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Abstract

Ultra-scale computer clusters with high speed interconnects,
such as InfiniBand, are widely deployed for their excellent
performance and cost effectiveness. However, the failure
rate in turn exponentially increases along with their aug-
mented number of components. It becomes imperative for
such systems to be equipped with fault tolerance support.
In this paper, we present our design and implementation
of checkpoint/restart framework for MPI program running
over InfiniBand clusters. Our design enables low-overhead,
application-transparent checkpointing. It uses coordinated
protocol to save the current state of the whole MPI job to reli-
able storage, which allows users to perform rollback recovery
if the system runs into some faulty state later. Our solution has
been integrated into MVAPICHZ2, an open-source high perfor-
mance MPI-2 implementation over InfiniBand. Performance
evaluation of this implementation has been carried out using
NAS benchmarks, HPL benchmark, and a real-world applica-
tion called Gromacs. Experimental results indicate that in our
design, the overhead to take checkpoints is low, and the per-
formance impact for checkpointing applications periodically
is insignificant. For example, time for checkpointing Gromacs
is less than 0.3% of the execution time, and its performance
only decreases 4% with checkpoints taken every minute.

1 Introduction

High End Computing (HEC) systems are quickly gaining in
their speed and size. In particular, more and more computer
clusters with multi-thousand nodes are deployed during recent
years because of their low price/performance ratio. While
the simple statistics calculation tells us that the failure rate
of an entire system grows exponentially with the number of
the components, few of such large-scale systems are equipped
with built-in fault tolerance support. The applications running
over these systems also tend to be more error-prone as the fail-
ure of any single component cascades widely to other com-
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ponents because of the interaction and dependence between
them.

On the other hand, the Message Passing Interface (MPI)[ 18],
being the de facto industrial parallel programming standard
on which parallel applications are typically built, has no spec-
ification about the fault tolerance support that a particular im-
plementation must achieve. As a result, most MPI imple-
mentations are designed without the fault tolerant support,
providing only two modes of the working state, either RUN-
NING or FAILED. Faults occurred during the execution time
often abort the program and the program has to start from be-
ginning. For long running programs, this can waste a large
amount of computing resources because all the computation
that has already been accomplished is lost. To save the valu-
able computation resources, it is desirable that a parallel ap-
plication can restart from some previous state before a failure
and continue the execution. Checkpointing and rollback re-
covery is the most commonly used technique in fault recov-
ery.

The InfiniBand Architecture (IBA) [14] has been recently
standardized in industry to design next generation high-end
clusters for both data-center and high performance comput-
ing. Large cluster systems with InfiniBand are being de-
ployed. For example, in the Top500 list recently released
on November 2005 [25], the 5th, 20th, and 51st most pow-
erful supercomputers use InfiniBand as their parallel appli-
cation communication interconnect. These systems can have
as many as 8000 processors. It becomes imperative for such
large-scale systems to be deployed with checkpoint/restart
support to the long-running MPI parallel programs to be able
to recover from failures. However, it is still an open challenge
to provide checkpoint/restart support for MPI programs over
such InfiniBand clusters.

In this paper, we take on this challenge to pro-
vide checkpoint/restart for MPI programs over InfiniBand
clusters.  Based on the capability of Berkeley Lab’s
Checkpoint/Restart(BLCR)[10] to take snapshots of pro-
cesses on a single node, we design a checkpoint/restart frame-
work to take global checkpoints of the whole MPI program
while ensuring their consistency. We have implemented our
design of checkpoint/restart in MVAPICH2[16], which is an
open-source hieh performance MPI-2 implementation over



InfiniBand, and being widely used by the high performance
computing community. Checkpoing/restart-capable MVA-
PICH2 (MVAPICH2-CR) enables low-overhead, application-
transparent checkpointing for MPI applications with only in-
significant performance impact on MPI applications. For ex-
ample, time for checkpointing Gromacs[1] is less than 0.3%
of the execution time, and its performance only decreases
4% with checkpoints taken every minute. To the best of our
knowledge, this work is the first report of checkpoint/restart
support for MPI over InfiniBand clusters in the literature.

The rest of the paper is organized as follows: In section 2
and section 3, we describe the background of our work, and
identify the challenges involved in checkpointing InfiniBand
parallel applications. In section 4, we present our design in
detail with discussions on some key design issues. In sec-
tion 5, we describe the experimental results of our current im-
plementation. In section 6, we discuss related works. Finally,
we provide our conclusions and describe future works in sec-
tion 7.

2 Background
2.1 InfiniBand and MVAPICH2

InfiniBand[14] is emerging as an open standard of next gen-
eration high speed interconnect. In addition to send/receive
semantics, it provides memory-based semantics, Remote Di-
rect Memory Access (RDMA), for high performance inter-
process communication. By directly accessing and/or modi-
fying the contents of remote memory, RDMA operations are
one sided and do not incur CPU overhead on the remote side.
Because of its high performance, InfiniBand is gaining wider
deployment as high end computing platforms [25].

MVAPICH2[16] is designed and implemented based on its
predecessor MVAPICH [17] and MPICH2[2], developed by
Argonne National Laboratory. MVAPICH?2 is an open-source
high performance implementation of MPI-2 standard. MVA-
PICH2, along with MVAPICH, is currently being used by
more than 280 organizations across the world. MVAPICH?2
includes a high performance transport device over InfiniBand,
which takes advantage of RDMA capabilities.

2.2 Fault Tolerance and Checkpoint/Restart

With the increasing number of components integrated into
one system, the failure rate the system grows exponentially.
Therefore, among several approaches to achieve fault toler-
ance in parallel computing, failure recovery is a fundamental
one to control the damage to applications caused by a sys-
tem failure. Checkpointing and rollback recovery is the most
commonly used technique for failure recovery. Periodically
checkpointing can bound the loss in the failure to the amount
of computation between two consecutive checkpoints

With respect to the transparency to user application, check-
point/restart techniques can be divided into two categories:
user-level checkpointing and system-level checkpointing.
The former usually involves user application in the check-
pointing procedure. While gaining some advantage of ef-
ficiency with assistants from the user application, this ap-
nroach has a maior drawback: u<er annlications need to be

tailored to the system, which often involves a significant
amount of work for each application. The latter is also called
application-transparent checkpointing, because it can perform
checkpoint/restart totally transparent to user applications. Al-
though it may involve more overhead, it does not need any
code modification of applications, and its high compatibility
lead us to follow this approach.

In distributed checkpointing, there are two main categories
of protocols: coordinated checkpointing, and uncoordinated
checkpointing with message logging. The former involves co-
ordination between processes, and thus has more overhead of
checkpointing. The latter often leads to general performance
degradation even in fault-free running. We opt to choose the
former because: (a) it is free from domino effect, and (b) net-
work message logging can potentially impose considerable
overhead for high-bandwidth interconnect such as InfiniBand.

In most MPI implementations, a communication channel is
an abstraction of a network connection. Despite the different
transportation services provided by different networks, com-
munication channels must provide the same set of interfaces
to upper layers. Therefore, one channel not only includes the
network connection information, but also maintains commu-
nication buffers and progress information. Because network
connection information is involved, communication channels
are usually difficult to be totally checkpointed. In coordinated
checkpointing protocol, there are two different alternatives to
handle the communication channels when checkpointing. In
the first alternative, processes communicate with each other to
ensure they all reach a point where all communication chan-
nels are totally empty. Then they can safely discard com-
munication channel state and take checkpoint individually.
These checkpoints are guaranteed to be globally consistent.
However, depending on the different communication patterns
of user application, the coordination step is potentially very
long. In the second alternative, processes store the states
for all communication channels into checkpoints, including
progress information and communication buffers. Although
the reduced coordination time leads to higher responsiveness,
preserving the consistency among communication channels
is nontrivial, especially for the communication channel based
on high performance interconnects, such as InfiniBand. Chal-
lenges and issues involved in checkpointing parallel applica-
tions on InfiniBand cluster are elaborated in next section.

3 Challenges

Checkpointing parallel applications running over InfiniBand
cluster is different from checkpointing those over other net-
works, such as Myrinet[19], regular TCP/IP networks, etc.
Although InfiniBand also provides TCP/IP support using IP
over IB (IPoIB), it does not deliver as good performance as
native InfiniBand verbs. In this section, we explore several
challenging issues in checkpointing the parallel programs that
are built over native InfiniBand protocols as follows.

First, parallel processes need a framework to orchestrate
Checkpoint/Restart of all processes in a coordinated man-
ner. This is a primary prerequisite for any parallel check-
point/restart built on top of a checkpointing library such as
BRI CR that can onlv <tore the <tate of an individual process



Second, parallel processes over InfiniBand communicate
via an OS-bypass user-level protocol. In regular TCP/IP
networks, operating system (OS) kernels intercept all net-
work activities, so these network activities can be temporar-
ily stopped in an application-transparent manner. However,
InfiniBand provides its high performance communication via
OS-bypass capabilities in its user-level protocol [5]. The use
of these user-level protocols has the following side effect: the
operating system is skipped in the actual communication and
does not maintain the complete information of ongoing net-
work activities. Because this gap of information regarding
the communication activities between the OS kernel and the
user-land of application process, it becomes difficult for the
operating system to directly stop network activities and take
checkpoints without losing consistency.

Third, the context of network connection is available only
in network adapter. In regular TCP/IP networks, the network
communication context is stored in kernel memory, which can
be saved to checkpoints. Different from TCP/IP networks, In-
finiBand network adapter stores the network connection con-
text in the adapter memory. This part of information is de-
signed to be volatile, and thus very difficult to be reused by
restarted process. Therefore, network connection context has
to be released before checkpoint, and rebuilt afterwards. As
InfiniBand uses user-level protocol, some network context in-
formation, such as Queue Pairs (QPs), is also cached in user
memory, which must be reconstructed according to new net-
work connection context before a process continues commu-
nication. And the releasing/rebuilding of network connec-
tions should be totally transparent to applications.

In addition, some network connection context is even copied
in remote node. Because of their high performance, many ap-
plications take advantage of the RDMA operations provided
by InfiniBand. Different from some other RDMA capable
networks such as Myrinet, InfiniBand requires authentication
for accessing remote memory. Before process A accesses re-
mote memory in process B, process B must register the mem-
ory to network adapter, and then inform process A about the
virtual address of the registered memory and the remote key
to access that part of memory. Then process A must cache that
key and include it in the RDMA requests so that the network
adapter for process A can match the keys and authorize the
memory access. Since these keys will become invalid when
network connection context is rebuilt, potential inconsistency
may be introduced by the invalid keys.

4 Checkpoint/Restart Framework and Design
| ssues

In this section, we present the detailed checkpoint/restart
framework for MPI over InfiniBand and some important de-
sign issues. As we characterize the challenge issues, we focus
on these issues in particular: (a) how to stop an MPI program
into a state which can be consistently saved to a checkpoint,
and (b) how to resume an MPI program based on a check-
point. There are three design objectives for this framework:

e Consistency: the global consistency of the MPI program
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e Transparency: the checkpoints must be taken transpar-
ently to MPI application.

e Responsiveness: upon a request, checkpoint must be
taken as soon as possible.

We design a protocol to coordinate all MPI processes in
the job to consistently and transparently suspend all Infini-
Band communication channels between them, and preserve
the communication channel states to checkpoint, which pro-
vides high responsiveness.

In the remaining part of this section, we start with the
C/R framework, describing components in the framework and
their functionalities. Then we provide a global view of C/R
procedure by describing the overall state diagram and state
transition. Finally, we discuss some design issues in a local
view to show how to suspend/reactivate InfiniBand commu-
nication channels.

4.1 Checkpoint/Restart Framework

In a cluster environment, a typical MPI program consists
of: a front-end MPI job console, a process manager cross-
ing multiple nodes, and individual M Pl processesrunning on
these nodes. Multi Purpose Daemon (MPD)[8] is the default
process manager for MVAPICH2. All the MPD daemons are
connected as a ring. As depicted in Figure 1, the proposed
C/R framework is built upon the MPI job structure, and there
are five key components in this framework described as fol-
lows:

e Global C/R Coordinator: As a part of MPI job console,
global C/R coordinator is responsible for global manage-
ment of checkpoint/restart the whole MPI job. It handles
checkpoint/restart requests from users or administrators,
and it also can automatically initiate checkpoints periodi-
cally. It maintains a state machine for C/R, and organizes
the global synchronization when needed.

e Control Message Manager: Control message manager
provides an interface between global C/R coordinator
and local C/R controller. It utilizes the process manager
already deployed in the cluster to provide out-of-band
messaging between MPI processes and the job console.
With this support, control messages for C/R can avoid
interfering or being interfered by the in-band commu-
nication. In our current implementation, we extend the
functionality of MPD to support C/R control messages.

e Local C/R Controller: Local C/R controller takes the
responsibility of local management of the C/R operations
for each MPI process. Its functionality can be described
as follows: (a) to take C/R requests from and report the
results to global C/R coordinator, (b) to cooperate with
communication channel managers and other C/R con-
trollers in peer MPI processes to converge the whole MPI
job to a state which can be consistently checkpointed. (c)
to invoke C/R library to take checkpoints locally.

In our current implementation, we use a separate pthread
dedicated for C/R controller so that it can accept requests
at any time. Although it involves some additional syn-
chronization with the main thread this de<ion imnproves
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Figure 1. Checkpoint/Restart Framework

the responsiveness of checkpointing and eliminates some
deadlock possibilities.

e C/R Library: C/R library is responsible for checkpoint-
ing/restarting the local process. Checkpointing a single
process on a single node has been studied extensively
and there are several packages available to the commu-
nity. In our current implementation, we use Berkeley
Lab’s Checkpoint/Restart(BLCR)[10] toolkit.

e Communication Channel Manager: Communication
channel manager controls the in-band message passing.
In C/R framework, it has extended functionalities of
suspending/reactivating the communication channel, and
the temporary suspension does not impair the channel
consistency, and is transparent to upper layers. Cur-
rently, we implement the C/R functionality on the Infini-
Band channel based on OpenIB[21] Gen?2 stack.

4.2 Overall Checkpoint/Restart Procedure

Normal Start
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Figure 2. State Diagram for Checkpoint/Restart
Figure 1 shows the state diagram of the the overall de-

sign of our checkpoint/restart framework. During a nor-
mal run, the job periodically goes over the checkpointing
cycle, which consists of four phases: initial synchroniza-
tion, pre-checkpoint coordination, local checkpointing, post-
checkpoint coordination, and then comes back to running
state.

e In Initial Synchronization Phase, all processes in the
job synchronize with each other and prepare for pre-
checkpoint coordination. First, the global C/R coordi-
nator from the MPI job console propagates a checkpoint
reaues<t to all local C/R controllers runnine in individual

Restart

MPI processes. Then, upon the arrival of the request,
the local C/R controller takes the control of communi-
cation channels from the main thread to avoid possible
inconsistency of communication channels that might be
caused by interleaved accesses from both C/R controller
and main thread.

e In Pre-checkpoint Coordination Phase, C/R con-
trollers coordinate with each other to make all MPI
processes individually checkpointable while preserving
global consistency. To do so, C/R controllers cooper-
ate with communication channel managers to suspend
all communication channels temporarily and release the
network connections in these channels.

e In Local Checkpointing Phase, C/R controllers invoke
C/R library to save the current state of the local MPI
process, including the state of suspended communication
channel to a checkpoint file.

e In Post-checkpoint Coordination Phase, C/R con-
trollers cooperate with communication channel man-
agers to reactivate communication channels, which in-
volves rebuilding the low level network connections and
resolving the possible inconsistency introduced by the
potentially different network connection information.

The issues involved in how to suspend/reactivate commu-
nication channels consistently and transparently will be dis-
cussed in section 4.3

To restart from a checkpoint, a restarting procedure is
performed, which consists of restarting phase and post-
checkpoint coordination phase.

In Restarting Phase, the global C/R coordinator first prop-
agates the restart request to each node, where the C/R library
is responsible for restarting the local MPI process from the
checkpoint file. Then, local C/R controller reestablishes the
connection between a MPI process and its process manager
and performs necessary coordination between them.

At this point of time, the MPI job is restarted from a state
same as a previous state in local checkpointing phase. There-
fore, to continue running, it first goes to post-checkpoint co-
ordination phase, and when all communication channels are
reactivated it comes back to runnine state
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4.3 Suspension/Reactivation InfiniBand Channel

During the checkpoint/restart procedure described in pre-
vious section, the consistency and transparency are two key
requirements. In this section, we explain how we transpar-
ently suspend/reactivate the InfiniBand communication chan-
nel while preserving the channel consistency.

The structure of InfiniBand communication channel in
MVAPICH?2 can be described by Figure 3. Below the MVA-
PICH2 InfiniBand channel is the InfiniBand Host Channel
Adapter (HCA), which maintains the network connection
context, such as Queue Pairs (QPs), Completion Queues
(CQs), Memory Regions (MRs), and Protection Domains
(PDs). MVAPICH?2 InfiniBand channel state consists of four
parts:

o Network connection information is the user-level data
structures corresponding to the network connection con-
text.

e Dedicated communication buffers are the registered
buffers which can be directly accessed by HCA for send-
ing/receiving small messages.

e Channd progress information is the data structures
for book-keeping and flow control, such as pending re-
quests, credits, etc.

e Registered user buffers are the memory allocated by
user applications. These buffers are registered by com-
munication channel to HCA for zero-copy transmission
of large messages.

These four parts need to be handled differently according their
different natures when doing checkpointing. Network con-
nection information needs to be cleaned before checkpoint-
ing and rebuild afterwards, as the network connection con-
text in HCA is released and rebuilt. Dedicated communi-
cation buffers, and channel progress information need to be
mostly kept same but also updated partially because they are
closely coupled with network connection information. Regis-
tered user buffers need to be re-registered but the content of
them need to be totally preserved.

Now we explain the protocol for suspending and reactivat-
ing communication channel, including the discussion on some
design issues.

In pre-checkpoint coordination phase, to suspend commu-
nication channels, channel managers first drain all the in-
tran<it mes<aces which means that to a certain svnchroniza-

tion point, all the messages before that point must have been
delivered and all the messages after that point must have not
been posted to network.

Two things need to be noted here: (a) the word ‘messages’
refer to the network level messages rather than MPI level mes-
sages, and one MPI level message may involve several net-
work level messages, and (b) the synchronization points for
different channels do not need to correspond to the same time
point, and each channel can has its own synchronization point.

Due to the First-In-First-Out (FIFO) nature of InfiniBand RC
channel, this can be achieved by exchanging flag messages
between each pair of channel managers. These flag messages
represent the synchronization points for the channels. Once
the channel manager detect the local completion for each flag
message sent to each channel, and receive a flag message from
each channel, the channel is successfully suspended. Then,
channel manager releases the underlying network connection.

One key issue involved is when the channel manager should
process the messages received before the flag message, which
are the drained in-transit messages. Because the communi-
cation channel is designed to execute the transmission pro-
tocol chosen by upper layers in MPI library, processing an
incoming message may cause sending a response message,
which may lead to an infinite ‘ping-pong’ livelock condition.
To avoid that, the channel manager has to either buffer the
drained messages for future processing, or process these mes-
sages but buffer the response messages instead of sending
them immediately. We choose the later approach because: (a)
some control messages need to be processed immediately, and
these control messages will not lead to any response message;
(b) the overhead for buffering is lower as number of response
messages are generally smaller than the number of incoming
messages.

In post-checkpoint coordination phase, after rebuilding un-
derlying network connections, the channel manager first up-
dates the local communication channel as we described be-
fore, and then sends control messages to update the other side
of the channel. The remote updating is to resolve the potential
inconsistency introduced by invalid remote keys for RDMA
operation. This issue has been discussed in Section 3. For ex-
ample, for performance reason, the rendezvous protocol for
transmitting large messages is implemented by RDMA write
operation. To achieve high responsiveness and transparency,
our design allows rendezvous protocol being interrupted by
checkpointing. Therefore the remote keys cached in sender
side for RDMA write will become invalid because of the re-
registration on receiver side. Hence, channel manager on re-
ceiver side needs to capture the refreshed remote keys and
sends them to the sender side.

5 Performance Evaluation

In this section, we describe experimental results and ana-
lyze the performance of our current implementation based on
MVAPICH2-0.9. The experiments are conducted on an In-
finiBand cluster of 12 nodes. Each node is equipped with
dual Intel Xeon 3.4GHz CPUs, 2GB memory and a Mellanox
MT25208 PCT-Exnress InfiniBand HCA The operatine sve-



Benchmark: Iu.C.8 | bt.C9 | sp.C.9
Checkpoint File Size (MBs): 126 213 193
Table 1. Checkpoint File Size per Process

tem used is Redhat AS4 with kernel 2.6.11. The filesystem
we use is ext3 on top of local SATA disk.

We evaluate the performance of our implementation using
NAS parallel Benchmarks [26], High-Performance Linpack
(HPL) [3] Benchmark, and a real-world application called
Gromacs[1]. First, we analyze the overhead for taking check-
points and restarting from checkpoints, and then we show the
performance impact to applications for taking checkpoints pe-
riodically.

5.1 Overhead Analysis for Checkpoint/Restart

In this section, we analyze the overhead for C/R in terms of
checkpoint file size, checkpointing time, and restarting time.
We choose BT, LU, and SP from NAS Parallel Benchmarks
and HPL Benchmarks, because they reflect the computation
kernel commonly used in scientific applications.

Because checkpointing involves saving the current state of
running processes into reliable storage, taking a system-level
full checkpoint involves writing all used memory pages within
process address space to the checkpoint file, therefore, check-
point file size is determined by the memory footprint of the
process, in this case, MPI process. Table 1 shows the check-
point file sizes per process for BT, LU, and SP, class C, using
8 or 9 processes.
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Time for checkpointing/restarting is determined mainly by
three factors: the time for synchronization which increase
along with to the system size; the time for writing/reading the
checkpoint file to/from file systems which depends on both
the checkpoint file size and the performance of the underly-
ing file system; and the time for suspending and reactivating
communication channels, which mostly depends on the num-
ber of InfiniBand connections one process has.

Figure 4 shows the time for checkpointing/restarting NAS
benchmarks. It also provides the file accessing time for the
checkpoint file for comparison. With the limited performance
of underlying ext3 file systems over SATA disks on our sys-
tem we have obcerved that the file accessine time i< the domi-

nating factor. In the real-world deployment, high performance
parallel file system can be used to store the checkpoint files for
better performance. We plan to further investigate the issues
on how to speed up the commitment of checkpoint files.
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To further analyze the coordination overhead, we excluded
the file accessing time and broke the coordination time down
to individual phases. As shown in Figure 5, for check-
pointing, post-checkpoint coordination consumes most of the
time. The reason is that this step involves a relatively time-
consuming component, the establishment of InfiniBand con-
nections, which has been explored in our previous study[28].
The response time, which is the sum of initial synchroniza-
tion time and pre-checkpoint coordination time, represents
the delay from the issuance of checkpoint request to the time
point where the every MPI process is ready to be saved to
storage. Our system has a very small response time, around
0.06 second. For restarting, the post-checkpoint coordination
consumes almost the same amount of time as for checkpoint-
ing, but the major part of time is in restarting phase, mainly
spent by MPD and BLCR for spawning processes on multiple
nodes.

To evaluate the scalability of our design, we measure the
average checkpointing time for HPL benchmark using 2, 4,
6, 8, 10, and 12 processes. In the experiment we choose the
problem size to let HPL benchmark consume around 800MB
memory for each process.
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where N is the number of connections. As shown in Figure 6,
because the dominating factor, post-checkpoint coordination
time, is O(N), the overall coordination time is also in the
order of O(N). To further improve the scalability of check-
point/restart, we plan to utilize adaptive connection manage-
ment model[27] to reduce the number of active InfiniBand
connections.

Nonetheless, with current performance, our design is suf-
ficient for checkpointing most applications because the time
for checkpointing/restarting is insignificant when comparing
to the execution time of applications.

5.2 Performance Impact for Checkpointing

In this section, we evaluate the performance of our system
in a working scenario. In real world, periodically checkpoint-
ing MPI application is a commonly used method to achieve
fault tolerance. We conduct experiments to analyze the per-
formance impact for taking checkpoints at different frequen-
cies during the execution time of applications. We used LU,
BT, and SP from NAS benchmarks and HPL benchmark to
simulate user application. And we also include a real-world
application called Gromacs[1], which is a package to perform
molecular dynamics for biochemical analysis.
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As shown in Figure 7, the total running time of LU, BT,
and SP decreases as the checkpointing interval increases. The
additional execution time caused by checkpointing matches
the theoretical value: checkpointing time x number of check-
points. Figure 8 shows the impact on calculated performance
in GLFOPS of HPL benchmarks for 8 processes.

Because these benchmarks load all data to memory at the
beocinnine of execution the checknoint file si7e i< relativelv

large. Therefore, in our experiments, the dominating part of
the overhead for checkpointing, the file writing time, is rel-
atively large. But even with this overhead, the performance
does not decrease much with a reasonable long checkpointing
interval, 4 minutes for example.
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Figure 9. Performance Impact for Checkpointing
Gromacs

On the other hand, many real-world applications may spend
hours even days to process many thousands of datasets for
a run. Normally only a small portion of datasets are loaded
into memory at any point time, so the memory footprints for
these applications are relatively small. Therefore the overhead
for checkpointing is lower with respect to their running time.
To evaluate this case, we run Gromacs on DPPC benchmark
dataset, which is to simulate a phospholipid membrane, con-
sisting of 1024 dipalmitoylphosphatidylcholine (DPPC) lipids
in a bilayer configuration As shown in Figure 9, the time
for checkpointing Gromacs is less than 0.3% of its execu-
tion time, and even if Gromacs is checkpointed every minute,
the performance degradation is still around 4%. From these
experiments we can conclude that for long running applica-
tions, the performance impact of checkpointing is negligible,
and even for memory intensive applications, with a reasonable
checkpointing frequency, the performance impact is insignif-
icant.

6 Reated Works

Many efforts have been carried out to provide fault tolerance
to message-passing based parallel programs. LAM/MPI[23]
has incorporated checkpoint/restart capabilities based on
Berkeley Lab’s Checkpoint/Restart(BLCR)[10]. A frame-
work to checkpoint MPI program running over TCP/IP net-
work is developed. G. Bosilca and A. Bouteiller et. al have
studied another approach to achieve fault tolerance using un-
coordinated checkpointing and message logging on TCP/IP
network in MPICH-V project [6, 7]. They have used the
Condor standalone checkpoint library [15] to checkpoint MPI
processes, and designed and evaluated a variety of message
logging protocols for uncoordinated checkpointing. In [13],
H. Jung et. al have described the design of a fault-tolerant
MPI over Myrinet based on MPICH-GM[20]. Other re-
searches toward fault tolerant message passing systems in-
clude: CoCheck[24], FT-MPI[11], Egida[22], Starfish[4], and
CLIP[9]. Recently, R. Gioiosa et. al have designed a low-
overhead kernel-level checknointer called TICKI[121 for par-



allel computers with incremental checkpointing support.

Our work differs from the previous related work in the way
that we addressed the challenges to checkpoint MPI programs
over InfiniBand. To the best of our knowledge, this work is
the first report in the literature on checkpoint/restart support
for MPI programs over InfiniBand clusters

7 Conclusions and Future Work

In this paper, we presented our design of checkpoint/restart
framework for MPI over InfiniBand. Our design enables
application-transparent, coordinated checkpointing to save
the state of the whole MPI program into checkpoints stored
in reliable storage for future restart. We evaluated our design
using NAS benchmarks, HPL benchmark and a real-world ap-
plication called Gromacs. Experimental results indicate that
our design impose a low overhead for checkpointing, and the
performance impact of checkpointing to long running appli-
cations is negligible.

In future, we plan to incorporate the adaptive connection
management to reduce the checkpoint time and checkpoint
file size. We also plan to take advantage from the high-
bandwidth parallel file system to store checkpoint files. In
a longer term, we intend to study the issues related to uncoor-
dinated checkpointing for MPI over InfiniBand.
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