeding BlueGene/L (BG/L). 
BG/P is a system-on-a-chip (SoC) design that uses four PowerPC 
450 cores operating at 850 MHz with a double precision, dual pipe 
floating point unit per core. These chips are connected with multiple 
interconnection networks including a 3-D torus, a global collective 
network, and a global barrier network. The design is intended to 
provide a highly scalable, physically dense system with relatively 
low power requirements per flop. In this paper, we report on our 
examination of BG/P, presented in the context of a set of important 
scientific applications, and as compared to other major large scale 
supercomputers in use today. Our investigation confirms that BG/P 
has good scalability with an expected lower performance per 
processor when compared to the Cray XT4’s Opteron. We also find 
that BG/P uses very low power per floating point operation for 
certain kernels, yet it has less of a power advantage when 
considering science-driven metrics for mission applications.  

I. INTRODUCTION 
BlueGene/P (BG/P) [15, 16] is the second generation of 

BlueGene solutions from IBM, succeeding BlueGene/L [1] (BG/L). 
IBM designed these systems as completely customized architectures 
for high performance computing that balances performance with the 
requirements for low power, scalability, and high density. In early 
2008, BG/L systems lead the TOP500 list, holding 21 slots, with 
BG/P holding five slots. Ten of the top 50 systems on the list were 
from the BlueGene family. Perhaps more impressive is the fact that 
BG/P and BG/L own the top 26 spots on the Green500 list, which 
ranks systems by their power efficiency.  

We have performed an initial evaluation of BG/P on multiple 
benchmarks and important scientific applications. Our experiments 
were performed on a two rack BG/P system located at Oak Ridge 
National Laboratory, and a 40 rack system located at Argonne 
National Laboratory. Our results compare the new BG/P 
architecture to DOE’s other existing large-scale supercomputer: the 
Cray XT [2, 3, 20].  

A. BlueGene/P System Description 
The entire BG/P design is centered on a system-on-a-chip 

(SoC) building block that has multiple networks connecting these 
SoCs. The SoC has four PowerPC 450 cores operating at 850 MHz. 
These chips are connected with multiple interconnection networks 
including a 3-D torus, a global collective network, and a global 
barrier network. The SoC has a very low power per flop ratio of 1.8 
watts per GFlop/s, which contributes to the system’s ability to be 
packaged densely at 4096 cores per rack without the need for exotic 
cooling technologies (e.g., liquid cooling). In fact, other 
architectures have dramatically fewer cores per rack: the dual core 
Cray XT3 has 192 cores per rack; the quad core Cray XT4 has 384 
cores per rack. A BG/P system with 72 racks (73,728 compute 

nodes, or 294,912 cores) would have a peak performance of 1 
PFlop/s. Although the system is a customized design, it uses 
standard IBM software including XL compilers, the ESSL math 
library, the LoadLeveler job manager, and the General Parallel File 
System (GPFS). Table 1 provides a configuration summary for the 
systems being tested. 

The compute nodes contain four PowerPC 450 processor cores 
with 2 GB of shared RAM. Each core is a 32 bit microprocessor 
with a clock speed of 850 MHz. Also, each core is augmented with 
a double precision, dual pipe, floating point unit (a.k.a Double 
Hummer) that provides two fused multiply adds (FMA) per cycle, 
which, in turn, delivers four floating point operations per cycle for a 
total of 3.4 GFlop/s per core, or 13.6 GFlop/s per compute node. As 
a SoC, each compute node also contains hardware functionality for 
the memory system, the interconnection networks, and system 
control and debugging features. The memory system is private to 
each compute node; memory for other compute nodes must be 
accessed explicitly through the network. Within a compute node, 
each core has a private L1 cache of 32KB and a private L2 stream 
prefetching engine. All cores on a compute node share the on-chip 8 
MB L3 cache, which is built from embedded DRAM. The cores 
also share DDR-2 memory controllers that access 2 GB of DDR-2 
memory, which is off-chip. More interestingly, to improve 
reliability, the DDR-2 memory has been soldered onto the board, 
rather than using the typical DIMM slots. In contrast to BG/L, the 
L1 cache of BG/P is coherent, making the BG/P node a traditional 
cache-coherent, shared memory multiprocessor. 

All five BG/P networks are connected directly to the SoC; the 
SoC contains all the logic and protocols to implement in each 
network. The five networks are a 3-D torus, a global collective tree, 
a global interrupt network, a 10 Gigabit Ethernet, and a JTAG 
control network. The 3-D torus network is the main application 
network on BG/P and it is used for general-purpose, point-to-point 
message passing and multicast operations. The torus is constructed 
with point-to-point, serial links between routers that are embedded 
within the SoC, resulting in six nearest-neighbor connections. The 
peak hardware bandwidth for each torus link is 425 MB/s in each 
direction for a total of 5.1 GB/s bidirectional bandwidth per node. 
This bandwidth is shared among the node’s four cores.  

The global collective network has its own distinct hardware, 
which is separate from the torus network. Its topology is a tree; this 
is a one-to-all, high-bandwidth network for global collective 
operations, such as broadcast and reductions, and for moving data 
between the Compute and I/O nodes. Each Compute and I/O node 
has three links to the global collective network at 850 MB/s per 
direction for a total of 5.1 GB/s bidirectional bandwidth per node. 
As with the torus, the cores on a node share this network.  

The 10 Gigabit Ethernet (optical) network consists of all I/O 
Nodes and discrete nodes that are connected to a standard 10 
Gigabit Ethernet switch. The Compute Nodes are not directly 
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connected to this network. All I/O traffic is passed from the 
Compute Nodes, over the global collective network, to the I/O 
Nodes, and then, onto the 10 Gigabit Ethernet network. 

Typically, applications will use the Compute Nodes in one of 
three modes: Symmetric Multiprocessor Mode, Dual Node Mode, 
or Virtual Node Mode.  

Symmetric Multiprocessor mode (SMP) is the default mode of 
BG/P. In this mode, the Compute Node executes a single MPI task 
per node with a maximum of four threads within the task. Both 
Pthreads and OpenMP are supported, and although any thread can 
run on any of the four cores, each thread will be pinned to a specific 
core during execution.  

Dual Node mode (DUAL) is a new mode in the BG/P system. 
In this mode, each Compute Node executes two MPI tasks per node 
with a maximum of four threads on the Compute Node (two per 
MPI task). Memory and cores are split evenly between the two 
tasks.  

Virtual Node mode (VN) allows four MPI tasks with one thread 
each to run on the Compute Node. In this mode, the four cores of a 
Compute Node appear as different tasks (or MPI ranks). All tasks 
share resources on the Compute Node including memory and the 
networks. Optimizations in the system software allow peer tasks on 
a Compute Node to communicate via shared memory.  

For SMP and DUAL modes, OpenMP [7] parallelism can be 
used to generate threads of execution for the unused cores. By 
default, processes are mapped to compute nodes in XYZT ordering, 
i.e., assigning one process to each node in the X direction of the 
torus, then the Y, then the Z, then returning to the first node and 
assigning a second process, etc. In contrast,  when using VN mode 
the TXYZ ordering assigns processes 0-3 to the first node, 4-7 to 
the second node (in the X direction), etc. For DUAL mode, 
processes 0-1 are assigned to the first node, 2-3 to the second node, 
etc. In SMP mode, the XYZT and TXYZ orderings are identical. 
Other predefined mappings are XZYT, YXZT, YZXT, ZXYT, and 
ZYXT, as well as analogous orderings beginning with 'T'. 

B. ORNL BlueGene/P Configuration 
The ORNL Blue Gene, named Eugene, is two racks (2048 

compute nodes) of the standard BlueGene/P configuration. Each 
node has a single quad core processor, for a total of 8192 compute 
cores. Eugene uses the standard IBM software stack. Each rack has 
16 IO nodes; each IO node serves the I/O requests from 64 compute 
nodes. The IO nodes are connected to each other and to disk over a 
10 Gigabit Ethernet network, provided by a 256 port Myricom 
switch. The system uses two GPFS filesystems, one for scratch 
space (~ 70 TB) and a second for longer term code storage (~ 18 
TB). The GPFS system includes 8 file servers and 2 metadata 
servers. Data is stored in 24 LUNs, each of which is approximately 

3.6 TB in size. Individual LUNs are an 8+2 array of DDN disks, 
which communicate through dual DDN SA29500s using Infiniband. 

C. ANL BlueGene/P Configuration 
The BG/P at Argonne National Laboratory is named Intrepid. 

Its configuration is very similar to ORNL’s system, but it is much 
larger: 40 racks with a 64-to-1 ratio of compute nodes to I/O nodes. 
Also, Intrepid uses the standard IBM software, which we used for 
our testing; however, it can be, and often is, configured to use other 
system software. 

D. ORNL XT Configurations 
Performance of the BG/P is compared to that of the Cray XT 

system sited at ORNL. This Cray system, named Jaguar, has 
undergone rapid evolution since first installed in 2005: moving 
from single to dual to quad-core processors; moving from 2.4 to 2.6 
to 2.1 GHz core clock speed; moving from SeaStar to SeaStar2 
network interface card; moving from the Catamount compute node 
operating system to Compute Node Linux (CNL). The compute 
nodes of Jaguar have two partitions of memory modules: 667 MHz 
DDR2 and 800 MHz DDR2. With the current configuration of the 
Cray system coming online in March, 2008 and being put into 
production usage almost immediately, it has not been possible to 
collect comparable data for all of the benchmarks described in this 
paper. Instead, we also use data collected on earlier system 
configurations, as described in Table 1. For the dual-core XT4 
configuration, some data were collected using the Catamount 
operating system, while other data were collected using CNL. The 
dual-core and quad-core XT systems also have execution modes 
analogous to those on the BG/P. In particular, for the dual-core 
systems, SN mode refers to assigning only one MPI process to a 
node, analogous to SMP mode on the BG/P. As on the BG/P, VN 
mode refers to assigning an MPI process to each core in a compute 
node. 

II. MICRO-BENCHMARKS AND KERNEL PERFORMANCE 
To better understand the overall performance characteristics of 

a system, we employ micro-benchmarks and kernels to measure the 
performance of individual system components in isolation. Later, 
we use these measurements to understand the reasons for the 
observed performance of our full-scale applications. 

A. HPC Challenge 
As part of the DARPA HPCS program [8], the design goal for 

the High Performance Computing Challenge (HPCC) benchmark 
suite [18] was to augment the traditional LINPACK benchmark 
with additional tests to enable a more complete understanding of the 
performance characteristics of HPC platforms. HPCC tests a broad 

Table 1: System Configuration Summary. 

Feature BlueGene/L BlueGene/P Cray XT3 Cray XT4/DC Cray XT4/QC 
Node      

Cores per node 2 4 2 2 4 
Core Clock Speed (MHz) 700 850 2600 2600 2100 
Cache Coherence Software Hardware Hardware Hardware Hardware 
L1 Cache / Private per core 32K 32K 64K 64K  64K 
L2 Cache / Private per core 14 stream 

prefetching 
14 stream 

prefetching 
1M 1M 512K 

L3 Cache / Shared 4 MB Shared 8 MB Shared n/a n/a 2 MB Shared 
Memory per Node (GB) 0.5 - 1 2 4 4 8 
Main Memory Bandwidth (GB/s) 5.6 13.6 6.4 10.6 12.8/10.6 
Peak Performance (GFlop/s per node) 5.6 13.6 10.4 10.4 16.8 

Interconnects      
Torus Injection Bandwidth (GB/s) 2.1 5.1 6.4 6.4 6.4 
Tree Bandwidth (MB/s) 700 1700 n/a n/a n/a 
      



 

set of node, network, and whole-system attributes that impact the 
performance of real-world applications. Because reference locality 
is often a dominating factor in application performance on modern 
HPC architectures, HPCC includes tests to examine how systems 
perform when presented with varying degrees of spatial and 
temporal locality. Collectively, the tests provide performance 
indicators for computation and communication. The HPCC suite 
contains 23 tests including application kernels that reflect real-
world memory access patterns and interprocess communication. 
Several of the tests are run in three modes: single process, 
embarrassingly parallel, and parallel (using MPI for 
communication).  

We ran HPCC on the Intrepid BG/P system at Argonne 
National Laboratory (ANL) and on its smaller cousin at ORNL, 
though for clarity we present BG/P results from the ANL system 
only. For comparison, we also ran HPCC on the quad-core Cray XT 
system deployed at ORNL. When setting the HPCC problem size 
(HPCC input parameter N) we followed guidance given by the 
HPCC developers and used approximately 80% of memory. 
Because the ORNL XT system has four times as much memory per 
node as the ANL BG/P system (8GB versus 2GB), each XT HPCC 
experiment used a problem size approximately four times larger 
than that used by the BG/P HPCC run with the same number of 
processes. We determined the blocking factor (HPCC input 
parameter NB) empirically; we used 144 and 168 on the BG/P and 
XT, respectively. For each system, we used compiler optimizations 
intended to leverage the architectural features of each system, such 
as the BG/P processors’ “double hummer” floating point unit and 
the Opteron’s SSE SIMD units. We used each system’s optimized 
math library (ESSL and ACML) but used the Fast Fourier 
Transform (FFT) implementation included with the stock HPCC 
distribution. We present only virtual node mode results here; HPCC 
benchmarking using SMP mode is ongoing. During the time period 

we collected HPCC results, batch queue throughput was better on 
ANL BG/P system than the ORNL XT, allowing us to collect 
results for a wider range of process counts on the BG/P than the 
XT.  

Table 2: HPCC performance comparison of BG/P with XT4/QC (VN 
mode, CNL) for 4096 processes. 

 
 

1) Single Process and Embarrassingly Parallel Tests 
Table 2 shows the results of HPCC tests that are largely 

independent of process count, including the single processor and 
embarrassingly parallel tests. The measurements in the table were 
taken using 4096 processes, the largest number of processes for 

  
(a) HPL performance. (b) FFT performance. 

  
(c) PTRANS performance. (d) RandomAccess performance. 

Figure 1: HPCC performance comparison of BG/P with XT4/QC (VN mode, CNL). 



 

which we obtained HPCC results on both the ANL BG/P and 
ORNL quad-core XT. Both the BG/P and quad-core XT can 
produce four floating point results per cycle, so the BG/P’s lower 
clock rate and smaller problem size are the likely reason for its 
smaller processing rate on the DGEMM and, to a lesser degree, FFT 
tests. The STREAM benchmark results are notable in that the BG/P 
exhibited higher absolute bandwidth and less of a performance 
decline between the single process and embarrassingly parallel 
cases than the XT. 

2) Communication Tests 
In addition to single process and embarrassingly parallel 

microbenchmark results, Table 2 also includes results for HPCC 
low-level communication tests. In general, these results match our 
expectations based on experience with previous BlueGene and XT 
generations, suggesting the BG/P network’s strength is low-latency 
communication whereas the XT’s strength is high-bandwidth 
communication.  

3) Parallel Tests 
Figure 1 shows the result of a scaling study using the MPI 

parallel HPCC tests Parallel Transpose (PTRANS), High 
Performance Linpack (HPL), RandomAccess (RA), and Fast 
Fourier Transform (FFT). HPL stresses the processor’s floating 
point capabilities more heavily than the other tests, and can be 
viewed as a demonstration of the theoretical scaling of a system. 
The BG/P exhibited a smaller processing rate than the XT at least in 
part due to its smaller clock rate and that it was solving a smaller 
system of linear equations, but both systems scaled well. The HPCC 
FFT test exhibits high temporal locality and stresses a system’s 
memory hierarchy and network more than HPL. Again, the XT’s 
larger problem size and comparable memory bandwidth account at 
least partially for the difference in performance between the two 
systems.  The PTRANS benchmark exhibits high spatial locality 
and stresses a system’s network bisection bandwidth. Both systems 
exhibited similar absolute performance and scaling trends, though 
with a higher degree of variability on the XT. Differences in job 
placement strategies between the XT and BG/P resource allocator 
likely account for this variability; the resource allocation approach 
on the XT is more susceptible to fragmentation (and hence 
contention for the network with other applications running at the 
same time). Finally, the RA test is very sensitive to network latency. 
We measured performance using both the stock HPCC RA 
implementation and the “RA_SANDIA_OPT2” implementation 
optimized for process counts that are powers of two. The two 
systems showed very similar performance and scalability trends, but 
because RA performance tends to be better for smaller problems 
due to memory caching, and because of the BG/P’s smaller network 
latency, the observed RA performance parity was unexpected. 

B. Communication 
To better understand the communication capabilities of BG/P, 

we enlist several MPI microbenchmarks. First, we use Wallcraft 
HALO benchmark [26] to understand the performance impact of 
different strategies for mapping logical MPI tasks to BG/P cores. 
Second, we use the Intel MPI Benchmark suite [10], version 2.3 

(IMB) to measure the performance of several popular MPI 
collective operations. 

1) HALO Benchmark 
The HALO benchmark [26] simulates the nearest neighbor 

exchange of a 1-2 row/column ‘halo’ from a two-dimensional (2D) 
array. In particular, if there are ‘N’ words on each row/column of 
the halo, the benchmark begins by exchanging ‘N’ words with the 
logically north process and ‘2N’ words with the logically south 
process. Once these have arrived, it then exchanges ‘N’ words with 
the logically west process and ‘2N’ words with the logically east 
process. This is a common operation when using domain 
decomposition to parallelize, for example, a finite difference ocean 
model. There are no actual 2D arrays used, but instead the copying 
of data from an array to a local buffer is simulated and this buffer is 
transferred between nodes. HALO is actually a suite of benchmarks, 
implementing the basic halo exchange operator utilizing a number 
of different messaging layers, and a number of different 
implementations for each layer. 

We use HALO to examine three aspects of communication 
performance on the BG/P. The first is a comparison of different 
communication protocols. Figure 2(a) is a graph of performance for 
the indicated MPI-1 protocols on 8192 cores (VN mode) treated as 
a 128 by 64 virtual processor grid and using the TXYZ process 
mapping. Here, the x-axis indicates the number of 32-bit words in 
each row/column of the halo. Figure 2(b) is the same experiment on 
2048 cores (SMP mode) treated as a 64 by 32 virtual processor grid 
and using the XYZ process mapping. Performance is graphed as a 
function of the amount of halo data exchanged. As can be seen, 
performance is relatively insensitive to the choice of protocol, 
though MPI_SENDRECV is slower than the other options for 
certain halo sizes.  

The second experiment compares performance sensitivity for 
different process/processor mappings. Figure 2(c) and (d) compare 
performance between the predefined mappings TXYZ, TYXZ, 
TZXY, TZYX, XYZT, YXZT, ZXYT, and ZYXT for 4096 and 
8192 cores, all VN mode, when using the 
MPI_ISEND/MPI_IRECV communication protocol. The 4096 core 
experiment used a 64 by 64 virtual processor grid. As can be seen, 
the choice of mapping is unimportant for small halo volumes. In 
contrast, it is important for larger volumes for these large processor 
grids. From these data, optimizing with respect to process/processor 
mapping is likely unimportant when communication is latency 
dominated, but may be important when communication is 
bandwidth limited. Results from SMP-mode experiments, not 
shown here, are qualitatively similar  

The third experiment compares the cost of the halo exchange as 
a function of the virtual processor grid. Figure 2(e) and (f) compare 
the performance for the best mapping for each processor grid size 
(from among the predefined mappings) for VN and SMP modes, 
respectively. While there is some difference between the different 
processor grids, especially for halos of size between 200 and 20000 
words for the VN-mode experiments, the cost does not appear to be 
increasing as a function of the processor grid size. This implies 
good scalability for the halo operator.  

. 



 

2) MPI Collective Performance 
Figure 3(a) and Figure 3(b) show the results of the IMB 

Allreduce test that measures the latency of the MPI_Allreduce 
operation.  In this IMB test, the Allreduce reduces a vector of float 
values with the MPI_SUM operator. Figure 3(a) shows Allreduce 
latency with 8192 processes across a range of message sizes, and 
Figure 3(b) shows latency with 32KB messages across a range of 
process counts. We measured Allreduce performance with both the 
stock IMB Allreduce test and a custom version that uses double 
precision Allreduce operands, observing a substantial performance 
benefit to using double precision over single precision on the BG/P 
but not the Cray XT. Both systems showed good scalability in terms 

of message sizes and process counts, but the BG/P’s double 
precision Allreduce scalability was exceptional across the tested 
range of process counts. 

Figure 3(c) and Figure 3(d) show the results of the IMB Bcast 
test that measures the latency of the MPI_Bcast operation. Figure 
3(c) shows Bcast latency with 8192 processes across a range of 
message sizes, and Figure 3(d) shows the latency with 32KB 
messages across a range of process counts. Unlike the Allreduce 
test, numerical precision had no substantive impact on Bcast 
latency. BG/P performance scaled very well, but unlike Allreduce, 
the BG/P dramatically outperforms the Cray XT for all message 
sizes showing the benefit of the special-purpose tree network of the 
BG/P. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2: BG/P HALO Performance. 



 

C. TOP500 HPL 
Finally, we measured the TOP500 Linpack HPL benchmark on 

BG/P. Note that the software and guidelines for the TOP500 HPL 
benchmark are different from those for the HPCC HPL. It was run 
on the ORNL BG/P using the following parameters: one problem of 
size 614399, block size 96, process grid size 64x128. This problem 
size filled approximately seventy percent of the system node 
memory. The result of the run was a performance score of 
2.140x10e4 gigaflops, which ranked it as number 74 on the June 
2008 TOP500 list. Power consumption was monitored during the 
run and a score of 310.93 MFLOPS/watt was calculated, which 
ranks this system fifth overall on the Green500 List. 

III. APPLICATION PERFORMANCE 
In this section, we present the results for a number of important 

DOE applications. The applications presented below were selected 
due to their importance to the mission of the Office of Science, and 
the completeness and understanding of results. Due to space 
limitations, we cannot include all results from our technical report 
[1]. 

A. Climate - Parallel Ocean Program (POP) 
The Parallel Ocean Program (POP) [11, 25] is a global ocean 

circulation model developed and maintained at Los Alamos 
National Laboratory. It is used for high resolution studies and as the 
ocean component in the Community Climate System Model 
(CCSM). The code is based on a finite-difference formulation of the 
3D flow equations on a shifted polar grid. POP performance is 

characterized by the performance of a baroclinic phase and a 
barotropic phase. The 3D baroclinic phase typically scales well on 
all platforms due to its limited nearest-neighbor communication. In 
contrast, the barotropic phase is dominated by the solution of a 2D, 
implicit system whose performance is sensitive to network latency 
and typically scales poorly on all platforms. For our evaluation we 
used version 1.4.3 of POP with a few additional parallel algorithm 
tuning options (due to Yoshida [30] and to Worley). The current 
production version of POP is version 2.0.1. While version 1.4.3 and 
version 2.0.1 have similar performance characteristics, these data 
should not be used to imply anything about the performance of 
production runs of POP on the BG/P architecture. Our intent here is 
simply to use version 1.4.3 to identify and evaluate system 
performance characteristics. 

We measured results for a tenth degree fixed size benchmark 
problem [28]. This benchmark problem uses a displaced-pole 
longitude-latitude horizontal grid with the pole of the grid shifted 
into Greenland to avoid computations near the singular points. The 
grid spacing is 0.1 degree in longitude (10km) around the equator, 
utilizing a 3600 × 2400 horizontal grid and 40 vertical levels. This 
resolution resolves eddies for effective heat transport and is used for 
ocean-only or ocean and sea ice experiments.  

Figure 4 describes the POP performance when using the TXYZ 
ordering. The difference in performance between using the TXYZ 
ordering and the best observed among the other predefined 
mappings was less than 1.4% for VN mode and less than 1% for 
SMP mode. Data on fewer than 2048 nodes were collected on the 
ORNL BG/P system. Data on more than 2048 nodes were collected 
on the BG/P system in the Argonne Leadership Class Facility. 

  
(a) IMB Allreduce operation latency versus message payload size. (b) IMB Allreduce operation latency versus process count. 

  
(c) IMB Bcast operation latency versus message payload size. (d) IMB Bcast operation latency versus process count. 

Figure 3: MPI Collective performance comparison of BG/P with XT4/QC (VN Mode). 



 

(Performance for 8000 tasks in VN mode was compared between 
the two systems and found to be essentially the same.) Figure 4(a) 
compares POP performance for VN and SMP modes, and with and 
without the Chronopoulos-Gear (C-G) variant [5] of the linear 
solver. For this large problem, scaling is linear out to 8000 
processes, and is still scaling well out to 40,000. Performance is 
relatively insensitive to the execution modes and to the linear 
system solver variant.  

Figure 4(b) compares the performance of the Barotropic and 
Baroclinic phases in seconds per simulated day for the SMP and 
VN modes, both using the C-G-based solver. The Baroclinic 
timings are for process 0 only. There is some load imbalance in the 
Baroclinic phase that would normally be mistakenly attributed to 
the Barotropic phase (whose timings are also reported only for 
process 0). To disambiguate the timings, the experiments were 
rerun with a timing barrier placed just before the start of the 
Barotropic phase. The process-0 time spent in the barrier is also 
plotted. (This additional barrier decreases overall POP performance 
very little.) Baroclinic performance is not sensitive to execution 
mode. The C-G solver variant is a little slower than the standard 
formulation of the conjugate gradient solver for smaller process 
counts for this problem size and a little faster for larger process 
counts, but the Baroclinic phase is the dominant contributer to total 
execution time and the performance difference between the two 
solver algorithms has little practical impact. In particular, the 
Baroclinic load imbalance, as measured by the process-0 timing 
barrier, is as large as the cost of the Barotropic phase for 8000 to 
20000 processes. 

Figure 4(c) compares performance on the quad-core BG/P 
system with performance on the dual-core XT4 system when using 
Catamount. The XT4 shows more sensitivity to the execution mode 
than the BG/P, but using both of the cores in a compute node is still 
preferable to using only one. The XT4 performance is 
approximately 3.6 times that of the BG/P for 8000 processes, and 
2.5 times for 22500 processes. 

Figure 4(d) compares BG/P and XT4 performance for the 
Barotropic and Baroclinic phases. In this figure, a timing barrier 
was not used to remove load imbalances from the XT4 Barotropic 
phase timings. Load imbalances may be the source of the somewhat 
erratic behavior in the Barotropic phase performance on the XT4. 
The Baroclinic phase runs much faster on the XT4 than on the 
BG/P, and it appears to scale somewhat better on the XT4 as well. 
Performance of the Barotropic phase on the BG/P continues to 
improve out to 40000 processes, and is less than half the cost of the 
Baroclinic phase for 40000 processes. In contrast, XT4 Barotropic 
performance has stopped improving beyond 8000 processes, and is 
the dominant phase when using more than 10000 processes. 
Contamination of the XT4 Barotropic timer by Baroclinic load 
imbalance makes it difficult to compare BG/P and XT4 Barotropic 
performance, but indications are that Barotropic performance is 
superior on the BG/P for 22500 processes (and higher). It appears 
that performance should scale to even larger process counts on the 
BG/P. Experiments with more than 40000 processes failed due to 
lack of memory for the large number of MPI derived data types that 
the POP code generates. As of the time of publication, we have not 
yet determined a workaround for this problem. 

  
(a) (b) 

  
(c) (d) 

Figure 4: POP Tenth Degree Benchmark Performance. 



 

In summary, the POP tenth degree benchmark scales well on 
the BG/P architecture. Performance is less than on the XT4 when 
running on the same number of processes. However, when 
communication cost dominates on the XT4, performance on the 
BG/P becomes competitive. 

B. Climate - Community Atmospheric Model (CAM) 
The Community Atmosphere Model (CAM) is a global 

atmosphere circulation model developed at the National Science 
Foundation’s National Center for Atmospheric Research with 
contributions from researchers funded by the Department of Energy 
and by the National Aeronautics and Space Administration [6]. 
CAM is used in both weather and climate research. In particular, 
CAM serves as the atmosphere component of the CCSM.  

CAM is a mixed-mode parallel application code, using both 
MPI and OpenMP protocols [7]. CAM’s performance is 
characterized by two phases: ‘dynamics’ and ‘physics’. The 
dynamics phase advances the evolution equations for the 
atmospheric flow. The physics phase approximates subgrid 
phenomena, including precipitation processes, clouds, long- and 
short-wave radiation, and turbulent mixing [6]. Control moves 
between the dynamics and the physics at least once during each 
model simulation timestep. The number and order of these 
transitions depend on the numerical algorithms used in the 
dynamics.  

CAM includes three dynamical cores (dycores), one of which is 
selected at compile-time: a spectral Eulerian solver [14], a spectral 
semi-Lagrangian solver [27], and a finite volume semi-Lagrangian 

solver [17]. The following experiments describe results for both the 
spectral Eulerian and the finite volume dycores.  

In our previous performance evaluations, (c.f. [2]), we used 
CAM versions 3.0 and 3.1, both official releases of the code. 
Porting these older versions to the BG/P proved impractical in the 
time frame of this study. We instead used version 3.5.27, a recent 
(Dec. 2007) unreleased version of CAM that was known to work on 
the IBM BG/L system. Porting to the BG/P was straightforward 
using this version, though a compiler bug was identified that 
required a (simple) source code workaround. The CAM scaling 
experiments [28] also exposed an algorithmic scaling  bottleneck in 
CAM and a system I/O performance issue on  the BG/P, both of 
which were eliminated before collecting  the data described below.  

 CAM has numerous compile-time and runtime optimization 
options [19, 29]. Some of these, such as the amount of work to 
assign to the inner loops in the physics, were determined in 
experiments on a small number of nodes. Others, such as the use of 
load balancing and the use of pure MPI or hybrid MPI/OpenMP 
parallelism, were exercised as part of the scaling experiments.  

Figure 5 compares the performance when using pure MPI and 
VN mode and when using 4 OpenMP threads per MPI process (and 
SMP mode), so assigning only one MPI process per compute node. 
In these experiments we used the TXYZ process mapping and the 
best observed performance for the other optimization options. 
Results are presented in terms of simulation years per day.  

Figure 5(a) shows the performance for two problem sizes when 
using the spectral Eulerian dycore: T42L26 (64 x 128 horizontal 
grid, 26 vertical levels) and T85L26 (128 x 256 horizontal grid, 26 
vertical levels). Figure 5(b) shows the performance for two problem 
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Figure 5: CAM Performance. 



 

sizes when using the finite volume dycore: FV 1.9x2.5 L26 (96 x 
144 horizontal grid, 26 vertical levels) and FV 0.47x0.63 L26 (384 
x 576 horizontal grid, 26 vertical levels). Note that the axes differ in 
Figure 5(a) and (b). As yet undiagnosed runtime (memory) 
problems are preventing the pure MPI runs for the FV 0.47x0.63 
L26 benchmark from completing successfully. From these data, 
performance when using OpenMP parallelism in CAM is 
comparable to that when using pure MPI parallelism for smaller 
processor counts, and provides additional scalability for large 
processor counts.  

Figure 5 (c) and (d) compares CAM performance on the BG/P 
with the same benchmarks running on a Cray XT3. Performance 
data from a Cray XT4 with 2.1 GHz quad-core processors is 
presented for the T42, T85, and FV 1.9x2.5 benchmarks also. 
Experiments on both the XT3 and XT4 systems used Compute 
Node Linux, and thus were also able to use OpenMP parallelism 
within their multi-core nodes.  

For these graphs, the best observed performance over the 
optimization options is used for each system and for each problems 
size and processor count. We did not have time to run larger 
processor counts on the XT3 or XT4 for this report, but indications 
are that the performance does not increase significantly for larger 
processor count than those used here. From these data, the BG/P is 
never less than a factor of 2.1 slower than the XT3 and 3.1 slower 
than the XT4 for the spectral Eulerian benchmark problems. The 
comparison is somewhat better for the finite volume dycore, where 
the XT4 advantage is between a factor of 2 and 2.5 and XT3 
advantage is less than a factor of 2. 

With the exception of the FV 0.47x0.63 L26 benchmark, these 
problems are quite small, though typical for current climate 
simulations. As such, they are not good candidates for the BG/P 
system. However, it is clear that OpenMP parallelism does enhance 
performance and scalability, and is an important enhancement for 
the BG/P over the BG/L predecessor. Despite being larger, the FV 
0.47x0.63 L26 benchmark does not perform or scale particularly 
well on the BG/P (or the XT3). Some of the limitations are intrinsic 
to CAM, and are the focus of current CAM development.  

C. Combustion - S3D 
S3D is a massively parallel DNS solver for the full 

compressible Navier-Stokes, total energy, species and mass 
continuity equations coupled with detailed chemistry [9, 13]. It is 
based on a high-order accurate, non-dissipative numerical scheme. 
The governing equations are solved on a conventional three-
dimensional structured Cartesian mesh. Spatial differentiation is 
achieved through eighth-order finite differences along with tenth-
order filters to damp any spurious oscillations in the solution. The 
differentiation and filtering require nine and eleven point centered 
stencils, respectively. Time advancement is achieved through a six-
stage, fourth-order explicit Runge-Kutta (R-K) method1. Navier 
Stokes characteristic boundary condition (NSCBC) treatment is 
used on the boundaries.  

Fully coupled mass conservation equations for the different 
chemical species are solved as part of the simulation to obtain the 
chemical state of the system. Detailed chemical kinetics and 
molecular transport models are used. An optimized and fine-tuned 
library has been developed to compute the chemical reaction and 
species diffusion rates based on Sandia’s Chemkin package. While 
Chemkin-standard chemistry and transport models are readily 
usable with S3D, special attention is paid to the efficiency and 
performance of the chemical models. Reduced chemical and 
transport models that are fine -tuned to the target problem are 
developed as a pre-processing step.  

S3D is written entirely in FORTRAN. It is parallelized using a 
three-dimensional domain decomposition and MPI communication. 
Each MPI process is responsible for a piece of the three-
dimensional domain. All MPI processes have the same number of 
grid points and the same computational load. Inter-processor 
communication is only between nearest neighbors in a logical three-
dimensional topology. A ghost-zone is constructed at the processor 
boundaries by non-blocking MPI sends and receives among the 
nearest neighbors in the three-dimensional processor topology. 
Global communications are only required for monitoring and 
synchronization ahead of I/O.  

 
Figure 6: S3D Performance. 

In Figure 6, we present the performance and scaling of S3D by 
simulating a pressure wave problem, where the propagation of a 
small amplitude pressure wave through the domain is computed for 
a short period of time. The test is conducted with detailed CO-H2 
chemistry consisting of 11 chemical species and mixture-averaged 
molecular transport model. The simulation's initial condition 
consists of a Gaussian temperature profile centered in the domain 
with periodic boundary conditions. When integrated in time, the 
initial temperature non-uniformity gives rise to pressure waves and 
spreading of the temperature profile. The problem size is kept at 503 
grid points per MPI-thread. This size is representative of the 
number of grid points per MPI-thread in production simulations.  

The code performance is measured by the computational cost 
(in core-hours) per grid point per time step and is shown in Figure 6 
for several platforms. S3D exhibits excellent parallel performance 
on several architectures and can scale efficiently to a large fraction 
of the processors available on several of the Office of Science 
leadership computing platforms [9, 10]. The structured Cartesian 
mesh approach along with explicit time marching used in S3D 
ensures efficient performance on modern massively parallel 
processing (MPP) architectures.  

D. Fusion - GYRO 
GYRO [4] is a code for the numerical simulation of tokamak 

microturbulence, solving time-dependent, nonlinear gyrokinetic-
Maxwell equations with gyrokinetic ions and electrons capable of 
treating finite electromagnetic microturbulence. GYRO uses a five-
dimensional grid and propagates the system forward in time using a 
fourth-order, explicit, Eulerian algorithm. GYRO has been ported to 
a variety of modern HPC platforms including a number of 
commodity clusters. Since code portability and flexibility are 
considered crucial, only a single source is maintained. Ports to new 
architectures often involve nothing more than the creation of a new 
makefile, which was true for BG/P. 



 

For our evaluation, we ran GYRO for two problems: B1-std and 
B3-gtc. The two problems differ in size, and computational and 
communication requirements per node. The B1-std problem is 
smaller but requires more work per grid point than the B3-gtc 
problem. GYRO tends to scale better for the B1-std problem than 
the B3-gtc problem. The B3-gtc problem can use an FFT-based 
approach or a non-FFT approach; for our tests, we use the FFT-
based approach and use the vendor’s optimized FFT library (ESSL 
for BG/P). The primary communication costs result from calls to 
MPI_ALLTOALL to transpose distributed arrays. 

The B1-std problem is a 16 toroidal-mode electrostatic 
(electrons and ions, 1 field) case on a 16x140x8x8x20 grid. This 
test runs on multiples of 16 processes and is run for 500 timesteps 
with kinetic electrons and electron collisions, but no 
electromagnetic effects. Figure 7(a) demonstrates the strong scaling 
of GYRO for the B1-std problem; it is clear that the XT4 quickly 
runs out of work per process as the process count increases, while 
the BG/P system continues to scale. This is a direct consequence of 

the difference in processor speed between the XT4 and BG/P 
systems.  

The B3-gtc problem is a 64 toroidal-mode adiabatic (ions only, 
1 field) case on a 64x400x8x8x20 grid. This test runs on multiples 
of 64 processes and is run for 100 timesteps representing 3 
simulation seconds. The 400-point radial domain with 64 torodial 
modes gives high spatial resolution, but electron physics are 
ignored allowing simple field solves and large timesteps. Figure 
7(b) shows the strong scaling of GYRO for the B3-gtc problem. For 
this case, both the XT4 and BG/P scaled up to 2048 processes 
without any significant drop in efficiency as Figure 7(b) illustrates. 
However, note that on BG/P the code had to be run in "DUAL" 
mode due to memory requirements. 

Figure 7(c) shows the weak scaling characteristics of GYRO for 
a "modified B3-gtc" problem for a range of HPC platforms. The 
problem was modified to fit the memory of a BG/P. The code is 
weakly scaled by keeping the "ENERGY GRID" size constant as 
the number of processes increases. In this figure, XT refers to the 
XT3/XT4 machine at ORNL where a job could have run across 
differing numbers of XT3 and XT4 nodes. Since the number of 
each type of XT node was not tracked for these tests, the lines are 
generically labeled XT and could be XT3-only, XT4-only, or a 
combination and this would explain otherwise anomalous-looking 
characteristics. The other noteworthy trait seen in the plot is that the 
BG/P and BG/L numbers are almost the same, except for in the 
range of 128-1024 cores where the BG/P numbers are worse. This 
may be due to the lack of use of optimized collectives when doing 
the BG/P experiments. 

E. Computation Biology using Molecular Dynamics (MD) 
Molecular dynamics (MD) simulations enable the study of 

complex, dynamic processes that occur in biological systems. The 
types of biological activity that have been investigated using MD 
simulations include protein folding, enzyme catalysation, and 
molecular recognition of proteins, DNA, and biological membrane 
complexes. Biological molecules exhibit a wide range of time and 
length scales over which specific processes occur, hence the 
computational complexity of an MD simulation depends greatly on 
the time and length scales considered. 

A number of established MD frameworks are widely used in the 
research community [12, 21, 22, 24]. Of these, the Particle Mesh 
Ewald Molecular Dynamics (PMEMD) module in AMBER [21], 
LAMMPS [24], and NAMD [23] have been reported to scale from a 
few hundred to tens of thousands of processors. Our target system is 
RuBisCO enzyme; this model consists of 290,220 atoms with 
explicit treatment of solvent. The dimensions of the simulation box 
are 150 x 150 x 135 Å approximately and inner and outer cut-offs 
of 10 and 11 Å were used. The system was equilibrated before 
benchmarking runs and the time-step is 1 femto-seconds (10-15 
seconds) for the benchmarking runs. PMEMD experiments are 
setup with a relatively higher output frequency as compared to 
LAMMPS experiments. 

In Figure 8, we compare performance and scaling of the RUB 
system using LAMMPS and AMBER/PMEMD on our target MPP 
systems, BG/P and Cray XT series platforms. Here, we note that 
subsequent generations of the systems, XT series and Blue Gene 
series, result in performance improvements for applications 
particularly on large number of MPI tasks mainly due to 
improvements in network and memory bandwidth. Our 
investigation revealed that scaling and runtime for our target test 
case is highly sensitive to MPI_Allreduce latencies and exchange 
operations in FFT computation using non-blocking sends and 
receives and MPI_Sendrecv operations. The collective network of 
the BG/P results in relatively higher parallel efficiencies. On both 
platforms, PMEMD scaling is limited due to higher rate of increase 
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Figure 7: GYRO Performance. 



 

in communication volume per MPI task as we scale to large number 
of MPI tasks and higher output frequencies. 

IV. POWER 
Clearly, one of the critical concerns for the procuring and 

operating supercomputers is their increasing appetite for electrical 
power. One important design goal of the BlueGene family is its 
focus on low power and high density. To investigate and compare 
the effective power of these systems, we have measured the energy 
consumed by each supercomputer while it was running TOP500 
HPL, and other scientific applications. Our measurements and 
derived ratios include power consumed by processors, memory, 
interconnects, and storage as well as the peripheral devices 
necessary for the system.  

Table 3: Power Comparison. 

 BG/P XT/QC 
Cores 8192 30976 
Measured Aggregate Power / HPL (kW) 63 1580 
   Per core (W) 7.7 51.0 
Measured Aggregate Power / Normal (kW) 60 1500 
   Per core (W) 7.3 48.4 
Peak Flop/s (Tflops/s) 27.9 260.2 
HPL Rmax 21.9 205.0 
HPL Flop/s Power Ratio (Mflops/s per W) 347.6 129.7 
POP SYD @ 8192 cores 3.6 12.5 
   Aggregate power required (kW) 60.0 396.7 
Approximate Cores for POP SYD of 12 40000 7500 
   Aggregate power required (kW) 293.0 363.2 
 
As Table 3 shows, for TOP500 HPL, often considered a 

performance and power stress test, we found that BG/P required 
about 7.7 watts per core in contrast to the Cray XT which required 

about 51.0 watts per core – a difference of 6.6 times. When 
considering the sustained Flop rate for HPL, BG/P provides about 
348 MFlops per watt, while the Cray XT generates about 130 
MFlops per watt – a ratio of 2.68.  

On more science-driven workloads, like POP and GYRO, we 
found that, on average, BG/P required 7.3 watts per core and the XT 
required 48 watts per core – a slightly lower absolute magnitude but 
similar to HPL.  

As an example of a science-driven metric for power, we focus 
on the POP Tenth Degree benchmark (described in Section III.A). 
For POP, climate scientists have frequently used the metric of 
‘Simulation Years per Day’ (SYD) to represent computational 
throughput. For this example, when normalizing to 8192 cores, 
BG/P obtains 3.6 SYD using approximately 60kW, while the Cray 
XT produces 12.5 SYD while consuming 397kW. Although BG/P 
retains the edge in power efficiency by operating at 15% of the 
power required for the Cray XT, the computational throughput for 
POP on BG/P is 29% of the XT’s performance. 

On the other hand, when normalizing to a specific value for the 
science-driven metric of SYD, we must increase the number of 
cores for BG/P, and, consequently, the aggregate system power. 
From our earlier measurements in Section III.A, we see that the 
Cray XT requires approximately 7,500 cores to generate 12 SYD. 
Meanwhile, BG/P requires roughly 40,000 cores, a ratio of 5.3 more 
BG/P cores than XT cores, to obtain the same throughput of 12 
SYD. Consequently, the aggregate power for this throughput is 293 
kW for BG/P and 363 kW for the Cray XT. From this perspective, 
the Cray XT requires 24% more aggregate power to accomplish the 
same computational throughput. This is a considerably smaller 
difference than when comparing power across an equivalent 
number of cores, or on a benchmark like HPL LINPACK. 

In summary, BG/P performs very well on power metrics across 
the board; however, its advantages are much less when considering 
science-driven workloads, like POP, and taking into account the 
aggregate amount of power necessary to obtain specific levels of 
computation throughput.  

V. CONCLUSIONS 
BlueGene/P (BG/P) is the second generation BlueGene 

architecture from IBM, succeeding BlueGene/L (BG/L). In this 
paper, we have reported on our investigation of the performance 
and power results of BG/P when measured in the context of a set of 
important kernels and scientific applications. We also compared 
BG/P performance and power to other major large scale 
supercomputers in use today, and, in particular, the Cray XT4. Our 
investigation confirms that BG/P has good scalability and as 
expected, it has lower performance per processor when compared to 
the Cray XT4’s Opteron. We also have measured and shown that 
BG/P uses very low power per floating point operation for certain 
kernels, yet it had less of a power advantage when we considered 
science-driven metrics for mission applications, such as POP.  
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