
OAWS: Memory Occlusion Aware Warp Scheduling

Bin Wang
Auburn University

bwang@auburn.edu

Yue Zhu
Florida State University
yzhu@cs.fsu.edu

Weikuan Yu
Florida State University

yuw@cs.fsu.edu

ABSTRACT
We have closely examined GPU resource utilization when execut-
ing memory-intensive benchmarks. Our detailed analysis of GPU
global memory accesses reveals that divergent loads can lead to the
occlusion of Load-Store units, resulting in quick consumption of
MSHR entries. Such memory occlusion prevents other ready mem-
ory instructions from accessing L1 data cache, eventually stalling
warp schedulers and degrading the overall performance. We have
designed memory Occlusion Aware Warp Scheduling (OAWS) that
can dynamically predict the demand of MSHR entries of diver-
gent memory instructions, and maximize the number of concurrent
warps such that their aggregate MSHR consumptions are within the
MSHR capacity. Our dynamic OAWS policy can prevent memory
occlusions and effectively leverage more MSHR entries for better
IPC performance for GPU. Experimental results show that the static
and dynamic versions of OAWS achieve 36.7% and 73.1% perfor-
mance improvement, compared to the baseline GTO scheduling.
Particularly, dynamic OAWS outperforms MASCAR, CCWS, and
SWL-Best by 70.1%, 57.8%, and 11.4%, respectively.

1 Introduction
GPU applications have a wide range of memory access patterns,
many of which are very irregular. Despite the high-bandwidth GPU
global memory, irregular patterns can stall the GPU memory and
degrade the effectiveness of massive parallelism. GPUs have em-
ployed a hierarchy of data caches to reduce memory latency and
save the on-chip network and off-chip memory bandwidth when
there is locality within the accesses. However, the cache is fre-
quently thrashed by divergent memory accesses. To tackle this
problem, GPU L1D bypassing has been well studied to alleviate
cache contention [1, 2, 3, 4, 5, 6, 7, 8]. For example, MRPB [1]
aggressively bypasses L1D whenever an associativity stall occurs,
but the cache is still underutilized. Two recent works [9, 10] re-
ported that throttling the number of concurrent warps reduces the
accumulated working set so that the contention on cache capacity
is alleviated and locality is preserved.

While the aforementioned efforts improved the memory perfor-
mance of GPU applications, they overlooked some hazardous sit-
uations that are faced by GPU memory instructions. In this pa-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PACT ’16, September 11-15, 2016, Haifa, Israel
c© 2016 ACM. ISBN 978-1-4503-4121-9/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2967938.2967947

per, we have closely examined execution stalls caused by divergent
memory accesses in data-intensive GPU benchmarks. Our detailed
analysis of GPU global memory accesses reveals that divergent ac-
cesses can lead to the occlusion of Load-Store units and a quick
depletion of MSHR (Miss Status Holding Registers) [11] entries.
This memory occlusion in turn stalls the execution pipeline, de-
grading the overall performance. Our analysis shows that memory
occlusion can significantly delay both coherent and divergent GPU
instructions, propagate into more stalls in the pipeline, and deterio-
rate the overall utilization of GPU. Furthermore, such memory oc-
clusion cannot be mitigated by a simple provision of more MSHR
entries, when there is a lack of appropriate balance between warp
parallelism and L1D locality.

Turner [12] investigated instruction replay for mitigating the per-
formance impact of pipeline stalls caused by GPU memory opera-
tions, aiming to reduce wasteful replays by predicting resource de-
mands of GPU memory operations. In this paper, we propose mem-
ory Occlusion Aware Warp Scheduling (OAWS) to monitor the
usage of MSHR entries, predict the MSHR requirement of mem-
ory instructions, and schedule the warps that can be satisfied by
the available MSHR entries, thereby preventing memory occlusion
and increasing the effective parallelism among GPU warps. OAWS
is designed with both static and dynamic methods to predict the
required MSHR entries from GPU warps. Static OAWS predicts
the misses from all warps with a fixed miss rate while dynamic
OAWS takes into account the varying access patterns of different
warps to predict cache misses on a per-warp basis. Particularly,
dynamic OAWS has seamlessly integrated the warp priority and a
concurrency estimation model in its prediction policy. It effectively
prevents memory occlusion by dynamically predicting an optimal
number of concurrent warps, and uses more MSHR entries effec-
tively without thrashing L1D.

We have leveraged a wide variety of memory-intensive bench-
marks to evaluate the performance of OAWS and demonstrated that
OAWS outperforms three state-of-the-art warp scheduling techniques,
i.e., Cache-Conscious Wavefront Scheduling (CCWS) [9], Static
Wavefront Scheduling (SWL) [9] and Memory Aware Scheduling
and Cache Access Re-execution (MASCAR) [13]. Specifically, our
experiments show that our static and dynamic versions of OAWS
achieve 36.7% and 73.1% compared to the baseline GTO warp
scheduling. In addition, dynamic OAWS helps GPU leverage the
benefits of more MSHR entries. Compared to GTO, it improves the
IPC performance by 73.1%, 89.1%, 92.6%, and 99.4% when there
are 32, 48, 64, and 96 MSHR entries, respectively.

The rest of this paper is organized as follows. Section 2 de-
scribes the background on GPU architecture and the execution of
memory instructions. Section 3 provides an analysis of memory
occlusion. Section 4 details the proposed memory occlusion aware

LD/ST

O
pe

ra
nd

 C
ol

le
ct

or

Execution Units (ALU/FPU/SFU)

A
cc

es
s

G
en

er
at

io
n

Warp
Scheduler

Warp
Scheduler

…
…

W0

W46

W2
…

W1

W47

W3

MSHR

A
B

MSHR

A
B

Coherent Load Divergent Load

D E F Gcache
block

C

1 m
iss

4 m
iss

es

A
B

C

Time

MLP

max

A
B

D
E

F
G

Time

MLP

max

Memory Occlusion!

Available

AddrAddr

M
em

 P
or

t

Shared Memory
Texture Cache

Constant Cache

M
A

C
U

L1D

MSHR

Figure 1: Baseline Streaming Multiprocessor (SM). Other stages of the pipeline are omitted. The MSHR of L1D has 4 entries, two
of which have been allocated to track the outstanding memory requests of cache blocks A and B. The remaining MSHR entries are
sufficient for a coherent load, but occlude the divergent load so that demand requests of blocks F and G are replayed.

warp scheduling algorithms. The experimental methodology and
results are presented in Section 5. Section 6 summarizes the re-
lated work, followed by Section 7 that concludes the paper.

2 Background
2.1 GPU and Warp Scheduling
We study a Fermi-like GPU from NVIDIA, which has 32 threads
per warp and 32 MSHR entries per Streaming Multiprocessor (SM)
as the default configuration. Inside each SM as shown in Figure 1,
two warp schedulers independently manage warps with even and
odd identifiers [14]. In each cycle, both warp schedulers pick one
ready warp and issue its instruction into the SIMD pipeline back-
end [15, 14, 16], which in our baseline SM mainly consists of
Operand Collector (i.e., registers), Execution Units (ALU/FPU/SFU),
and Load-Store (LD/ST) units. To determine the readiness of an
instruction, a ready bit is used to track its dependency on other in-
structions. It is updated in the scoreboard by comparing its source
and destination registers with other in-flight instructions [17]. In-
structions are ready for scheduling when the ready bits are set, i.e.,
dependencies are cleared. GPU scheduling logic consists of two
stages: qualification and prioritization [18]. In the qualification
stage, ready warps are selected based on the ready bit of each in-
struction. In the prioritization stage, ready warps are prioritized
for execution based on a chosen metric, such as cycle-based round-
robin [18, 19, 20], warp age [9, 10], instruction age [18, 21], or oth-
ers that can maximize resource utilization [18]. For example, the
Greedy-Then-Oldest (GTO) [9, 10] scheduler maintains the highest
priority for an active warp until it is stalled. It then prioritizes the
oldest among all ready warps for scheduling.

2.2 GPU Memory Access and Occlusion
According to data destination, GPU memory requests are sent to
data cache (L1D), constant cache, texture cache, and shared mem-
ory, respectively. Inside GPU LD/ST units, memory accesses are
generated by the Access Generation unit. A memory instruction is
coherent when its memory accesses can be coalesced into 1-2 cache
lines; otherwise, it is referred to as a divergent instruction.

For memory instructions to local/global memory, per-thread mem-
ory accesses are coalesced into fewer cache lines by the Memory
Access Coalescing Unit (MACU). Coalesced accesses are sent to
L1D via a single 128-byte port [21]. For a load access, on cache hit,
the requested data is loaded to the register file; on cache miss, one
demand request is generated to fetch data from the lower memory
hierarchy. The Missing Status Holding Register (MSHR) is used
to track in-flight memory requests and merge duplicate requests to
the same cache line. After MSHR allocation, a memory request
is buffered into the Memory Port for transfer. An MSHR entry is
deallocated after its corresponding memory request is back and all

accesses to that block are serviced. L1D does not support coher-
ence, so it evicts cache blocks on stores to global memory. Stores
require no MSHR and are directly buffered into the memory port.
Memory requests buffered in the memory port are drained by the
on-chip network in each cycle when lower memory hierarchy is not
saturated.

Memory Occlusion: MSHR is often implemented as a fully-
associative structure and thus is limited by capacity. This leads to
a structural hazard due to the mismatch between limited memory-
level parallelism (MLP) and massive thread-level parallelism (TLP).
This hazard can be exacerbated by bursty accesses from divergent
loads, causing the propagation of stalls [12] in the execution pipeline.
As shown in the right part of Figure 1, the MSHR of L1D has 4 en-
tries. The coherent load with 1 cache miss can be immediately ser-
viced, while the four un-coalesceable accesses of the divergent load
suffer from insufficient MSHR entries because only two MSHR en-
tries are available. In this example, the access to block F that misses
in L1D is replayed until the memory request of block A is back
and its MSHR entry is deallocated. During the access replay, the
currently prioritized memory instruction can not make progress, oc-
cluding LD/ST units. This occlusion in turn prevents other memory
instructions from accessing LD/ST units. We refer to such a sce-
nario as Memory Occlusion. Memory Occlusion degrades memory
instruction throughput in LD/ST units and prevents other memory
instructions that do not need an MSHR from accessing the L1D.

3 Characterization of Memory Occlusion
We investigate the impacts of memory occlusion by analyzing the
breakdown of LD/ST stall cycles, quantifying the global memory
access time, and examining the trend of MSHR consumption under
the GTO warp scheduling.

3.1 Stalls in LD/ST and Warp Schedulers
When LD/ST units are stalled, a ready memory instruction can not
be issued. We refer to such stall cycles as LD/ST stalls. Besides
MSHR unavailability and memory port congestion, sequentially
processing un-coalesceable memory accesses makes the LD/ST units
unavailable to warp schedulers and delays other ready memory
instructions accessing L1D. According to these three causes that
can stall LD/ST units, we breakdown the LD/ST stall cycles into
three categories in Figure 2: 1) coalescing stalls (LDST_COAL)
— when L1D has successfully serviced one un-coalescable mem-
ory access and LD/ST units are stalled by divergent memory ac-
cesses; 2) MSHR stalls (LDST_MSHR) — when a cache miss can
not be processed due to MSHR unavailability; and 3) ICNT stalls
(LDST_ICNT) — when a cache miss can not be processed due
to on-chip network congestion, but MSHR entries are available.
Among the memory coherent benchmarks, 2MM, 3MM, SRAD1,
SRAD2, and LBM experience a large percentage of LDST_ICNT

0%

20%

40%

60%

80%

100%

BP 2MM 3MM SRAD2 SRAD1 3DC FDTD LBM PF SC IIX SYRK BFS ATAX BICG MVT KMN SYR2K GES SPMV

P
er
ce
n
ta
g
e

LDST_COAL

LDST_ICNT

LDST_MSHR Memory DivergentMemory Coherent

Figure 2: The breakdown of LD/ST stall cycles (the stacked bar on left) and the percentage of cycles for which the warp schedulers
are stalled due to LD/ST stalls (the right bar). The dotted line divides all benchmarks into memory coherent (left) and memory
divergent (right) ones. Benchmark characteristics and simulator details are summarized in Section 5.

0%

20%

40%

60%

80%

BP 2MM 3MM SRAD2 SRAD1 3DC FDTD LBM PF SC IIX SYRK BFS ATAX BICG MVT KMN SYR2K GES SPMV

P
er

ce
n

ta
g
e

Coherent Load

Divergent Load

Figure 3: Memory occlusion time in the memory access latency for coherent and divergent loads.

stalls. These five benchmarks write significant amounts of data into
global memory, congesting the network from SM to L2 cache. For
memory divergent benchmarks, LDST_MSHR dominates LD/ST
stall cycles, with an average of 66% of total cycles waiting for
MSHR entries. The divergent benchmarks are read-intensive. How-
ever, read requests impose limited pressure on the network from
SM to L2 cache. So LDST_ICNT plays a negligible role in these
benchmarks.

Although LD/ST units are stalled, warp schedulers can still issue
computation instructions into execution units to overlap the stalls in
LD/ST units. The capability of overlapping LD/ST stalls explains
why warp schedulers (the gray bar) are stalled less than LD/ST
units across all of the benchmarks in Figure 2. However, LD/ST
stalls eventually deplete ready warps for the schedulers when all
warps are waiting to be scheduled to issue memory instructions.
For memory coherent benchmarks, on average, warp schedulers
waste 28% of the total cycles waiting for the availability of LD/ST
units. This percentage increases to 75% for memory divergent
benchmarks. Such high stalls in warp schedulers directly lead to
severe degradation of instruction throughput.

3.2 Quantifying Memory Occlusion Time
Upon memory occlusion, L1D access latency can be divided into
memory occlusion time and L1D hit/miss time. Figure 3 shows the
percentage of memory occlusion time in the average L1D access
latency for both coherent and divergent load instructions in mem-
ory intensive benchmarks. On average, memory occlusion delays
account for 4% of L1D access time for all memory coherent bench-
marks. SRAD1 has very few divergent loads through its 502 kernel
invocations. In memory divergent benchmarks, memory occlusion
delays reach 33% and 47% for coherent and divergent loads, re-
spectively. These large delays dramatically prolong memory access
time, demanding a higher degree of computation-memory overlap.
However, these memory-divergent benchmarks often lack sufficient
computation instructions to overlap with memory accesses, causing
the warp scheduler stalls shown in Figure 2. It is clear that memory
occlusion is a performance destructor for divergent GPGPU work-
loads, which is the focus in the paper.

Since the lack of MSHR entries is inherently associated with
memory occlusion, an intuitive solution is to employ more as a sim-

0%

20%

40%

60%

80%

100%

0
2
4
6
8

10
12
14
16
18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
D

F
of

 W
ar

p
E

xe
cu

tio
n

M
SH

R
 C

on
su

m
. P

er
 L

oa
d

Relative Warp Age

pc=240 pc=272 CDF

Figure 4: The MSHR consumption of each load instruction in
BFS kernel and the CDF of warp execution times when using
GTO scheduler. pc=240 and pc=272 are the two divergent loads.
Age 0 represents the oldest warp.

ple solution. We have investigated the impact of more MSHR en-
tries to memory occlusion under different scheduling policies. Our
results have shown that, while deeply associated with the number
of MSHR entries, memory occlusion cannot be solved by simply
adding more MSHR entries (see Section 5.5 for more details).

3.3 Predictability of MSHR consumption
Since the consumption of MSHR entries is a good indicator of po-
tential memory occlusion, we use one kernel from BFS to study
MSHR consumption when using a GTO warp scheduler. The two
divergent load instructions (pc=240 and pc=272) in this kernel carry
high intra-warp locality [9, 10]. Because older warps have higher
scheduling priorities under GTO scheduling, older warps are more
frequently scheduled and their data blocks have shorter re-reference
intervals, leading to lower cache misses and consequently lower
MSHR consumption. As shown in Figure 4, the MSHR consump-
tion levels of the two divergent loads are linear to each warp’s rel-
ative age. The CDF of warp execution times shows that the oldest
8 warps (age=0-7) occupy 94% of total cycles. Note that the warps
with even younger ages (age>7) have lower MSHR consumption
because they are rarely scheduled, until older warps have very few
active threads remained or retired completely. This observation
also applies to the other memory divergent benchmarks we have
evaluated. Thus, we argue that, because of the existence of a strong
linear relationship, the MSHR consumption of a load instruction

can be predicted based on its hit/miss history and its warp’s GTO
scheduling priority.

4 OAWS: Occlusion Aware Warp Scheduling
We propose memory Occlusion Aware Warp Scheduling (OAWS)
to monitor the use of MSHR entries and predict memory occlusion,
thereby scheduling warps appropriately to alleviate its impact.

4.1 Main Idea of OAWS
Figure 5 provides an example on the benefit of OAWS. For illustra-
tion purpose, the number of MSHR entries in Figure 5 is 8. Assume
that the example kernel first fetches data from memory and then
computes it. There are 3 ready warps, A, B, and C, to be scheduled
(Figure 5(a)) . They are ordered by their arrival times. The memory
load instructions in warps A, B, and C are divergent and produce
6, 6, and 2 memory load requests to L2 cache, respectively. The
varying number of memory requests for warps are caused by either
branch divergence or warp locality variation [9, 10]. Unless other-
wise noted, we employ by default the GTO [9] warp scheduler.

Figure 5(b) shows how the GTO scheduler works. The load in-
structions from warps A, B, and C are issued at T0, T1, and T4,
respectively, according to their age. At the time T2, two MSHR en-
tries are allocated to memory requests from warp B. At this point,
MSHR entries are used up and memory occlusion occurs. There-
fore, the remaining requests of warp B are continuously replayed
until the responses for warp A’s memory loads arrive at T3. At T5,
all data required by warp A are returned from L2 and warp A is
ready to be issued for computation. While warp A finishes compu-
tation at T6, warps B and C are stalled due to outstanding memory
requests. The computation for warps B and C starts at T7 and T8,
respectively. As shown in Figure 5(b), GTO causes idle cycles be-
tween T6 and T7.

In contrast, in Figure 5(c), OAWS predicts that available MSHR
entries cannot satisfy warp B’s demand, so it prevents warp B from
issuing its memory instruction at T

′

1 . OAWS then avoids the mem-
ory occlusion that may occur when warp B is scheduled. When
warp A’s requests return from memory, their MSHR entries are re-
leased and warp B is then scheduled. Since the ALU keeps idle,
warp A and C are immediately scheduled for computation at T

′

4
and at T

′

5 , respectively. Finally, warp B is scheduled for computa-
tion at T

′

6 . Since warp C is scheduled ahead of warp B, its com-
putation overlaps with warp B’s memory load, reducing the time
to complete these warps. Although this example shows only three
warps and a miss penalty of 12 cycles for simplicity, the benefit of
occlusion-awareness could be more significant because the off-chip
memory latency is often between 400 and 500 cycles.

4.1.1 Qualification Metric of OAWS
OAWS aims to prevent memory occlusion with a simple logic, i.e.,
ensuring that enough MSHR entries are available for a divergent
load. To this end, it needs to predict the number of cache misses
for an incoming divergent load, and take into account the needs
of load instructions that have been issued. Thus, the qualification
logic of OAWS is to qualify a memory instruction if its predicted
cache misses can satisfy the following condition:

Misspred(pc,w)≤ Availmshr−Missin f light , (1)

where Availmshr is the number of available MSHR entries for a
L1D, Misspred(pc,w) is the predicted number of cache misses that
warp w is going to incur for the memory instruction at address pc,
and Missinflight is the number of predicted cache misses from in-
flight load instructions. At runtime, Missinflight is updated as mem-
ory instructions are issued or completed by the LD/ST units. Note
that stores do not consume MSHR entries because coherent loads

rarely consume 2 entries. Coherent loads are predicted to consume
one MSHR entry with 1 cache miss. In OAWS, we focus on di-
vergent load instructions which are more likely to cause memory
occlusion.

4.1.2 Designing Scheduling Policies for OAWS
To accurately predict the number of cache misses for a divergent
load instruction, we have explored both static and dynamic policies
for OAWS. Figure 6 presents the microarchitecture for both ver-
sions. OAWS is implemented as an extension of the warp sched-
uler’s qualification logic. Conventional qualification logic is used
to pick warps that are ready for execution, which is denoted as a
N-bit vector Ready[1:N] (¶). OAWS relies on the Divergent Load
Classifier (DLC) to predict Misspred(pc) and then re-qualifies ready
warps using the logic in Equation 1. The output of OAWS is an-
other N-bit vector Occlude[1:N] (¸), in which a bit value 0 de-
notes a warp predicted to not occlude MSHR entries, 1 otherwise.
OAWS then uses the same prioritization logic as GTO to schedule
the occlusion-free warps (¹). Therefore, the younger occlusion-
free warps still have a chance to share the cycles with the older
warps without memory occlusion. The following sections will de-
tail both static and dynamic OAWS.

4.2 Static OAWS
With the static OAWS policy, we adopt a static miss rate (SMR) for
each divergent load. The number of MSHR entries required for this
load (Misspred(pc,w)) is then predicted as Divpred(pc,w)× SMR,
where Divpred(pc,w) is the predicted memory divergence of warp
w at load instruction pc. Divpred(pc,w) is equal to the number
of active threads in w, similar to DAWS [10], because threads of-
ten independently fetch data blocks into L1D when memory diver-
gence occurs. With SMR being 0%, OAWS is essentially disabled,
and all divergent loads are assumed to complete without consuming
MSHR entries. When SMR is 100%, OAWS assumes each thread
will consume one MSHR entry when divergent loads are issued.
We tune static OAWS with SMR in the range from 0% to 100% for
the optimal performance.

In our experiments, we observe that static OAWS with an SMR
of 50% achieves the optimal performance on the divergent bench-
marks evaluated in this study. Given the SIMD width of 32 in our
baseline GPU architecture, 50% means that a warp with 32 active
threads is predicted to consume 16 MSHR entries. Since there are
only 32 MSHR entries per SM, at most two divergent memory
loads can be pipelined into LD/ST units. The qualification logic
in Equation 1 then serializes divergent load instructions to access
the LD/ST units. Because Missinflight is decreased only when a load
instruction retires from memory pipeline, this serialization concep-
tually inserts a minimum delay of Divpred(pc,w) cycles before a
new divergent load can be qualified. When the miss rate is high,
e.g., when the remaining MSHR entries are less than 16, no warp
with 32 threads can be scheduled to issue divergent loads and the
delay is further extended. Such a serialization delay reduces the
frequency of issuing divergent load instructions and also prevents
divergent loads from issuing when available MSHR entries are low,
thus static OAWS can alleviate the problem of memory occlusion.

To implement static OAWS, we only need to know whether a
load is divergent or not. This information is provided by DLC. In
general, each DLC entry records the history of a divergent load, in-
cluding PC address, the number of instruction occurrences (#inst),
the total number of memory accesses (#acc), and cache associativ-
ity contention statistics (#sets). When a load instruction’s memory
accesses are coalesced (º), its PC is first checked against DLC to
make sure that no duplicate records exist in the table. If a new di-
vergent load is detected, a new entry with the current instruction’s

Compute

Mem
Warp A

cause 6
misses

Compute

Mem
Warp B

cause 6
misses

Compute

Mem
Warp C

cause 2
misses Total Execution Time and Latency Overlapping

Warp A

Warp B

Warp C

Time

Warp Scheduling Decisions

(b) Conventional GTO Warp Scheduling

1
2
1

2
3

1
2

4
3

1

5

2

4
3

1

5
6

2

4
3

1

5
6

2

1

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

3
4

6

5
6

2
1

5

4
5

1

6
1

3
2

6

1
2

4

3
4

6
5

3

2
3

5

4
5

1
6

4

6
1

3

2
3

5
4

2

6
1

3

2

5
4

2

1
2

4

6
5

3

1
2

4

6
5

3

1
2

4

6
5

3

1
2

4

6
5

3

1
2

4

6
5

3
2
1 2

2

5

1
6

4
6

2
1

5
1
2

6

M
SH

R
 100%

B/C
stalled A B C B A C

Exposed Latency

T0 T1 T4 T5 T6 T7 T8

Warp

Total Execution Time and Latency Overlapping

Warp A Warp B

Warp C
Saved
Cycles

Time

Warp Scheduling Decisions
B Insufficient MSHR entries for B

(c) Occlusion-Aware Warp Scheduling

1
2
1

2
3

1
2

4
3

1

5

2

4
3

1

5
6

2

4
3

1

5
6

2

1

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

3
4

2

5
6

2
1

1

1
2

6

3
4

2
1

5

2
3

1

4
5

1
2

6

1
2

4

1
2

6
5

3

2
1

5

2
3

1
6

4

6
1

3

2
1

5
4

2

4
5

1

6

3
2

2

5
6

2

4
3

1

5
6

2

4
3

1

5
6

2

4
3

1

5
6

2

4
3

1

5
6

2

4
3

1
6
5 6

6

3

5
4

2
4

6
5

3
5
6

4

M
SH

R
 100%

ALU ALU
LD/ST LD/ST

A A B C C B

T0
’ T1

’ T2
’ T3

’ T4
’ T5

’ T6
’

Warp

Instruction
Window

T2 T3

(a) Code
Example

Memory
Occlusion

Memory
Occlusion

Time Time

Figure 5: A conceptual example showing the benefit of Occlusion Aware Warp Scheduling

OAWS Scheduling Logic

Memory Access Coalescing Unit

Registers/
Execution

Warp
Scheduler

Decode

I-Buffer/
Scoreboard SI

M
T-

St
ac

k

LD
/S

T

A
LU

Fetch

Prioritization Ready
[1:N]

Issuing
Warp

(WID)

L1D MSHR
req1
req2

empty
empty

Controller

Divergent Load Classifier (DLC)

Occlusion
Prevention

Mem. Coalescing Logic

To/From Memory Port

OCW

Availmshr

Availmshr

Issuing Warp (WID)

Pending Accesses
addr1 addr2 ���

tag data

��
�

tag data

Sets

Occlude
[1:N]

GTO

Missinflight

��
�

PC #inst #acc #set
0x100 5 160 160
0x200 5 160 91

OCW
Throttling

ocwWarps
[1:N]

Misspred[1:N]

1 4 2 3

5

6

OCW Logic

FCL

7 Div
OCW

Figure 6: Detailed SM model for our solution. N is the number
of warps on each scheduler.

PC, #inst (being 1), and #acc are inserted into DLC; otherwise, the
existing entry is updated with this information. #sets is updated
with the number of cache sets touched by the current load after its
requests are processed by L1D(»). Since OAWS only focuses on
divergent loads, coherent loads and their information are not popu-
lated into DLC. Static OAWS only needs the PC field to decide if a
load is divergent, while other fields are used by dynamic OAWS.

4.3 Dynamic OAWS
Static OAWS uses a fixed miss rate for all warps, which cannot
account for the dynamic nature of divergent accesses across dif-
ferent warps. In addition, memory divergent benchmarks often
have high intra-warp locality. Thus, we propose dynamic OAWS
to accomplish two objectives: (1) maximizing the number of con-
current warps while preserving L1D cache locality, and (2) maxi-
mizing the use of MSHR entries without memory occlusion. This
requires a careful selection of appropriate warps that can strike a
balance between the maximum resource utilization (cache capac-
ity and MSHR entries) and the best performance (neither memory
occlusion nor cache thrashing).

Dynamic OAWS achieves both objectives by enabling a concur-
rency level at which the aggregate MSHR consumption from all
actively scheduled warps is less than MSHR capacity. In order to
implement dynamic OAWS, we first propose a light-weight concur-

rency model to estimate the maximal number of warps that would
not occlude the LD/ST units, and then apply this model to predict
MSHR consumption on a per-warp basis so that more warps can be
opportunistically scheduled.

4.3.1 Estimation of Optimal Warp Concurrency
Divergent benchmarks with high intra-warp locality can benefit
from reduced cache contention via concurrency throttling. Mean-
while, under the lock-step execution model, warps that incur cache
misses, regardless of the number of missed accesses, will inevitably
consume MSHR entries and also thrash other warps’ cache blocks.
We propose to estimate the optimal number of cached warps based
on the consumption of cache blocks by load instructions. Note that
being fully cached means that a load’s data is completely reserved
in L1D and will incur no cache eviction in its re-references. Un-
der GTO prioritization, only a few old warps are actively sched-
uled, as shown in figure 4, thus monitoring the dynamic changes of
fully cached loads gives a close approximation of Optimal Cached
Warps (OCW).

We also observe that L1D locality in the memory intensive bench-
marks can be associated with both coherent and divergent loads.
Since coherent loads often exhibit streaming-like accesses and di-
vergent loads tend to dominate the memory footprint, we only use
the locality statistics from divergent loads to estimate OCW.

Figure 7 shows the flow of OCW estimation. In the figure, OCW
denotes the estimated number of fully cached warps, and CNT is
a counter used to track the changes in the number of fully cached
loads. In our proposal, OCW is no less than 2, because each warp
scheduler needs at least one active warp (i.e., the oldest warp in
GTO) to reduce the idle cycles in warp schedulers; while Wmax is
the maximum of OCW, which is the number of physical warps on
each SM (48 in our baseline). Cmax is the maximum of CNT. We
empirically use an 8-bit counter for CNT so that it can record the
locality changes in 255 consecutive occurrences of divergent loads,
i.e., Cmax=255 in Figure 7. OCW estimation is a component inside
MACU, denoted as OCW Logic (¼) in Figure 6, and is triggered
after the accesses of a divergent load are serviced by L1D. CNT is
initialized as 128 while OCW is 2 for each SM. These initial values
give OCW estimation the flexibility to gradually learn L1D locality
changes at runtime.

At runtime, CNT is increased by 1 for each fully cached diver-
gent load (A©). When CNT is saturated (CNT==Cmax), if OCW
has not reached its maximum value (Wmax), OCW is increased by

Start

END

Fully
Cached?

CNT == Cmax
&&

OCW<Wmax

OCW--
CNT=Cmax

CNT++ CNT-= Delta

CNT == 0
&&

OCW>2

OCW++
CNT=0

Yes No

Yes

No No

Yes Yes

A

B E

D

C

Figure 7: Flow Chart of OCW estimation logic.

1 and accordingly CNT is reset as 0 to track the changes of the
fully cached divergent loads under the increased concurrency (B©).
For partially cached loads (C©), CNT is decreased by Delta, where
Delta is a tuning parameter. When CNT reaches zero, OCW is de-
creased by 1 so that less warps can be actively scheduled (E©), and
CNT is reset as Cmax. In the corner cases where OCW is equal to
2 or Wmax (D©), CNT will not be updated if CNT is equal to 0 or
Cmax.

To Determine Delta, we have evaluated several heuristics in the
tuning process of OCW estimation. Two representative strategies
are 1) Delta=1 and 2) Delta=CNT/2. The major difference be-
tween the two is that the second strategy can quickly respond to
cache contention and bursty MSHR consumption if OCW is over-
estimated. We observe that cache associativity-sensitive bench-
marks, such as these memory-divergent benchmarks from Mars [22]
benchmark suite, perform better under the second strategy, but the
other memory-divergent benchmarks perform better under the first
strategy. For these associativity-sensitive benchmarks, the bursty
accesses of each divergent load are concentrated into only a few
cache sets [1, 23], severely under-utilizing the L1D capacity. The
second strategy then ensures that the estimated OCW can be quickly
decreased after a few consecutive occurrences of partially cached
divergent loads. We use DLC to track the sensitivity of individ-
ual benchmarks to associativity. Ideally, when #acc of a divergent
instruction is equal to #sets, its divergent accesses are uniformly
distributed into available cache sets and intra-warp associativity-
sensitivity is eliminated. In our implementation, a divergent load
is considered as associativity-sensitive if its #acc is larger than
#sets×1.5. Based on this information, we enable strategy 2 for
associativity-sensitive loads and strategy 1 for the other loads. To-
gether we can have a robust strategy for Delta.

We use three registers to realize the aforementioned logic of dy-
namic OAWS. In Figure 6, Register Div is used to mark whether a
load is divergent. Register FCL is used to track whether a load is
fully cached. FCL is set when a cache miss happens on it. When all
the accesses of the load are serviced, an unset FCL indicates a fully
cached load. Register Sets has N-bit, each of which corresponds to
one set in the N physical cache sets, and is used to record the num-
ber of cache sets touched by the current load. The three registers
are reset when a new load instruction is serviced by L1D.

4.3.2 Concurrency-Aware Avoidance of Memory
Occlusion

With a scheme from Section 4.3.1 that estimates the optimal cached
warps while maintaining L1D cache locality, we can then devise a
scheme for our second objective, i.e., maximizing the use of MSHR
entries without memory occlusion. We first use the estimated OCW
to categorize all warps into two groups: locality warps and thrash-

ing warps, based on their scheduling priorities. With a descending
order for the GTO priorities of warps, a warp is a locality warp if its
GTO priority is less than OCW, otherwise a thrashing warp. This
classification is based on the observation that older warps are more
frequently scheduled in GTO than younger ones so that they are
more likely to be fully cached. When a thrashing warp is sched-
uled, L1D locality is often thrashed.

The estimated OCW can be used to throttle concurrency by only
scheduling locality warps, referred to as OCW Throttling. However,
the training of OCW may take a long time to arrive at the optimal
value. This can be a disadvantage for OCW Throttling to quickly
respond to program behavior changes during runtime. For example,
when L1D locality is well preserved, MSHR consumption from lo-
cality warps becomes low; gradually scheduling thrashing warps
is then unlikely to immediately incur memory occlusion. Mean-
while, for benchmarks with frequent branch divergences, OCW
Throttling may lose the opportunity to schedule thrashing warps
with few active threads. Such thrashing warps have small memory
footprint, incur little cache thrashing, and consume few MSHR en-
tries. Scheduling them can increase the number of actively sched-
uled warps. We design dynamic OAWS to opportunistically enable
such thrashing warps, when 1) aggregate MSHR consumption of
locality warps is low, and 2) some warps have few active threads
due to branch divergence.

To prevent memory occlusion while maintaining sufficient con-
currency, we integrate the use of OCW in dynamic OAWS for the
prediction of cache misses, i.e., the required MSHR entries. For lo-
cality warps, we predict their cache misses as 0, i.e., Misspred(pc,w)=
0, because they are fully cached to incur no MSHR consumption.
Thus, locality warps will not be excluded from scheduling due to
the concern of memory occlusion. Motivated by the little perfor-
mance fluctuations of per-app SMR with the static OAWS policy,
thrashing warps are predicted with a flat miss rate of 50%, i.e.,
Misspred(pc,w) = Divpred(pc,w)×50%.

A fixed miss rate leads to a uniform prediction for all thrashing
warps, unable to capture skewed cache misses from warps with dif-
ferent GTO priorities. As shown in Figure 4, a warp’s GTO priority
(GTOgprio) is proportional to the number of consumed MSHR en-
tries. In order to enforce the GTO prioritization and provide differ-
entiated predictions for all thrashing warps, we combine both the
cache miss rate of a load operation and the GTOgprio of a warp into
the predicted misses. Together, we arrive at a formula to predict
the required MSHR entries as Misspred(pc,w) = Divpred(pc,w)×
50%+GTOgprio.

Combining the estimation of optimal cached warps and the pre-
diction of required MSHR entries, our dynamic OAWS strives to
maintain a maximal number of concurrent warps and predict the
demands on MSHR entries to prevent memory occlusion. In the
integrated scheme for dynamic avoidance of memory occlusion,
the OCW Throttling first generates a 2N-bit vector ocwWarps[1:N]
(·), in which a value 2 denotes a locality warp, 1 denotes a thrash-
ing warp, and 0 denotes a not-ready warp. Together with the per-
warp miss prediction (Misspred[1:N]), the Occlusion Prevention
component finalizes the qualification logic as shown in Equation 1
to inhibit exhausting MSHR resources and then generates the vec-
tor Occlude[1:N] (¸) for the Prioritization stage.

4.4 Implementation and Overhead
We summarize other implementation details that have not been cov-
ered previously. Note that qualification logic is executed at a per-
cycle basis. It is impractical to predict the MSHR consumption for
thrashing warps at the same frequency. Thus, we store each instruc-
tion’s predicted cache misses into the instruction buffer, the same
way as the ready bit for baseline qualification logic. By doing so,

Table 1: Baseline GPGPU-Sim Configuration
of SMs 30 (15 clusters of 2)
SM Configuration 1400MHz, Reg #: 32K, Shared Memory: 48KB,

SIMD Width: 16, warp: 32 threads, max threads
per SM: 1536

Caches / SM Data: 32KB/128B-line/8-way, Constant:
8KB/64B-line/24-way, Texture: 12KB/128B-
line/2-way

Branch Handling PDOM based method [24]
Warp Scheduling GTO
Interconnect Butterfly, 1400MHz, 32B channel width
L2 Unified Cache 768KB, 128B line, 16-way
Min. L2 Latency 120 cycles (compute core clock)
Cache Indexing Pseudo-Random Hashing Function [25]
Global Memory 6 partitions, min latency: 100 cycles
Memory Controller Out-of-Order (FR-FCFS), max request queue

length: 32
GDDR5 Timing nbk=16, tCL = 12, tRP = 12, tRC = 40, tRAS = 28,

tRCD = 12, tRRD = 6, tCDLR = 5, tWR = 12

the process of miss prediction can be executed off the critical path
of warp scheduling.

Divergent Load Classifier. The benchmarks we evaluate in this
work typically have only one or two divergent loads in each kernel.
But IIX from Mars [22] has 26 divergent loads in one of its ker-
nels. Thus we have 32 entries for DLC in both static and dynamic
OAWS implementations. Because the fields of DLC are periodi-
cally updated, the entries that reach 0 (#inst) could be evicted. DLC
could also be managed under the LRU policy for more complicated
workloads. In addition, DLC is cleared at each kernel invocation.

Overhead Analysis. To implement the qualification logic in
Equation 1, OAWS stores Availmshr and Missin f light in two reg-
isters. Our baseline GPU has 32 MSHR entries, and both regis-
ters need only 5 bits. OCW estimation needs three registers: 1-bit
Div, 8-bit FCL, and 32-bit Sets. Our baseline GPU has a SIMD-
width of 32. We use 5 bits to store the predicted cache misses
for each instruction. Considering that there are 48 warps per SM
and each warp can have two instructions, storing the predicted per-
instruction cache misses has a total overhead of 480 bits (60 bytes).
Each DLC entry needs 9 bytes, i.e., 40 bits for PC, 7 bits for #inst,
10 bits for #acc, and 10 bits for #set. Thus, DLC table needs 288
bytes. In total, implementing OAWS needs 348-byte on-chip stor-
age and five registers in each SM.

5 Experimental Evaluation
We use GPGPU-Sim [26] (version 3.2.1), a cycle-accurate simula-
tor, to evaluate our OAWS mechanisms. The baseline GPU archi-
tectural parameters are summarized in Table 1. Highly memory-
divergent benchmarks from Rodinia [27], PolyBench [28], SHOC [29],
Parboil [30], and Mars [22] are used for performance evaluation.
These benchmarks are listed in Table 2. We also evaluate the per-
formance of OAWS on memory-coherent benchmarks from Poly-
Bench/GPU [28]. All of the benchmarks are simulated to comple-
tion and execute between 70 million and 1.5 billion instructions.
The following warp scheduling algorithms are evaluated:

GTO is the baseline warp scheduler. All performance metrics are
normalized to GTO.

SWL [9] statically limits the number of warps that can be actively
scheduled and needs to be tuned on a per-benchmark basis.
Table 3 presents the warp-limiting value with the best perfor-
mance for some memory divergent benchmarks (SWL-Best).

CCWS [9] relies on a dedicated victim cache and a 6-bit Warp ID
field in the tag of cache block to detect intra-warp locality
and other storage to track per-warp locality changes. The

Table 2: Memory-Intensive CUDA Benchmarks
Name # Name # Name # Name

Memory Divergent Benchmarks
1 ATAX [28] 4 GES [28] 7 PF [27] 10 KMN [27]
2 BICG [28] 5 SYRK [28] 8 BFS [27] 11 SPMV [29]
3 MVT [28] 6 SYR2K [28] 9 SC [27] 12 IIX [22]

Memory Coherent Benchmarks
13 3DC [28] 15 SRAD1 [27] 17 BP [27] 19 3MM [28]
14 2MM [28] 16 SRAD2 [27] 18 FD [28] 20 LBM [30]

Table 3: Config. for SWL-Best and CCWS
SWL-Best CCWS

Bench. #Warps Bench. #Warps Name Value
ATAX 2 SYR2K 2 KT HROT T LE 8
BICG 2 KMN 4 Victim Tag Array 8-way
MVT 2 BFS 3 16 entries/warp
GES 1 SPMV 2 (768 total entries)

SYRK 2 IIX 4 Warp Base Score 100

warp that has the largest locality loss is exclusively priori-
tized. Configuration parameters for CCWS are summarized
in Table 3.

MASCAR [13] exclusively prioritizes memory instructions from
one “owner” warp when the memory subsystem is saturated;
otherwise, memory instructions of all warps are prioritized
over any computation instruction. MASCAR uses a re-execution
queue to replay L1D accesses that are stalled due to MSHR
unavailability or network congestion. Saturation here means
that MSHR has only 1 entry or the queue inside memory port
has only 1 slot. The re-execution queue has 32 entries.

Static OAWS (OAWS-Static) is described in Section 4.2. The de-
fault value for SMR is 50%. We will present the sensitivity
analysis of SMR in Section 5.4.

Dynamic OAWS (OAWS-Dyn) is described in Section 4.3. OAWS-
Dyn consists of two components, light-weight estimation of
OCW (Optimal Concurrent Warps) and dynamic MSHR pre-
diction.

5.1 Instructions Per Cycle (IPC)
Figure 8 shows IPC comparisons for our scheduling algorithms and
three state-of-the-art algorithms. We have the following key ob-
servations. First, OAWS-Static consistently improves performance
for memory divergent benchmarks, and on average achieves 36.7%
IPC gains compared to baseline GTO scheduling and outperforms
MASCAR by 34.4%. The performance improvement of OAWS-
Static comes with the lowest hardware overhead, which strongly
suggests the need of occlusion prevention. Second, by focusing
on locality changes at the granularity of individual divergent loads,
OAWS-Dyn dynamically determines the OCW value, therefore it
can outperform CCWS and SWL-Best by 57.2% and 10.9%, respec-
tively. Lastly, OAWS-Dyn effectively increases the performance
by opportunistically scheduling thrashing warps. Overall, OAWS-
Dyn achieves 73.1% IPC improvement and outperforms MASCAR,
CCWS, SWL-Best by 70.1%, 57.8%, and 11.4%, respectively.

MASCAR and CCWS only improve performance by 1.7% and
9.7% respectively compared to the baseline. This low IPC gains
can be explained from the following two aspects. First, we use
an allocate-on-fill rather than an allocate-on-miss policy to manage
L1D blocks on cache read misses. Given a 32-entry MSHR and
32KB L1D (256 blocks), the allocate-on-miss policy frequently
reserves 32 cache blocks for outstanding memory requests in the
memory divergent benchmarks, which wastes 12.5% of the L1D

0

0.5

1

1.5

2

2.5

3

3.5

BP 2MM 3MM SRAD1SRAD2 3DC FD LBM Gmean PF SC IIX SYRK BFS ATAX BICG MVT KMN SYR2K GES SPMV Gmean

Memory Coherent Memory Divergent

IP
C

MASCAR CCWS SWL-Best

OAWS-Static OAWS-Dyn

3.6

Figure 8: IPCs of various warp scheduling algorithms for memory coherent and memory divergent benchmarks. IPCs are normal-
ized to the GTO scheduling.

0%

50%

100%

150%

GMC S O D GMC S O D GMC S O D GMC S O D GMC S O D GMC S O D GMC S O D GMC S O D GMC S O D GMC S O D GMC S O D GMC S O D

PF SC IIX SYRK BFS ATAX BICG MVT KMN SYR2K GES SPMV

P
e
rc

e
n

ta
g

e
 (

%
)

LDST_COAL LDST_MSHR LDST_ICNT MASCAR_Replay158%

Figure 9: Breakdown of LD/ST stall cycles when the memory divergent benchmarks are scheduled by GTO (G), MASCAR (M),
CCWS (C), SWL-Best (S), OAWS-Static (O), and OAWS-Dyn (D). MASCAR_Replay only exists in MASCAR and refers to the cycles
when the memory access from the re-execution queue cannot be sent out.

0

0.2

0.4

0.6

0.8

1

PF SC IIX SYRK BFS ATAX BICG MVT KMN SYR2K GES SPMV Gmean

F
u

ll
y

 C
a

ch
ed

 D
iv

er
g

en
t

L
o
a

d
s

(%
)

GTO CCWS SWL-Best OAWS-Dyn

Figure 10: Percentage of fully cached divergent loads in the
memory divergent benchmarks.

capacity. Second, reserving cache blocks can increase associa-
tivity conflicts in L1D. The memory divergent benchmarks from
PolyBench/GPU [28] are highly sensitive to cache associativity [1].
Though we have applied the pseudo-random cache indexing func-
tion that is used in Fermi architectures [25], associativity conflicts
are not well mitigated. For example, each divergent load in ATAX
generates 32 requests that are constantly mapped into 8 out of the
32 sets in L1D. Consequently, allocate-on-miss aggravates associa-
tivity conflicts. We have evaluated both policies for all benchmarks,
as shown in Figure 14, and observe that MASCAR performs simi-
larly between the two and CCWS favors allocate-on-miss. How-
ever, GTO scheduling benefits greatly from allocate-on-fill because
of the increased effective L1D capacity and decreased associativity
conflicts.

Although SWL-Best achieves 55.5% IPC improvement for all
memory divergent benchmarks, it is a profile-based static approach
that requires tuning experiments for each GPU kernel with every
data input. Thus SWL-Best is impractical to be implemented in
GPU, but it could be a reference to gauge the effectiveness of GPU
scheduling algorithms. In our experiments, OAWS-Dyn outperforms
SWL-Best on most of memory divergent benchmarks, except SYR2K
and SPMV benchmarks. This is because of the unique behaviors
of SYR2K and SPMV. SYR2K has no branch divergences and very
high inter-warp locality, and SPMV with little coherent load oper-
ations. OAWS first emphasizes a policy to predict and control the
use of MSHR entries based on load divergence, then the concur-
rency level. This causes OAWS to have different decisions than
SWL-best, on the set of active warps for SYR2K and SPMV. The
performance of SWL-Best could have been better if per-kernel tun-

0

0.2

0.4

0.6

0.8

1

PF SC IIX SYRK BFS ATAX BICG MVT KMN SYR2K GES Gmean

F
u

ll
y

 C
a
ch

ed
 C

o
h

er
en

t

L
o

a
d

s
(%

)

GTO CCWS SWL-Best OAWS-Dyn

Figure 11: Percentage of fully cached coherent loads in the
memory divergent benchmarks. SPMV has no coherent loads
and is excluded.

ing had been performed. For example, ATAX, BICG, and MVT
have both coherent and divergent kernels. SWL-Best’s performance
gains in divergent kernels are balanced out by the existence of
coherent kernels where SWL-Best should not have been enabled.
Meanwhile, IIX is a highly complicated benchmark with rich branch-
and memory-divergence. IIX has 149 kernel invocations with the
input size used in this evaluation. Given such complexity, SWL-
Best has been included for pure performance comparison purposes.
For the coherent benchmarks, none of the warp scheduling algo-
rithms achieve significant performance gains. This indicates that
our OAWS has no detrimental effects to memory-coherent bench-
marks. In the following sections, we will dissect the performance of
both OAWS-Static and OAWS-Dyn using memory divergent bench-
marks only.

5.2 LD/ST Unit Stalls
Since the L1D cache misses come from three portions as shown
in Figure 2, simply quantifying the accuracy of our MSHR esti-
mation cannot directly determine cache misses. In Figure 9, we
break down LD/ST stall cycles when memory divergent bench-
marks are scheduled by various scheduling algorithms. All num-
bers are normalized to LD/ST active cycles in GTO scheduling.
Since all the evaluated benchmarks are read-intensive, memory oc-
clusion caused by network congestion (LDST_ICNT) is negligi-
ble in every scheduling algorithm. Meanwhile, coalescing stalls
(LDST_COAL) depend on memory divergence characteristics in the
benchmarks. Warp scheduling can only impact stall cycles caused
by LDST_MSHR and, in MASCAR by by re-execution queue de-

lays (MASCAR_Replay). At the same time, LDST_MSHR stalls are
largely reduced by our scheme since the stalls in LD/ST units are
overlapped with computations in the execution units. As we can
see from Figure 9, SWL-Best, OAWS-Static, and OAWS-Dyn have
similar capability in reducing LD/ST stalls, which corresponds to
their superior performance shown in Figure 8. Divergent loads in
SC are references to arrays of structs and outside of a loop that
generates high locality. Without careful concurrency throttling, di-
vergent loads quickly thrash the locality of coherent loads. OAWS-
Dyn takes time to learn optimal concurrency, while OAWS-Static
has no direct control over concurrency, thus they perform equally
poor in reducing LD/ST stalls for SC. When saturation in the mem-
ory subsystem is detected, MASCAR prevents memory accesses of
“non-owner” warps from being sent out, i.e., replaying them until
saturation is resolved. Such a strict requirement directly reduces
LD/ST throughput, leading to the poor performance of MASCAR.
CCWS prioritizes warps with the highest locality lost, which means
that the prioritized warp often has little data reserved in L1D to start
with and needs to immediately fetch data from L2. Switching prior-
itized warps incurs frequent MSHR consumptions, making CCWS
less capable of LD/ST stall prevention.

5.3 Fully Cached Load Instructions
Within the SIMD execution, partially cached instructions still suf-
fer from the memory occlusion. More fully cached loads create
an opportunity for warp schedulers to better utilize any localities
in L1D. Thus we use the number of fully cached loads to quantify
effective concurrency in the evaluated concurrency throttling mech-
anisms, i.e., CCWS, SWL-Best, and OAWS-Dyn. Figure 10 presents
the percentages of fully cached divergent loads. The results of GTO
are also included as the baseline. CCWS has increased fully cached
loads for all benchmarks except SYRK. Because SYRK has high
inter-warp locality, while CCWS is specifically designed for intra-
warp locality protection. The exclusively prioritized warp can ac-
celerate progress and evict its own data blocks that could have been
utilized by other warps. SWL-Best achieves the best results for
benchmarks with no branch divergence, such as SYRK, ATAX,
BICG, MVT, and SYR2K. Due to high inter-warp locality, SWL-
Best fully caches 98% and 88% of divergent loads in SYRK and
SYR2K, respectively. For memory- and branch-divergent bench-
marks, such as IIX and BFS, OAWS-Dyn preserves more fully cached
divergent loads than SWL-Best. On average, GTO, CCWS, SWL-
Best, and OAWS-Dyn keep 20%, 25%, 31%, and 45% of the total
divergent loads in L1D cache, respectively.

Figure 11 presents the percentages of fully cached coherent loads.
Some coherent loads in SC exhibit streaming accesses, achieving
very low percentages of fully cached coherent loads in all cases.
IIX has observable program behavior changes, i.e., coherent mem-
ory operations and large computation strictly follow divergent mem-
ory operations. Thus OAWS-Dyn preserves more coherent loads in
L1D, which explains its performance advantage in IIX as shown in
Figure 8. The other benchmarks are relatively simple. Their trend
of fully cached loads is similar to that in Figure 10. Results in
Figures 10 and 11 are highly correlated to the IPC discrepancy in
Figure 8, except that SWL-Best does not have the best performance
in ATAX, BICG, and MVT. As mentioned earlier, this is due to
the fact that the three benchmarks have both memory divergent and
memory coherent kernels.

5.4 Sensitivity of Static OAWS
Figure 12 presents the IPC of static OAWS when SMR is swept
from 0% to 100%, with an increment of 5%. When SMR is 0%,
static OAWS is equal to GTO. Static OAWS achieves peak per-
formance improvement (geometric mean: 35.3%), when SMR is

 1

 1.2

 1.4

 1.6

 1.8

 2

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

IP
C

SMR(%)

ATAX KMN BFS SPMV IIX Gmean

Figure 12: IPC of static OAWS with various SMR under five
representative benchmarks.

50%. In addition, when SMR ranges from 35% to 90%, the OAWS
achieves stable IPC improvement with the standard deviation of
0.014, indicating its insensitivity to SMR. This is because with SMR
larger than 50%, the qualification logic of static OAWS prevents
two fully divergent loads from being issued, leading to such similar
IPC improvements.

5.5 Sensitivity to MSHR Sizes

0

0.5

1

1.5

2

32 48 64 96
MSHR Size

IP
C

GTO OAWS-Static OAWS-Dyn

Figure 13: IPC of dynamic OAWS with different MSHR sizes
on divergent benchmarks.

Figure 13 shows the IPC improvement (GMean) from three dif-
ferent policies with different MSHR sizes. All results are normal-
ized to GTO with 32 entries and the allocate-on-fill policy. Several
interesting trends can be observed. GTO cannot benefit from more
MSHR entries, which indicates that the memory occlusion issue
cannot be simply addressed by the provision of more resources.
Our investigation suggests that on-chip interconnect plays a crit-
ical role in this. Adding more MSHRs will increase the volume
of bursty in-flight memory requests to the off-chip memory chips,
which will congest the on-chip interconnect and prolong memory
accesses. In addition, the static scheme OAWS-Static with an SMR
of 50% cannot benefit from more MSHR entries either. Counter-
intuitively, it experiences performance degradation with an increas-
ing number of MSHR entries. This is actually caused by the mis-
match between the available MSHR entries and the static predic-
tion. An increasing number of MSHR entries cause the static OAWS
policy to schedule more thrashing warps, contending for the lim-
ited L1D. In contrast, OAWS-Dyn delivers an increasing amount
of performance improvement with more MSHR entries. The key
for the performance improvement of OAWS-Dyn is leveraging ad-
ditional entries for the load instructions with less divergence and
better locality. Therefore, OAWS-Dyn alleviates the situation by
controlling divergent loads and prioritizing coherent loads for the
use of MSHR entries, leading to the better performance and effec-
tive concurrency. Thus OAWS-Dyn can improve performance by
73.1%, 89.1%, 92.6%, and 99.4% when there are 32, 48, 64, and
96 MSHR entries, respectively. It successfully corrects the problem

of memory occlusion by dynamically predicting an optimal num-
ber of cached warps and effectively leveraging more MSHR entries
without thrashing L1D.

5.6 Sensitivity to L1D Allocate Policy

0

0.5

1

1.5

2

2.5

GTO MASCAR CCWS SWL-Best OAWS-Static OAWS-Dyn

Allocate-on-miss Allocate-on-fill

Figure 14: IPC of various scheduling techniques to L1D allo-
cate policies on divergent benchmarks.

Figure 14 provides a comparison of two L1D allocate policies:
allocate-on-miss and allocate-on-fill. All results are normalized
to allocate-on-miss, the default policy in GPGPU-Sim [26]. GTO
achieves 20.9% better performance when the L1D is managed by
allocate-on-fill. Among the 7 scheduling techniques, only CCWS
favors allocate-on-miss. Although this policy increases cache con-
tention by reserving cache lines for outstanding memory requests,
CCWS provides longer prioritization for the warp that has the largest
locality loss, leading to 15.5% IPC improvement.

6 Related Work
Warp Scheduling plays a critical role in sustaining GPU perfor-
mance and various scheduling algorithms have been proposed based
on different heuristics. Among concurrency throttling techniques,
SWL [9], CCWS [9], and MASCAR [13] were discussed earlier
in Section 5 and compared with our proposed scheduling mecha-
nisms. On top of CCWS, DAWS [10] actively schedules warps
whose aggregate memory footprint does not exceed L1D capacity.
Khairy et al. [8] proposed DWT-CS, which use cores sampling to
throttle concurrency. When L1D MPKI is above a given threshold,
DWT-CS samples all SMs with different number of active warps
and applies the best-performing active warp count on all SMs. Dif-
ferent from these concurrency throttling mechanisms, OAWS uses
the number of fully cached divergent load instructions to dynam-
ically adjust concurrency at a finer-granularity. CTA scheduling
techniques [31, 32, 20] are coarser than warp scheduling at concur-
rency throttling, thus OAWS is better at locality preservation and
LD/ST stall avoidance.

Some other warp scheduling algorithms are designed to improve
GPU resource utilization. Fung et al. [24, 33] investigated the im-
pact of warp scheduling on techniques aiming at branch divergence
reduction, i.e., dynamic warp formation and threadblock compaction.
Narasiman et al. [19] proposed a two-level round robin scheduler
to prevent memory instructions from being issued consecutively.
By doing so, memory latency can be better overlapped by com-
putations. Gebhart et al. [34] introduced another two-level warp
scheduler to manage a hierarchical register file design. None of
these warp scheduling directly focuses on the problem of LD/ST
stalls. On top of the two-level warp scheduling, Yu et al. [35] pro-
posed a Stall-Aware Warp Scheduling (SAWS) to adjust the fetch
group size when pipeline stalls are detected. SAWS mainly focuses
on pipeline stalls, while OAWS is capable of avoiding LD/ST stalls
and preserving L1D locality.

Kayiran et al. [31] proposed a dynamic Cooperative Thread Ar-
ray (CTA) scheduling mechanism to enable the optimal number
of CTAs according to application characteristics. It reduces con-
current CTAs for memory-intensive applications to reduce LD/ST

stalls. Lee et al. [32] proposed two alternative CTA scheduling
schemes. Lazy CTA scheduling (LCS) utilizes a 3-phase mech-
anism to determine the optimal number of CTAs per core, while
Block CTA scheduling (BCS) launches consecutive CTAs onto the
same cores to exploit inter-CTA data locality.

GPU Cache Management has been studied to preserve L1D
locality, which can implicitly reduce LD/ST stalls. And L1D by-
passing is often adopted to alleviate cache contention [1, 2, 3, 4, 5,
6, 7, 8, 36, 37]. Jia et al. [1] designed a memory request buffer to
reorder and prioritize L1D accesses, and proposed to bypass L1D
accesses that are stalled by cache associativity conflicts. Chen et
al. [2] used extensions in L2 cache tag to track locality loss in
L1D, and bypass is temporarily triggered if a L2 cache block is
requested twice by the same SM. Chen et al. [3] further proposed
coordinated bypassing and warp throttling (CBWT) to orchestrate
L1D bypassing and warp scheduling. Based on protection distance
prediction [38], CBWT triggers bypassing when all L1D blocks are
under protection and throttles concurrency to prevent NOC from
being congested by aggressive bypassing. Wang et al. [4] pro-
posed a DaCache design to orchestrate GPU cache management
and warp scheduling. At runtime, DaCache bypasses divergent
loads from warps with low scheduling priorities, and coherent loads
with no locality. Dong Li proposed an AgeLRU algorithm [6] to
prevent young warps from evicting blocks of old warps. AgeLRU
enables bypassing when the replacement score of the replacement
candidate is above a given threshold. Based on DAWS, Zheng et
al. [7] proposed Adaptive Cache and Concurrency (CCA) to by-
pass streaming memory accesses and accesses from inactive warps.
Similarly, Khairy et al. [8] also proposed a technique to dynami-
cally detect and bypass streaming memory accesses. Though these
cache management schemes can ameliorate the problem of LD/ST
stalls via preserved L1D locality, they are all reactive mechanisms.
OAWS works from the source to prevent LD/ST stalls from oc-
curring. Besides, cache management schemes are orthogonal to
OAWS and can be combined with OAWS to further improve GPU
performance.

7 Conclusion
We identified the occlusion of LD/ST units and the depletion of
MSHR entries caused by divergent memory accesses in the GPU
execution pipeline, which was referred to as memory occlusion. We
then characterized and analyzed its impact. To address these issues,
we proposed memory occlusion aware warp scheduling that can
predict the demand of MSHR entries from GPU instructions and
integrate this information into the qualification stage of warp sched-
ulers to prevent memory occlusion. Both static and dynamic pre-
diction methods were designed and implemented to maximize the
number of concurrent warps without memory occlusion. We fur-
ther evaluated OAWS with static and dynamic methods on a wide
variety of memory benchmarks. Compared to the default GTO,
static and dynamic OAWS policies achieved 36.7% and 73.1% per-
formance gains, respectively. Compared to state-of-the-art warp
schedulers, i.e., MASCAR [13], CCWS [9], and SWL-Best [9],
dynamic OAWS outperformed them by 70.1%, 57.8%, and 11.4%,
respectively. The benefits come from the reduced MSHR stalls as
shown in Figure 9 and the increased number of fully cached loads
as demonstrated in Figure 10.

Acknowledgment

We are very thankful for the insightful comments from the anony-
mous reviewers. This work is supported in part by National Science
Foundation awards 1059376, 1340947, 1561041, and 1564647.

8 References

[1] W. Jia, K. A. Shaw, and M. Martonosi, “MRPB: Memory
Request Prioritization for Massively Parallel Processors,” in
HPCA, 2014.

[2] X. Chen, S. Wu, L.-W. Chang, W.-S. Huang, C. Pearson,
Z. Wang, and W. mei W. Hwu, “Adaptive Cache Bypass and
Insertion for Many-core Accelerators,” in MES, 2014.

[3] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and
W. mei W. Hwu, “Adaptive Cache Management for
Energy-Efficient GPU Computing,” in MICRO, 2014.

[4] B. Wang, W. Yu, X.-H. Sun, and X. Wang, “DaCache:
Memory Divergence-Aware GPU Cache Management,” in
ICS, 2015.

[5] C. Li, S. Song, H. Dai, A. Sidelnik, S. K. S. Hari, and
H. Zhou, “Locality-Driven Dynamic GPU Cache
Bypassing,” in ICS, 2015.

[6] D. Li, Orchestrating Thread Scheduling and Cache
Management to Improve Memory System Throughput in
Throughput Processor. PhD thesis, University of Texas at
Austin, May 2014.

[7] Z. Zheng, Z. Wang, and M. Lipasti, “Adaptive Cache and
Concurrency Allocation on GPGPUs,” Computer
Architecture Letters, 2014.

[8] M. Khairy, M. Zahran, and A. G. Wassal, “Efficient
Utilization of GPGPU Cache Hierarchy,” in GPGPU, 2015.

[9] T. G. Rogers, M. O’Connor, and T. M. Aamodt,
“Cache-Conscious Wavefront Scheduling,” in MICRO, 2012.

[10] T. G. Rogers, M. O’Connor, and T. M. Aamodt,
“Divergence-aware Warp Scheduling,” in MICRO, 2013.

[11] D. Kroft, “Lockup-free Instruction Fetch/Prefetch Cache
Organization,” in ISCA, 1981.

[12] A. E. Turner, On replay and hazards in graphics processing
units. PhD thesis, University of British Columbia, Oct 2012.

[13] A. Sethia, D. A. Jamshidi, and S. A. Mahlke, “Mascar:
Speeding up GPU Warps by Reducing Memory Pitstops,” in
HPCA, 2015.

[14] NVIDIA, “NVIDIA’s Next Generation CUDA Compute
Architecture: Fermi,” 2009.

[15] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“NVIDIA Tesla: A Unified Graphics and Computing
Architecture,” IEEE Micro, vol. 28, pp. 39–55, Mar. 2008.

[16] NVIDIA, “NVIDIA’s Next Generation CUDA Compute
Architecture: Kepler GK110,” 2012.

[17] B. Coon, P. Mills, S. Oberman, and M. Siu, “Tracking
register usage during multithreaded processing using a
scoreboard having separate memory regions and storing
sequenti al register size indicators,” Oct. 7 2008. US Patent
7,434,032.

[18] P. Mills, J. Lindholm, B. Coon, G. Tarolli, and J. Burgess,
“Scheduler in multi-threaded processor prioritizing
instructions passing qualification rule,” May 24 2011. US
Patent 7,949,855.

[19] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov,
O. Mutlu, and Y. N. Patt, “Improving GPU Performance via
Large Warps and Two-level Warp Scheduling,” in MICRO,
2011.

[20] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T.
Kandemir, O. Mutlu, R. Iyer, and C. R. Das, “OWL:
Cooperative Thread Array Aware Scheduling Techniques for
Improving GPGPU Performance,” in ASPLOS, 2013.

[21] N. Brunie, S. Collange, and G. F. Diamos, “Simultaneous
Branch and Warp Interweaving for Sustained GPU
Performance,” in ISCA, 2012.

[22] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang,
“Mars: a MapReduce Framework on Graphics Processors,”
in PACT, 2008.

[23] B. Wang, Z. Liu, X. Wang, and W. Yu, “Eliminating
intra-warp conflict misses in GPU,” in Proceedings of the
2015 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2015, Grenoble, France, March 9-13,
2015, pp. 689–694, 2015.

[24] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt,
“Dynamic Warp Formation and Scheduling for Efficient
GPU Control Flow,” in MICRO, 2007.

[25] C. Nugteren, G.-J. van den Braak, H. Corporaal, and H. Bal,
“A Detailed GPU Cache Model Based on Reuse Distance
Theory,” in HPCA, 2014.

[26] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA Workloads Using a Detailed
GPU Simulator,” in ISPASS, 2009.

[27] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.
Lee, and K. Skadron, “Rodinia: A benchmark suite for
heterogeneous computing,” in IISWC, 2009.

[28] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and
J. Cavazos, “Auto-tuning a High-Level Language Targeted to
GPU Codes.,” in Innovative Parallel Computing, 2012.

[29] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter, “The
Scalable Heterogeneous Computing (SHOC) Benchmark
Suite,” in GPGPU, 2010.

[30] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W.
Changx, N. Anssari, G. D. Liu, and W. mei W. Hwu,
“Parboil: A Revised Benchmark Suite for Scientific and
Commercial Throughput Computing,” IMPACT Technical
Report, IMPACT-12-01, University of Illinois, at
Urbana-Champaign, 2012.

[31] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither
More nor Less: Optimizing Thread-level Parallelism for
GPGPUs,” in PACT, 2013.

[32] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y.-G. Cho, and
S. Ryu, “Improving GPGPU Resource Utilization Through
Alternative Thread Block Scheduling,” in HPCA, 2014.

[33] W. W. L. Fung and T. M. Aamodt, “Thread Block
Compaction for Efficient SIMT Control flow,” in HPCA,
2011.

[34] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J.
Dally, E. Lindholm, and K. Skadron, “Energy-Efficient
Mechanisms for Managing Thread Context in Throughput
Processors,” in ISCA, 2011.

[35] Y. Yu, W. Xiao, X. He, H. Guo, Y. Wang, and X. Chen, “A
Stall-Aware Warp Scheduling for Dynamically Optimizing
Thread-level Parallelism in GPGPUs,” in ICS, 2015.

[36] W. Jia, K. A. Shaw, and M. Martonosi, “Characterizing and
Improving the Use of Demand-fetched Caches in GPUs,” in
ICS, 2012.

[37] X. Xie, Y. Liang, G. Sun, and D. Chen, “An Efficient
Compiler Framework for Cache Bypassing on GPUs,” in
ICCAD, 2013.

[38] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and
A. V. Veidenbaum, “Improving Cache Management Policies
Using Dynamic Reuse Distances,” in MICRO, 2012.

