HIGH PERFORMANCE BROADCAST
SUPPORT IN LA-MPI OVER QUADRICS

Weikuan Yu'

Sayantan Sur'
Dhabaleswar K. Panda'
Rob T. Aulwes?

Rich L. Graham?

Abstract

LA-MPI is a unique MPI implementation that provides
end-to-end reliable message passing between application
processes. LA-MPI collective operations are implemented
on top of its point-to-point operations, using generic span-
ning tree-based collective algorithms. The performance of
the collective operations scales in a logarithmic order
over that of the point-to-point operations. Thus, it is desir-
able to provide more efficient and more scalable collective
operations while maintaining the end-to-end reliability. To
this end, we investigate the feasibility of utilizing Quadrics
hardware broadcast in this paper. We explore several
challenging issues such as broadcast buffer manage-
ment, broadcast over arbitrary processes, retransmission
and reliability. Accordingly, a low-latency, highly scalable,
fault-tolerant broadcast algorithm is designed and imple-
mented over Quadrics hardware broadcast. Our evalua-
tion shows that this implementation reduces broadcast
latency and achieves higher scalability relative to the
generic version of this operation. In addition, we observe
that the performance of our implementation is comparable
to that of the high performance implementation by Quad-
rics Supercomputers World for MPICH, and HPs for
Alaska MPI, while providing fault tolerance to network
errors not provided by these.

Key words: Quadrics, Broadcast, LA-MPI

The International Journal of High Performance Computing Applications,
Volume 19, No. 4, Winter 2005, pp. 453—-463

DOI: 10.1177/1094342005056145

© 2005 Sage Publications

1 Introduction

LA-MPI (Graham et al., 2002) is a high performance
thread-safe implementation of the message passing inter-
face (MPI; MPI Forum, 1993). It is designed for fault-tol-
erant message passing over terascale clusters. The current
implementation of LA-MPI provides end-to-end network-
level fault tolerance to the failures such as I/O bus errors,
network interface errors and wire-transmission errors
(Aulwes et al., 2003). Its lower-level network transport
has been implemented over a number of different transport
protocols, including UDP over IP, HIPPI-800 OS bypass,
Quadrics Elan3 RDMA (see http://webl.quadrics.com/
onlinedocs/Linux/Eagle/html/), Myrinet GM (see http://
www.myri.com/scs/GM-2/doc/html/), and shared memory.

The current LA-MPI implementation of collective
operations is based on generic spanning tree-based algo-
rithms over its point-to-point operations. Fault tolerance
of the collective operations is achieved through the
underlying point-to-point messaging layer. However, this
direct layering of collective operawtions over point-to-
point operations leads to a typical scalability problem.
That is to say, the performance of collective operations
scales in a logarithmic order over that of point-to-point
operations. On the other hand, a high performance MPI
implementation requires that attention be paid to the per-
formance of collective operations.

Broadcast is one of the most important collective oper-
ations, which can also be used to implement other collec-
tive operations, such as allreduce, barrier, and allgather.
Figure 1 shows the performance of LA-MPI broadcast
operation over an eight-node Quadrics cluster, compared
with two other MPI implementations available over
Quadrics interconnect, MPICH-Quadrics and HPs Alaska
MPI. The LA-MPI broadcast implementation does not
perform as well as that of MPICH-Quadrics or HPs Alaska
MPL. It also has a logarithmic scalability with respect to
the number of processes, compared to the O(1) scalability
of the other two.

Both MPICH-Quadrics and HPs Alaska MPI provide
high performance broadcast operations. As a matter of
fact, MPI broadcast operation in both of them is imple-
mented on top of the broadcast operation available in a
communication library, 1ibelan, released by Quadrics.
However, compared to the raw performance of Quadrics
hardware broadcast, 1ibelan broadcast operation intro-
duces more than 150% overhead. Figure 2 shows the per-
formance comparison between the two. It remains to be

'NETWORK-BASED COMPUTING LABORATORY
DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING OHIO STATE UNIVERSITY, COLUMBUS, OH
43210, USA (YUW@CSE.OHIO-STATE.EDU)

?LOS ALAMOS NATIONAL LABORATORY ADVANCED
COMPUTING LABORATORY LOS ALAMOS, NM 87545, USA

Downloaded from hpc.sagepub.com at FLORIDA STATE UNIV LIBRARY on June 20, 2016

http://hpc.sagepub.com/

80 T T T T T

elan_hbcast ——

70 + MPICH Beast ---x--- e N

LA-MPI Beast ---*--- -

60 | -
:—2: 50 Po— < .
g 40 - -
2
S 30 .

20 .

10decee e e W * SV >

0 1 1 1 1 1
2 3 4 5 6 7 8

Number of Nodes

Fig. 1 Broadcast performance in different MPI imple-
mentations.

18 T T T T T T T P;

hw bcast —+— /
16 | elan_hbcast ---x--- .
14 - P

Latency (us)

2 1 1 1 1 1 1 1 1

2 4 8 16 32 64 128 256 512 1024
Message Size (Bytes)

Fig. 2 Performance comparison of libelan broad-
cast and hardware broadcast.

investigated how a broadcast algorithm can be designed
over Quadrics hardware broadcast without incurring as
much performance overhead. Furthermore, MPICH-
Quadrics and Alaska ignore the issue of end-to-end relia-
ble data delivery, which is left to Quadrics hardware. It is
desirable if a new broadcast algorithm can attain LA-
MPI end-to-end reliability while leveraging the perform-
ance advantages of Quadrics hardware broadcast.

In this paper, we take on the challenge to design a low-
latency, highly scalable, fault-tolerant broadcast algo-
rithm, and explore the associated design issues such as
broadcast buffer management, broadcast over arbitrary
processes, retransmission and reliability. By overcoming

these challenges, a broadcast algorithm is designed and
implemented over Quadrics hardware broadcast. Our
evaluation shows that this new algorithm achieves a
latency of 8.9 us when bwroadcasting a four-byte mes-
sage over 256 processes on a 64-node system.

The rest of the paper is organized as follows. We pro-
vide an overview of Quadrics and its hardware broadcast
in Section 2 and an overview of LA-MPI in Section 3. In
Section 4, we describe the challenges in designing a new
LA-MPI broadcast algorithm over Quadrics hardware
broadcast. In Sections 5 and 6, we describe the implemen-
tation and the performance evaluation of this algorithm.
Finally, we conclude this paper and discuss future work in
Section 7.

2 Overview of Quadrics

Quadrics interconnect (see http://www.quadrics.com/
onlinedocs/Linux/html/index.html) provides low-latency,
high-bandwidth communication with its two basic build-
ing blocks: the programmable Elan3 network interface
card and the Elite switch, which are interconnected in a
fat-tree topology. Quadrics provides basic programming
libraries, 1ibelan and 1ibelan3, and an MPI imple-
mentation MPICH-Quadrics over Quadrics. The Elan3
programming library (1ibelan3) is the lowest-level
programming library.

2.1 QUADRICS COMMUNICATION AND
HARDWARE BROADCAST

A parallel program over Quadrics consists of processes
with different virtual process identifiers (VPIDs). Inter-
process communication is supported by an efficient
model, remote direct memory access (RDMA). An effi-
cient, reliable and scalable hardware broadcast is also
supported over Quadrics. A sender process performs this
by addressing a set of processes with a single preallo-
cated VPID. As shown in Figure 3, a hardware broadcast
packet takes a predetermined path to reach all the recipi-
ents. It is successfully delivered when all the recipients
return an acknowledgment. The top Elite switch in the
path takes care of broadcasting the packets to and com-
bining the acknowledgments from the recipients (Petrini
et al., 2001). However, Quadrics hardware broadcast has
its own restrictions. The destination addresses in a hard-
ware broadcast have to be the same across all the proc-
esses. In addition, the processes being addressed must
have contiguous VPIDs in order for the switch to per-
form the broadcast. Recently, the second generation of
Quadrics interconnect (QsNetH; Beecroft et al., 2003) has
removed this restriction. This makes the utilization of
hardware broadcast relatively easier. However, the main
objective of this work is how to provide efficient end-to-

Downloaded from hpc.sagepub.com at FLORIDA STATE UNIV LIBRARY on June 20, 2016

http://hpc.sagepub.com/

Fig. 3 Hardware broadcast.

end reliability support over Quadrics hardware broadcast.
In this context, our work can be applied to QsNetII hard-
ware broadcast as well.

2.2 BROADCAST IMPLEMENTATION IN
LIBELAN

A broadcast operation in a parallel program can involve
arbitrary processes, which may not have contiguous
VPIDs. The destination address in each process may not
be identical, which is required for Quadrics hardware
broadcast. The Quadrics 1ibelan library overcomes
these limitations inside an elan_bcast () function.
Two broadcast buffers are provided for double buffering
of messages so that one broadcast operation can start
while another one is still in transit. In addition, elan_
bcast () imposes a synchronization before the start of
every broadcast operation. This is to synchronize the
completion of an early message so that it is not overwrit-
ten by an incoming broadcast message. A side effect is
that consecutive broadcast operations are throttled by this
inserted synchronization, which can lead to a low broad-
cast throughput. Although it is necessary to have the syn-
chronization, it would be beneficial if its frequency can
be reduced. LA-MPI is developed from the lowest 1 ibe-
lan3 programming library and provides a different com-
munication protocol from libelan. The libelan
collective support is also not end-to-end reliable. Thus it
cannot be used directly by LA-MPI for its collective
communication.

3 Overview of LA-MPI

In this section, we give some background information
about LA-MPI. As shown in Figure 4, the implementa-

tion of LA-MPI has its MPI interface layered upon the
user-level messaging (ULM) interface, which itself con-
sists of two layers: the memory and message layer
(MML) and the send and receive layer (SRL; Graham et
al.,, 2002). The MML provides message management
services including message routing (i.e. network path
selection), message tag matching, buffer allocation for
uniform and non-uniform memory access machines
(NUMA), message retransmission and message status
tracking. The SRL is responsible for sending and receiv-
ing message fragments through different network adapt-
ers and shared memory, and is highly network dependent.

3.1 MEMORY AND MESSAGE LAYER

The MML is a set of abstractions to ensure reliable mes-
sage delivery while minimizing the overhead of memory
management for LA-MPI data structures and buffers (Gra-
ham et al., 2002). The MML layer is composed of a mem-
ory manager, a set of network paths, and a path scheduler.
The memory manager controls all memory (physical and
virtual), including the process private memory, shared
memory, as well as the memory on the network interface
card (NIC). A network path is a homogeneous transport
abstraction used to encapsulate the properties of different
network devices and protocols. A path controls access to
one or more NICs, and within a path there may be several
independent routes. The path scheduler binds a specific
message to a particular path. Different messages between
the same end-points may use different paths. Together all
three components of the MML architecture provide sup-
port to MPI functionalities with network transmission-
specific primitives (i.e. the SRL).

3.2 SEND AND RECEIVE LAYER

The SRL is responsible for the sending and receiving of
messages. It consists of multiple network path implemen-
tations and a highly optimized implementation of shared
memory communication. The SRL layer supports mes-
sage fragmentation and reassembly. Messages that do not
require the network (on-host) are simply copied through
shared memory. Those that do require the network (off-
host) are handled by the network paths, where the mes-
sage fragments are sent via associated physical resources.
In addition, this layer handles the in-order delivery required
by the MPI standard. Messages that arrive out-of-order
are queued for later processing as unexpected data.

4 Design Challenges

There are several challenges in order to design MPI broad-
cast over Quadrics hardware broadcast. These include
broadcast buffer management, broadcast to arbitrary proc-

Downloaded from hpc.sagepub.com at FLORIDA STATE UNIV LIBRARY on June 20, 2016

http://hpc.sagepub.com/

Application

MPI |
- * - :
| ' |
: Network Path Scheduler -— Memory and Message l
MML Management !
! A |
- ? ! _
o ! T .
| Shared Network | LAMPI
1 Memory Communication |
SRL | ¢ ¢ ¢ 3
| Net |Net | Net |
; A| B| C !
| L L T | OS Bypass
USER LEVEL Device
KERNEL LEVEL Memory K
Subsystem Network
Drivers

Other Machines

T 4

'y

Fig. 4 LA-MPI architecture.

esses, acknowledgment and synchronization, retransmis-
sion and reliability. In this section, we explore each of
these issues and discuss several strategies to overcome
them.

4.1 BROADCAST BUFFER MANAGEMENT

Quadrics hardware broadcast can only address a destina-
tion address that is global across all receiving processes.
This demands the presence of a global address space. The
global address space is created by having each process
map a part of its virtual main memory to an identical
address space on the Elan3 network interface. The use of
this global address space has to be consistent among all

processes. Two alternatives can be employed to maintain
the consistency. One is to use a global allocator to enforce
the consistency and have every memory request go
through it. The other is to divide the global memory into
an array of small buffers and use different buffers for
broadcast operations sequentially. The first alternative
essentially allocates broadcast buffer on-the-fly and has
to invoke the global allocator in the communication criti-
cal path. It would be better to choose the second alterna-
tive to avoid the penalty on going through the global buffer
allocator. It is also easier to manage the global buffer with
them divided into a small number of buffers, referred to as
broadcast channels hereafter. The global memory consist-
ency is discussed more later in Section 4.3.

Downloaded from hpc.sagepub.com at FLORIDA STATE UNIV LIBRARY on June 20, 2016

http://hpc.sagepub.com/

4.2 BROADCAST TO ARBITRARY
PROCESSES

MPI broadcast operation can involve an arbitrary set of
processes while Quadrics hardware broadcast can only
address a set of processes with contiguous VPIDs. There
are several design alternatives for broadcasting over arbi-
trary processes. One alternative is to partition the proc-
esses into disjoint subsets of contiguous processes and
perform a broadcast operation to each set. This allows the
utilization of the existing hardware broadcast while pay-
ing the cost of a linearly increased latency with respect to
the number of multicast subgroups. At its extreme, the
broadcast latency within a group of sparsely distributed
processes can increase linearly with respect to the group
size. Another alternative is using a tree-based algorithm
to perform the broadcast with each node being a set of
processes with contiguous VPIDs. After the processes in
one node receiving the data, they can initiate parallel
broadcast operations to processes in the remaining nodes.
For fast expansion on the number of processes that can
broadcast the data, the sets of processes can be chosen to
receive the data in the order of their sizes. This alterna-
tive has been explored by Coll et al. (2003). Compared to
the first alternative, the second alternative with a tree
topology and the associated data structure is rather com-
plex. In addition, the resource management framework
(RMS) of Quadrics network tends to allocate processes
for a parallel program from the first available network
nodes. This approach usually leads to a good contiguity
in the base group (the group of processes inside MPI_
COMM_WORLD). Moreover, the use of the base group
by collective operations is very common in MPI pro-
grams. Thus, the first alternative can be sufficient for the
purpose of exploiting the advantages of Quadrics hard-
ware broadcast.

4.3 ACKNOWLEDGMENT AND
SYNCHRONIZATION

Since data can be written to a remote process without its
knowledge, it must be ensured that a new message does
not overwrite the previous message that is still in the
broadcast channel. Thus synchronization across the proc-
esses is needed before a broadcast operation reuses a
broadcast channel.

One alternative is to use a tree-based algorithm to col-
lect all the acknowledgments to one process, and then
update others with the combined results. Another is to
use a special form of Quadrics network transactions, test-
and-set, to poll on a global value (Frachtenberg et al.,
2002; see http://www.quadrics.com/onlinedocs/Linux/html/
index.html). This transaction tests the value of a global
variable across all processes against a provided value, and

then, if they are the same, writes a new value into the
same global address (Petrini et al., 2001). Quadrics hard-
ware broadcast is used for polling. Synchronization is
achieved by having all processes waiting for a new value
to be available. This is very efficient when all the proc-
esses reach the synchronization fairly close to each other,
otherwise the polling broadcast traffic is rather intrusive
to the network. Thus, an exponential back-off scheme
needs to be in place to avoid too much broadcast traffic
incurred by the test-and-set transaction (Petrini et al.,
2001; see http://www.quadrics.com/onlinedocs/Linux/html/
index.html). In addition, the timing of the synchronization
is also important. The synchronization can be delayed if
there are still broadcast channels available. Then the delayed
synchronization cost can be amortized over a set of broad-
cast operations. Using the first alternative along with a
sufficiently large set of broadcast channels can be a better
choice, since it avoids potentially too much broadcast
traffic and its cost can be insignificant when amortized.

4.4 RETRANSMISSION AND RELIABILITY

Unlike many MPI libraries that consider all underlying
communication perfectly reliable, LA-MPI is designed to
tolerate the failures across the PCI bus or the network
(Graham et al., 2002). Errors can be propagated and the
effect of these errors can be amplified in long-running
parallel programs, especially over terascale clusters
because of the sheer number of their components. To
achieve end-to-end reliable message passing, LA-MPI
optionally supports sender-side retransmission when the
messages have exceeded their timeout periods. A similar
sender side retransmission can be employed to achieve
reliable broadcast.

There are two different cases to be considered depend-
ing on whether Quadrics hardware broadcast is still
available for the retransmission of the broadcast mes-
sages or not. When the hardware broadcast is available,
every broadcast message is transmitted along with a main
memory-to-main memory 32-bit additive checksum or
32-bit cyclic redundancy code (CRC) (if so desired). This
checksum/CRC protects the message against network
and I/O bus corruption. When this message is received by
the recipients, its checksum/CRC is validated before the
recipients acknowledge the arrival of data. If the verifica-
tion is successful, the recipients return their positive
acknowledgment (ACKs), otherwise negative acknowl-
edgments (NACKs) are returned. The ACKs and NACKs
are combined during the synchronization and the corre-
sponding sender processes are notified after the synchro-
nization. A time-stamp and the number of retransmission
are also recorded with every broadcast message. The loss
of a message can be detected by the sender or the
receiver when it has exceeded its timeout period.

Downloaded from hpc.sagepub.com at FLORIDA STATE UNIV LIBRARY on June 20, 2016

http://hpc.sagepub.com/

Requests
T(or 4
L

SRL

Broadcast RDMA
STy T

Channels

1.Acquire Channels
2.Broadcast RDMA 5 5
3.Message Reception

4.Status Update

5.Sync-Up 6
6.Sync-Down

7.Sender Status Update

(Manage!

Fig. 5 Broadcast flow path using Quadrics hardware
broadcast.

When the hardware broadcast is no longer available or
its failure is suspected, a fail-over function is provided to
detect this and binds all the outstanding broadcast opera-
tions to the broadcast algorithm on top of point-to-point
operations. The fault-tolerant point-to-point operations in
LA-MPI can then ensure the completion of the outstand-
ing broadcast operations.

5 Our Implementation

As shown in Figure 5, we have implemented the broad-
cast operation with added support in both the MML and
the SRL in LA-MPL In this section, we provide the
details on the broadcast flow path and its reliability.

5.1 BROADCAST FLOW PATH

The flow path of a broadcast operation can be divided
into four major steps: request binding, send-side message
transmission, receiver-side message delivery, and syn-
chronization.

1. Broadcast buffer management and request
binding

To make use of Quadrics hardware broadcast,
we choose the second alternative described in
Section 4.1 to allocate global memory and divide
it into a number of channels. As shown in Fig-
ure 5, a broadcast operation binds to one of the
channels when they are available. This is shown
as step 1 in the MML on both the sender and
receiver sides.

2. Sender-side message transmission

The sender generates CRC/checksum and creates
a message header at the beginning of the channel.
If the message is not addressable by the Elan3 net-
work interface or if it is less than 16KB, it is cop-
ied over and appended to the header. Then this
message is transmitted over the network with
hardware broadcast. To avoid the copying over-
head, when the message is large than 16 KB and
also elan addressable, it is transmitted as a sepa-
rate message before the header. This is shown as
step 2 in Figure 5. The dashed line shows the sep-
arate data message. When the recipients do not
have contiguous VPIDs, the sender partitions
them as disjoint groups and allocates a broadcast
VPID for each group. The broadcast message is
transmitted to each group in a chained manner,
using chained DMA provided by Quadrics.

Receiver-side message delivery

When a broadcast message arrives at the receiver
side, its tag is matched against the corresponding
broadcast request. If it is an expected message, the
data are copied into the destination buffer and
CRC/checksum is generated and compared to the
CRC/checksum contained in the header. If the
received data are not corrupted, the request status
is updated as completed, as shown in Figure 5
(steps 3 and 4 at the receiver side). If the message
is not expected or its data are corrupted, the mes-
sage is dropped and a NACK is generated to sig-
nify the error. The NACK is detected and corrected
later during the synchronization. At the sender
side, if the message is buffered in the channel, it
also updates the MML request status as com-
pleted, shown in Figure 5, step 4 at the sender side.
Otherwise, it has to wait until it is notified that all
receivers have received the data through synchro-
nization.

Synchronization

As discussed in Section 4.3, synchronization is
needed before reusing a broadcast channel. We
choose to take a tree-based algorithm for the syn-
chronization, and leave the test-and-set based
approach for later optimization. We use a delayed
synchronization scheme, in which the synchroni-
zation is only triggered when the system is running
out of broadcast channels. The use of broadcast
channels is also synchronized. As shown in
Figure 6, we use a balanced tree to perform the up

Downloaded from hpc.sagepub.com at FLORIDA STATE UNIV LIBRARY on June 20, 2016

http://hpc.sagepub.com/

Manager

<o
~
~

Fig. 6 Synchronization of the broadcast operation.

phase synchronization following the approach
described in Petrini et al. (2001); see http://www.
quadrics.com/onlinedocs/Linux/html/index.html.
Every process updates its status to its parent with
an ACK or a NACK, and the manager process at the
root of the tree combines all the acknowledgments.
This is shown in Figure 5 as step 5. During the
down phase of synchronization, the manager proc-
ess broadcasts its result using the same broadcast
approach described in Section 4.2. This is shown
in Figure 5 as step 6. The two-phase synchroniza-
tion is also shown in Figure 6 in more detail. With
successful synchronization, each process updates
its channel state and progresses to the next round
of broadcast operations and synchronization.

5.2 BROADCAST RELIABILITY

When a NACK is received, the manager process notifies
all the processes that there is a transmission error since
the last synchronization. A process then retransmits all
messages for which it is the sender since the last synchro-
nization. A receiving process that has received data cor-
rectly will ignore the redundant message. However, it
still cannot reuse the channel because the synchroniza-
tion stage has not finished updating its channel state and
releasing the channel. This approach implies that the
retransmission is time-consuming and will possibly
repeat some successfully completed broadcast opera-
tions. Taking into account the high reliability of Quadrics
interconnect, this is acceptable because it can speed up
the common cases of successful transmission by freeing
processes from frequent synchronization. Since the error
rate is low, the cost for the rare retransmission cases can
be contained by the benefits from saved synchronization.
When a message happens to be lost, the sender (or the
receiver) detects it with its time-stamp, or the manager

can detect it when it fails to make progress through syn-
chronization. In either case, the broadcast retransmission
is triggered. If there is a failure of the hardware broadcast
communication, a generic broadcast operation on top of
point-to-point operations takes care of the failed broad-
cast operations.

6 Performance Evaluation

In this section, we describe the performance evaluation of
the broadcast algorithm. We have evaluated the imple-
mentation on a TRU64 quad-1.25GHz alpha cluster, which
is equipped with Quadrics interconnect, composed of a
dimension four switch, Elite-256, and QM-400 cards. On
the same system, we have also measured the performance
of the broadcast implementation by Quadrics for MPICH
(Gropp et al., 1996), and HPs for Alaska MPI. For the
experiments in Sections 6.3 and 6.4, we have used an
eight-node cluster of quad-700MHz Pentium-III. An Elan3
QM-400 card is attached to each node and links to a qua-
ternary fat tree switch of dimension two, Elite-16.

Our tests are performed by having the processes first
warmed up with 20 broadcast operations. Then a sample
size of 1000 broadcast operations is performed after a bar-
rier synchronization. This is repeated for 100 samples, each
again performed after a barrier. The duration of each sam-
ple is recorded. With statistical analysis on these samples,
we derive the average time for a broadcast operation as the
latency. The same test is used to measure the performance
of MPICH-Quadrics and Alaska MPI broadcast opera-
tion, which uses the hardware broadcast communication.

6.1 BROADCAST LATENCY

We measured the broadcast latency of four-byte mes-
sages over 128 processes on 32 contiguous nodes. As
shown in Figure 7, the new algorithm in LA-MPI (LA-
MPI HW) significantly reduces broadcast latency, com-
pared to the original algorithm. This is to be expected
because the new broadcast algorithm takes advantage of
Quadrics hardware broadcast. As also shown in Figure 7(a),
our broadcast algorithm outperforms the algorithms
implemented for MPICH by Quadrics and HPs for Alaska
MPI. This indicates that the new algorithm is able to take
advantage of the hardware broadcast with much less over-
head compared to the broadcast algorithm provided in
libelan. These performance gains are due to the
pipelining of broadcast messages and the reduction on
synchronization overhead.

6.2 BROADCAST SCALABILITY

Scalability is an important feature of any collective oper-
ation. To evaluate the scalability of the broadcast opera-

Downloaded from hpc.sagepub.com at FLORIDA STATE UNIV LIBRARY on June 20, 2016

http://hpc.sagepub.com/

200

MPICH —+— ' .
180 - Alaska ---x--- Koo -
160 L. LA-MPI - ; |
LA-MPI HW --&- ;
140 | |
S 120 f 4
g 100 i
() ;
© 80]
— K
40]
20 e -+
ol z F z 7 R
4 8 16 32 64 128 256 512

Message Size (Bytes)

(a) Small Messages

2000 F MPICH —— E

Alaska ---x---
1800 = | AMPI % i
1600 | LA-MPIHW 8- P

1400 | A
1200 % .

Latency (us)
=
o
o

1k 2k 4k 8k 16k 32k 64k
Message Size (Bytes)

(b) Large Messages

Fig. 7 Performance comparison of different broadcast algorithms.

80 T T T T
MPICH —+— i
70 + Alaska ---x--- _
LA-MPI ------

60 L LA-MPIHW o

50 | e -

40 b .

Latency (us)

8 16 32 64 128 256
Number of Processes

Fig.8 Broadcast scalability with different system sizes.

tion with different system sizes, we have performed the
same test with varying number of processes. Figure 8
shows the broadcast latency for an eight-byte message
over different number of processes. Compared to the
original generic algorithm in LA-MPI, the new broadcast
algorithm achieves a scalability close to O(1), up to 128
processes. When compared to MPICH or Alaska MPI, a
better scalability is also observed. This indicates that the
new broadcast algorithm is also able to provide a better

scalability while taking performance advantage of Quad-
rics hardware broadcast.

6.3 COST OF RELIABILITY

While MPICH-Quadrics and HPs for Alaska MPI leaves
the issue of reliable data delivery to Quadrics hardware,
LA-MPI ensures end-to-end reliable message passing.
LA-MPI provides an option to turn the end-to-end relia-
bility on or off. The users have the convenience to choose
between high reliability and fast performance. Under the
reliable running mode, broadcast messages are retrans-
mitted if any error occurs. The cost of reliability can be
measured by comparing the performance of LA-MPI
under the reliable and unreliable modes. As shown in
Figure 9(a) the reliability cost is about 1 us for messages
< 256 bytes. This indicates that the added reliability has a
little impact on the overall broadcast performance. How-
ever, it has a significant impact on large message broadcast
operations, as shown in Figure 9(b). This is to be expected
because the generation and validation of CRC/checksum
for large messages takes a significant amount of time.

6.4 IMPACT OF THE NUMBER OF
BROADCAST CHANNELS

As discussed in Section 4.3, synchronization is needed to
maintain the consistency of broadcast channels. With the
provision of multiple broadcast channels, the synchroni-

Downloaded from hpc.sagepub.com at FLORIDA STATE UNIV LIBRARY on June 20, 2016

http://hpc.sagepub.com/

No Reliability ——
With Reliability ----—-

2 I I I I I I I
1 2 4 8 16 32 64 128 256

Message Size (Bytes)

(a) Small Messages

1200

No Reliability —+—
With Reliability ----—- ;

1000

800

600 -

Latency (us)

400 -

200

512 1k 2k 4k 8k 16k 32k 64k
Message Size (Bytes)

(b) Large Messages

Fig. 9 Cost of reliability.

0 | | | | | |

2 4 6 8 10 12 14 16
Number of Channels

Fig. 10 Impact of the number of broadcast channels.

zation cost can be amortized over a set of broadcast oper-
ations.

To gain insights into the performance of the broadcast
algorithm, it is beneficial to find out the impact of pro-
viding different number of broadcast channels. We meas-
ured the broadcast latency of the broadcast operation
with a different number of channels over eight processes
on an eight-node system. As shown in Figure 10, with
two channels the broadcast latency is 17.1 s for eight-

byte messages. The latency is reduced when more chan-
nels are provided. When 16 channels are provided, this
latency is reduced to 4.3 us. Thus, the synchronization
cost is reduced by 13 s as the frequency of synchroniza-
tion is dropped to every 16 broadcast operations. By
buffering multiple messages with 16 channels, the cost is
indeed amortized into multiple operations.

7 Conclusions and Future Work

LA-MPI (Graham et al., 2002) is a high performance
thread-safe implementation of the MPI library, designed
for fault-tolerant message passing over terascale clusters.
Currently, LA-MPI broadcast implementation is a generic
spanning-tree based algorithm on top of point-to-point
messaging, which does not exploit the benefits of Quad-
rics hardware broadcast.

In this paper, we take on the challenge to design an
efficient LA-MPI broadcast operation over Quadrics
hardware broadcast. We describe the benefits and limita-
tions of Quadrics hardware broadcast and possible strate-
gies to overcome them. Accordingly, a broadcast algorithm
is designed and implemented with the best suitable strat-
egies to achieve high performance, as well as end-to-end
reliability. Our evaluation shows that the new broadcast
algorithm achieves significant performance gains compared
to the original generic broadcast algorithm in LA-MPI. It
is also highly scalable as the system size increases. It out-
performs the broadcast algorithms implemented by Quad-

Downloaded from hpc.sagepub.com at FLORIDA STATE UNIV LIBRARY on June 20, 2016

http://hpc.sagepub.com/

rics Supercomputers World MPICH and HPs for Alaska
MPL

The current evaluation focuses on the basic perform-
ance in terms latency and scalability. In future, we intend
to study its fault-tolerant capabilities in the presence of
various errors. We also plan to extend this broadcast algo-
rithm so that it can take advantage of multiple Quadrics
network interfaces and stripe messages across them.
Moreover, since Quadrics provides programmable net-
work interface support, we intend to offload some of the
broadcast functionalities to the NIC, e.g. the synchroniza-
tion phases, further improving its performance while main-
taining its end-to-end message passing fault tolerance.

ACKNOWLEDGMENTS

This research is supported in part by Grant 76521-001-03
4v from Los Alamos National Laboratory. Los Alamos
National Laboratory is operated by the University of Cal-
ifornia for the National Nuclear Security Administration
of the United States Department of Energy under con-
tract W-7405-ENG-36.

AUTHOR BIOGRAPHIES

Weikuan Yu is a Ph.D. student in the Computer Sci-
ence and Engineering Department at the Ohio State Uni-
veristy. His research interests include parallel computing,
parallel file systems, and bioinformatics. Yu has an M.S.
in molecular, cellular and developmental biology from
Ohio State University. He is a member of the IEEE Com-
puter Society and the USENIX Association.

Sayantan Sur has been a Graduate Researcher at the
Department of Computer Science and Engineering at the
Ohio State University for the last two years. His research
has concentrated on collective communication issues in
high performance clusters of commodity processors.
Prior to this, he was employed as Member of Technical
Staff at Sun Microsystems, India. He obtained a Bach-
elors of Technology degree in electrical and electronic
engineering from the National Institute of Technologyin
Calicut India in 2001.

Dhabaleswar K. Panda is a Professor of Computer
Science at the Ohio State University. He obtained his
Ph.D. in computer engineering from the University of
Southern California. His research interests include paral-
lel computer architecture, high performance computing,
user-level communication protocols, interprocessor com-
munication and synchronization, network-based comput-
ing, and quality of service. He has published over 125
papers in major journals and international conferences
related to these research areas. Dr.Panda has served on

the Program Committees and Organizing Committees of
several parallel processing and high performance com-
puting conferences and on the editorial boards for several
parallel processing journals. Dr. Panda is a recipient of
the National Science Foundation Faculty Early CAREER
Development Award, the Lumley Research Award (1997
and 2001) at the Ohio State University, and an Ameritech
Faculty Fellow Award. He is a member of IEEE Compu-
ter Society and ACM.

Rob Aulwes has been employed at Los Alamos
National Laboratory for over one year, where he is cur-
rently a Technical Staff Member. He is working with the
Unified Data Model team whose goal is to provide an
efficient parallel I/O library to support the manipulation
of mesh data and data interchange between applications
at the lab. He obtained his Ph.D. in applied mathematics
from the University of Iowa in 1999 under the direction
of Dr. William Klink and Dr. Tuong Ton-That.

Richard Graham has been a technical staff member in
the Advanced Computing Laboratory (ACL) at Los Ala-
mos National Laboratory since 1999, and is the Resilient
Technologies team leader. Rich graduated from the Seat-
tle Pacific University in 1983 with a Bachelors degree in
chemistry and received a Ph.D. in theoretical chemistry
from Texas A&M in 1990. Rich worked as a postdoctoral
researcher at the University Of Chicago from 1990 to
1992, and worked at Cray/SGI for seven years before
joining the ACL. Richs interests are primarily in devel-
oping low-level supporting technologies for high per-
formance large-scale simulations. He has been a member
of the team developing LA-MPI since the projects incep-
tion in 1999, and has led the project for the past four
years, bringing it along from being a research project on
high performance fault-tolerant communications, to its
current stage of a production quality high performance,
fault-tolerant MPI.

References

Aulwes, R. T., Daniel, D. J., Desai, N. N., Graham, R. L., Ris-
inger, L., Sukalski, M. W., and Taylor, M. A. 2003. Net-
work fault tolerance in LA-MPI. Proceedings of EuroPVM/
MPI03, Venice, Italy, September 29—October 2.

Beecroft, J., Addison, D., Petrini, F., and McLaren, M. 2003.
QsNet-II: an interconnect for supercomputing applications.
Proceedings of Hot Chips 03, Stanford, CA, August.

Coll, S., Duato, J., Petrini, F., and Mora, F. J. 2003. Scalable
hardware-based multicast trees. Proceedings of Super-
computing 03, Phoenix, AZ, November 15-21.

Frachtenberg, E., Petrini, F., Fernandez, J., Pakin, S., and Coll,
S. 2002. STORM: lightning-fast resource management.
Proceedings of Supercomputing 02, Baltimore, MD,
November 16-22.

Downloaded from hpc.sagepub.com at FLORIDA STATE UNIV LIBRARY on June 20, 2016

http://hpc.sagepub.com/

Graham, R. L., Choi, S-E., Daniel, D. J., Desai, N. N., Minnich, sage Passing Interface Standard. Parallel Computing

R., Rasmussen, C. E., Risinger, L. D., and Sukalski, M. 22(6):789-828.

W.2002. A network-failure-tolerant message-passing sys- MPI Forum. 1993. MPI: a message passing interface. Proceed-

tem for terascale clusters. Proceedings of the 2002 Inter- ings of Supercomputing 93, Portland, OR, November 15-19.

national Conference on Supercomputing, New York, NY, Petrini, F., Coll, S., Frachtenberg, E., and Hoisie, A. 2001.

June 22-26, pp. 77-83. Hardware- and software-based collective communication
Gropp, W., Lusk, E., Doss, N., and Skjellum, A. 1996. A high- on the Quadrics network. Proceedings of the IEEE Inter-

performance, portable implementation of the MPI Mes- national Symposium on Network Computing and Applica-

tions (NCA 2001), Boston, MA, February.

Downloaded from hpc.sagepub.com at FLORIDA STATE UNIV LIBRARY on June 20, 2016

http://hpc.sagepub.com/

