
Exploiting Analytics Shipping with Virtualized
MapReduce on HPC Backend Storage Servers
Cong Xu, Robin Goldstone, Zhuo Liu, Hui Chen, Bryon Neitzel, and Weikuan Yu, Senior Member, IEEE

Abstract—Large-scale scientific applications on High-Performance Computing (HPC) systems are generating a colossal amount of

data that need to be analyzed in a timely manner for new knowledge, but are too costly to transfer due to their sheer size. Many HPC

systems have catered to in situ analytics solutions that can analyze temporary datasets as they are generated, i.e., without storing to

long-term storage media. However, there is still an open question on how to conduct efficient analytics of permanent datasets that have

been stored to the backend persistent storage because of their long-term value. To fill the void, we exploit the analytics shipping model

for fast analysis of large-scale scientific datasets on HPC backend storage servers. Through an efficient integration of MapReduce and

the popular Lustre storage system, we have developed a Virtualized Analytics Shipping (VAS) framework that can ship MapReduce

programs to Lustre storage servers. The VAS framework includes three component techniques: (a) virtualized analytics shipping with

fast network and disk I/O; (b) stripe-aligned data distribution and task scheduling and (c) pipelined intermediate data merging and

reducing. The first technique provides necessary isolation between MapReduce analytics and Lustre I/O services. The second and

third techniques optimize MapReduce on Lustre and avoid explicit shuffling. Our performance evaluation demonstrates that VAS offers

an exemplary implementation of analytics shipping and delivers fast and virtualized MapReduce programs on backend Lustre storage

servers.

Index Terms—Analytics shipping, hadoop, mapreduce, HPC, lustre

Ç

1 INTRODUCTION

HPC on supercomputers has been a widely leveraged
paradigm to tap the power of parallel data processing

and computing resources for Big Data. For example, simula-
tion codes of Center for Plasma Edge Simulation (CPES) [3]
and the Sandia Combustion Research Facility (CRF) [9] are
producing hundreds of terabytes of data in a week. Because
of the sheer size of scientific data, it is very costly to move
them back and forth on HPC systems for the purpose of
analytics or visualization. Minimizing data movement is
also essential to reducing the power consumption of future
exascale computing systems.

These constraints have driven many HPC systems
towards in situ analytics solutions that can analyze tempo-
rary datasets, when they are created in memory and before
being stored to long-term storage media. However, there is
still an open question on how to conduct efficient analytics
of permanent datasets that have been stored to the backend
storage because of their long-term value without causing
too much movement.

We take on an effort to exploit the analytics shipping
model for fast analysis of large-scale persistent scientific
datasets. The key idea is to allow scientific users to ship

their analytics programs to the backend storage servers of
HPC systems and process the persistent datasets therein
without retrieving them back to the compute nodes. The
disruptive nature of adding analytics workloads to the stor-
age servers triggers several critical questions. These include
(1) how to isolate the analytics programs from the critical
I/O services at the storage servers? (2) how much perfor-
mance interference and resource contention the analytics
programs will cause to the I/O services? (3) what mis-
matches, if any, there are between the requirements of
analytics programs and those system features available at
the backend storage servers? and (4) how to mitigate these
mismatches and achieve efficient analytics?

MapReduce [15] is a popular analytics programming
model. Various implementations of MapReduce such as
Hadoop [2] and Spark [30] have been deployed by many
organizations. Lustre [8] is a typical storage system used on
HPC systems, offering parallel I/O services. In this paper,
we develop an analytics shipping framework using MapRe-
duce as a representative analytics model and Lustre as a
representative HPC backend storage system. With such
a framework, we undertake an effort to systematically
explore the aforementioned four questions. First of all, HPC
systems and their storage servers are deployed using a com-
pute-centric paradigm, which is distinctly different from the
data-centric paradigm that is adopted by the MapReduce-
style analytics model. In addition, HPC storage servers are
dedicated to the I/O services, which can be disrupted if the
storage servers are to host analytics workloads.

Several challenges must be addressed for the develop-
ment of an effective analytics shipping framework,
including (1) the need of isolating analytics programs
from the storage services on the backend storage servers,
(2) the need of distributing analytics datasets for the

� C. Xu, Z. Liu, H. Chen, and W. Yu are with the Auburn University,
Auburn, AL 36849, USA.
E-mail: {congxu, zhuoliu, hchen, wkyu}@auburn.edu.

� R. Goldstone is with the Lawrence Livermore National Lab, Livermore, CA
94550, USA. E-mail: goldstone1@llnl.gov.

� B. Neitzel is with Intel, Santa Clara, CA, USA.
E-mail: bryon.s.neitzel@intel.com.

Manuscript received 16 Sept. 2014; revised 14 Dec. 2014; accepted 4 Jan.
2015. Date of publication 6 Jan. 2015; date of current version 16 Dec. 2015.
Recommended for acceptance by R. Brightwell.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2015.2389262

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 1, JANUARY 2016 185

1045-9219� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

exploitation of locality in task scheduling, and (3) the
need of minimizing data movement for intermediate data
generation and shuffling.

To address these challenges, we have developed three
techniques including (a) virtualized analytics shipping with
fast network and disk I/O; (b) Lustre stripe-aligned data
distribution and task scheduling; and (c) pipelined interme-
diate data merging and reducing. The first technique pro-
vides the needed isolation between MapReduce analytics
programs and the I/O services. The second and third tech-
niques mitigate the mismatches of data distribution, shuf-
fling, and task scheduling between MapReduce and Lustre,
and avoid the explicit shuffling phase in MapReduce. These
techniques are together integrated into a VAS framework.
We have conducted a systematic set of tests to evaluate the
performance of analytics programs and the impact to I/O
services. Our results demonstrate that the VAS framework
offers an exemplary implementation of analytics shipping
and delivers fast and virtualized MapReduce programs on
backend Lustre storage servers.

The rest of the paper is organized as follows. Section 2
provides the background of YARN MapReduce and Lustre.
We then describe the challenges for shipping analytics to
backend storage servers in Section 3. Section 4 describes our
design of virtualized analytics shipping. Section 5 provides
our experimental results, followed by related work in
Section 6. Finally, we conclude the paper in Section 7.

2 BACKGROUND

In this section, we provide an overview of the MapReduce
framework in YARN and the Lustre parallel file system.

2.1 An Overview of YARN MapReduce

YARN is the next-generation of Hadoop’s compute plat-
form [1], [25]. It can support various programming mod-
els such as MapReduce and MPI. There are three main
components in the YARN MapReduce framework, includ-
ing the ResourceManager (RM), NodeManager (NM), and
the ApplicationMaster (AM). The RM is responsible for
allocating resources, which are abstracted as containers, to
applications. A NM monitors and reports its container’s
resource usage (cpu, memory, disk, and network) to RM.
The per-application AM is responsible for the job’s whole
life cycle management including resource negotiation,
task deployment, status monitoring and reporting, till the
application exits.

A MapReduce job starts an AM that negotiates with the
RM for containers. Once the containers are allocated, the
AM will communicate with the corresponding NMs to
launch map tasks (MapTasks). Each MapTask reads an
input split from the HDFS [21] and generates intermediate
data in the form of Map Output Files (MOFs). Each MOF
contains as many partitions as the number of reduce tasks
(ReduceTasks). ReduceTasks are launched after the genera-
tion of some MOFs. Each fetches its partition from every
MOF. Meanwhile, the background merging threads will
merge and spill intermediate data to local disks. In the
reduce phase, the merged intermediate data will be proc-
essed by the reduce function for final results, which will be
written back to HDFS.

For minimizing data movement, MapReduce adopts a
data-centric paradigm to co-locate compute and storage
resources on the same node to facilitate locality-oriented
task scheduling. In YARN’s case, a job’s MapTasks will
be scheduled to the containers where the input data splits
are located.

2.2 Overview of HPC and Lustre Backend
Storage System

Fig. 1 shows a diagram of typical HPC systems. Such
systems are constructed using a compute-centric paradigm
where compute nodes and storage servers belong to sepa-
rated groups. The core of such systems consists of a large
collection of compute nodes, i.e., processing elements (PEs),
which offer the bulk of computing power. Via a high-speed
interconnect, these PEs are connected to a parallel file
system from the storage backend for data I/O. With such a
compute-centric paradigm, tasks on compute nodes of HPC
systems are, in general, equally distant from the backend
storage system.

Lustre is a popular backend storage system used on
many HPC systems. A typical Lustre file system [29] con-
sists of a metadata server (MDS), a metadata target (MDT),
object storage servers (OSS), object storage targets (OST)
and Lustre clients. The MDS makes metadata stored in one
or more MDTs available to Lustre clients. Each MDS man-
ages the names and directories in the Lustre file system and
provides network request handling for local MDTs. The
OSS provides file I/O service, and network request han-
dling for one or more local OSTs. A typical configuration is
an MDT on a dedicated node, two or more OSTs on each
OSS node. File striping is the key feature of Lustre for
distributing the segments of a single file across multiple
OSTs. Specifically, each file is divided into multiple fixed-
size stripes, which are placed onto multiple OSTs in a
round-robin manner. Thus a user can access a striped file’s
data from multiple OSTs concurrently.

In addition, Lustre provides fine-grained parallel file
services with its distributed lock management. To guarantee
file consistency, it serializes data accesses to a file or file
extents using a distributed lock management mechanism.
Because of the need for maintaining file consistency, all pro-
cesses first have to acquire locks before they can update a
shared file or an overlapped file block. Thus, when all pro-
cesses are accessing the same file, their I/O performance is
dependent not only on the aggregated physical bandwidth

Fig. 1. Diagram of a typical HPC system architecture.

186 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 1, JANUARY 2016

from the storage devices, but also on the amount of lock
contention among them.

3 CHALLENGES FOR SHIPPING ANALYTICS TO

BACKEND STORAGE SERVERS

In this section, we discuss the challenges associated with
shipping analytics to backend storage servers on HPC
systems.

3.1 Isolating Analytics from I/O Services

Backend storage servers on HPC systems are typically dedi-
cated to I/O services. Shipping analytics to these servers will
inevitably disrupt this dedication. Concerns can arise from a
variety of aspects, including resource contention, perfor-
mance interference, and integrity and availability of data
hosted by the storage servers. There is a serious need to
isolate analytics from I/O services when the backend storage
servers are used to host both analytics programs and I/O
services. In this paper, we consider the users and their ana-
lytics programs to the HPC systems are trustworthy, which
is a reasonable assumption considering the rigidity and
secure practices in allocating user accounts and computer
time allocations on HPC systems. Thus we focus on the
issues of resource contention and performance interference.

There are many approaches such as chroot [4], virtualiza-
tion [6], [10], [11] to isolating analytics from I/O services.
The most appropriate approach should allow all the flexibil-
ity of scheduling and tuning analytics programs on the
backend storage servers while, at the same time, providing
rich mechanisms to alleviate resource contention and miti-
gate performance interference. For its rich functionalities
and versatile execution, we consider the use of virtual
machines to be the most suitable for analytics shipping.
While virtualization provides handy mechanisms for isolat-
ing analytics and segregating allocated resources, it is criti-
cal to have a thorough examination on its performance
implication to both I/O services and analytics, and accord-
ingly mitigate the performance overhead where applicable.

3.2 Data Distribution and Exploiting Task Locality

As reviewed in Section 2, HPC systems and their storage
servers are deployed using a compute-centric paradigm,
which is distinctly different from the data-centric paradigm
that is adopted by the MapReduce-style analytics model.
Therefore, we need to address the mismatches of data distri-
bution and task scheduling between MapReduce-based
programs and backend storage servers. First, in terms of
data distribution, the datasets of analytics programs need to
be distributed in a manner that can closely match the pat-
tern used by MapReduce. In the case of YARN, we need to
emulate a distribution pattern of HDFS such that analytics
datasets are split into blocks and distributed to all Lustre
storage servers. Second, in terms of task scheduling, we
need to extract the knowledge of data distribution and
bestow this information to YARN for its scheduler to launch
analytics tasks with the best data locality.

3.3 Intermediate Data Placement and Shuffling

Another key difference between the execution of MapRe-
duce programs and the configuration of HPC systems is

the management of intermediate data. MapReduce systems
such as YARN are usually configured with local disks
attached to the compute nodes. As reviewed in Section 2,
this allows MapReduce programs to store their intermedi-
ate data temporarily on local disks. But an HPC storage
system such as Lustre is usually a shared file system. This
means that MapReduce programs, when shipped to Lustre
servers, have Lustre as a global storage space to store any
intermediate data.

Intuitively, placing intermediate data as MOFs on Lustre
seems to bring a lot of convenience because all MOFs are
globally available to any MapReduce task. ReduceTasks no
longer need to have an explicit shuffling stage to fetch data
segments from the MOFs. However, this can have several
ramifications. First, the generation of many temporary
MOFs can present a huge burst of metadata operations to
the often bottlenecked Lustre MDS [19]. Second, the striping
pattern of a MOF, i.e., the placement of its stripes, needs to
be decided carefully. Should all stripes be placed on a Lus-
tre OST on the same node with the MapTask, on another
OST closer to some reduce task, or across all OSTs? Finally,
when many ReduceTasks are reading from the same MOFs
on Lustre, they can cause a burst of lock operations.
The resulting lock contention may significantly degrade the
speed of data shuffling, causing an overall performance
loss. Moreover, in original MapReduce’s shuffle phase,
repetitive merge operations are usually conducted due to
limited memory capacity. By shipping MapReduce analyt-
ics to HPC systems to work with HPC backend storage
servers, can we mitigate such overheads through a better
merging and reducing scheme?

Taken together, we need to address all challenges for an
effective analytics shipping framework.

4 DEVELOPING AN EFFICIENT VIRTUALIZED

ANALYTICS SHIPPING FRAMEWORK

To tackle the aforementioned challenges, we propose a VAS
framework in this paper. As shown in Fig. 2, we leverage
KVM [6] to segregate MapReduce jobs from the I/O services
running on OSS nodes. The isolation of KVM ensures that
the performance stability and system reliability of Lustre
storage servers are protected from the MapReduce pro-
grams. To be specific, each OSS hosts one virtual machine
(VM), which installs YARN and Lustre client related drivers
to interact with Lustre file system. Thus the collection of
KVMs on all OSSes form a virtualized cluster, to which the
analytics programs are shipped.

Fig. 2. MapReduce-based analytics shipping model.

XU ET AL.: EXPLOITING ANALYTICS SHIPPINGWITH VIRTUALIZED MAPREDUCE ON HPC BACKEND STORAGE SERVERS 187

Simply porting the MapReduce programming model—
YARN—into computing-intensive HPC environment to
work with Lustre file system can only deliver sub-optimal
performance due to distinct features of Lustre and HDFS
[16]. We develop three main techniques in VAS to achieve
efficient analytics shipping. First, we optimize the perfor-
mance of network and disk I/O via dynamic routing config-
uration of VMs. Second, we develop stripe-aligned data
distribution and task scheduling for fast data accesses in
MapReduce. Finally, we propose a new technique that can
avoid the explicit shuffling and pipeline the merging and
reducing of intermediate data in our VAS framework.

4.1 Fast Network and Disk I/O

While we utilize KVM for segregating MapReduce from
I/O services on Lustre servers, a major concern is the need
of appropriate techniques for delivering efficient network
and disk I/O to the VMs.

4.1.1 Network Virtualization

There are two widely used I/O options in KVM: VIRTIO
and single root I/O virtualization (SR-IOV). VIRTIO is a vir-
tualization standard for network and disk device drivers. It
performs much better than “full virtualization” because
VIRTIO does not require the hypervisor to emulate actual
physical devices. SR-IOV provides VMs with direct access
to network hardware resources, eliminating the overhead of
extra memory copies. A major difference between VIRTIO
and SR-IOV network configuration is the use of switch-
bypassing: in VIRTIO a bridge is created for the VM-to-host
communication without going through the switch. In SR-
IOV, all communication has to go through the switch, even
when a VM communicates with its host.

To obtain optimal network performance, we have firstly
evaluated both technologies for three different connection
scenarios. All measurements are conducted using Mellanox
ConnectX-2 QDR 10G Host Channel Adaptors, which are
connected by a 10G Ethernet switch. By leveraging iperf
benchmark, we test the point-to-point bandwidth of each
connection scenario for VIRTIO and SR-IOV. The results are
demonstrated in Table 1.

The results of Cases 1 and 2 reveal that VIRTIO bridge
networking can achieve about 15.2 Gbps bandwidth, which
is much faster than SR-IOV method because VIRTIO does
not go through the network switch. In VIRTIO bridged net-
work communication, VM exchanges data with its local
Physical Machine (PM) directly through the intra-node
bridge between them, so that network flow does not go out-
side of the node.

However, SR-IOV outperforms VIRTIO in terms of
remote network connection. For example, in Case 4, SR-IOV
is able to achieve 6.1 Gbps bandwidth for the connection
between the VM and the remote Physical Machine, and
9.2 Gbps for remote VM-to-VM communication (Case 6).
This is close to the peak link rate. Such performance differ-
ences are because the software-based approach of VIRTIO
requires redundant memory copies for sending/receiving
packages in the host. In contrast, SR-IOV allows the direct
exchange of data between VMs and thus avoids extra mem-
ory copies.

Since VIRTIO and SR-IOV can achieve superior perfor-
mance for the local VM-to-PM (Case 1) and remote VM-to-
VM (Case 6) scenarios, respectively, we adopt a dynamic
routing policy for network traffic of VMs. To implement
this policy, we firstly ensure that the routing table of both
VM and PM are set up appropriately. By default, the rout-
ing scheme uses SR-IOV. If the routing scheme detects that
the source and destination reside on the same node, it
switches to VIRTIO.

4.1.2 Fast Disk I/O in VMs with VIRTIO

For disk I/O, we apply VIRTIO for attaching storage devi-
ces to the KVM. To evaluate its effectiveness, we have con-
ducted experiments to measure I/O performance for both
the VM and PM. We use the IOzone benchmark. As shown
in Fig. 3, the results indicate that VIRTIO delivers an I/O
performance for the VMs that is comparable to that for the
PMs under various access patterns such as sequential
reads/writes and random reads/writes.

4.1.3 KVM’s I/O Interference to Lustre Storage Servers

A major concern for the VAS framework is the performance
interference to the I/O services of Lustre storage servers. To
investigate this issue, we leverage IOzone benchmark to
simulate heavy I/O workload and measure the aggregated
I/O bandwidth of three cases: Lustre-alone, Lustre with a
concurrent YARN program running on the physical
machines (Lustre-YARNinPM), and Lustre with a virtual-
ized YARN program running on KVM virtual machines
(Lustre-YARNinVM). For the last two cases, 100 YARN Ter-
aSort jobs are launched one by one on 8 Lustre storage serv-
ers, at the same time heavy I/O operations are conducted

TABLE 1
Throughput Performance for Different Communication Cases

Case # Source Destination Interface BW (Gbps)

1 hostA-VM hostA VIRTIO 15.2
2 hostA-VM hostA SR-IOV 7.1
3 hostA-VM hostB VIRTIO 4.3
4 hostA-VM hostB SR-IOV 6.1
5 hostA-VM hostB-VM VIRTIO 7.2
6 hostA-VM hostB-VM SR-IOV 9.2

Fig. 3. Disk I/O performance of PM and VM.

188 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 1, JANUARY 2016

by IOzone Benchmark on remote Lustre clients to evaluate
Lustre’s I/O bandwidth. Note that, in this test, both Lustre-
YARNinPM and Lustre-YARNinVM are using separate
disks for the HDFS instead of sharing the same storage disks
with Lustre OSTs.

Fig. 4 shows the aggregated bandwidth of Lustre storage
servers. Running YARN directly on PMs incurs a band-
width degradation of 11.9 and 15.2 percent for sequential
reads and random reads, respectively. In contrast, running
YARN in VMs has negligible impact to the Lustre servers.
To be specific, the time to start and configure KVM on OSS
nodes is about 25 seconds. Since the virtualized VMs can
stand by for serving ad-hoc analytics requests, such time
overhead is minimal. In addition, since the Lustre write
bandwidth is not sensitive to caching effects [20], the write
bandwidths for all three cases are comparable.

The performance of Lustre storage servers has not been
affected much when launching Yarn in VMs, because KVM
provides very good resource segregation. KVM is able to
restrict the resource usage of VMs of Yarn (especially mem-
ory and CPU usage), thereby reserving sufficient resources
for the storage servers. As a result, the performance interfer-
ence of YARN to Lustre storage servers has been mitigated.

4.2 Stripe-Aligned Data Distribution
and Task Scheduling

The locality of task scheduling is an important factor that
affects the amount of data movement during analytics. To
exploit locality in VAS, we need to have a thorough under-
standing of its data movement. Fig. 5 shows the end-to-
end path of data movement when running MapReduce on
top of Lustre in our VAS framework. There are six main
steps of data I/O, all happening on Lustre. A MapTask is
involved in the first three steps: (1) initially reading the
input splits, (2) spilling data during the map phase, finally
(3) merging and storing the intermediate data as a MOF on
the Lustre. A ReduceTask is involved in the last three
steps: (4) fetching and shuffling data from MOFs, (5) merg-
ing data segments and spilling some merged segments to
Lustre as needed, and (6) reading spilled segments and
writing final results at the end of the reduce phase. A par-
tial enhancement to this path may not result in an overall
performance improvement, e.g., improving the locality in
Step 1 as done in [16]. For an efficient analytics shipping

framework, we need to provide a complete optimization of
this end-to-end data path. In the rest of this subsection, we
elaborate our strategies for data placement and task sched-
uling in Steps 1, 2, 3, and 6.

For both the input datasets and the temporary spilled
data, we need to determine the placement and distribution
on Lustre. On Lustre, it translates to a decision on the choice
of stripe size and stripe width of MapReduce data files.
Setting the stripe size smaller than the size of MapReduce
input split will force a MapTask to read from many OSTs,
resulting in the loss of locality and an increase of I/O inter-
ference. Using a stripe size larger than the split size can
force multiple MapTask to read from the same OST, reduc-
ing the parallelism and increasing the lock contention. Our
tests indicate that it is beneficial to choose the Lustre stripe
size equal to the input split size. We adopt this as the default
configuration when a MapReduce program is allowed to
generate and distribute its own input data. To work with
the datasets that are generated a priori by scientific applica-
tions, we instrument our framework for the MapTasks to
extract the distribution of Lustre stripes and retrieve them
accordingly.

Lustre records the distribution of stripes among physical
machines, which cannot be directly translated to the actual
VMs. To make the YARN scheduler aware of the correspon-
dence of VMs to PMs, we create a configurable file with a
mapping table of PMs and VMs. With this mapping table,
we use the Lustre “lfs” tool inside the YARN MapReduce
resource manager to distribute data in a stripe-aligned man-
ner and place the initial input and the newly generated data
in the end-to-end path (Steps 1, 2, 3, 5, 6) on the local OSTs.
With the stripe-aligned distribution, in Step 1 of the end-to-
end path, by default we enable the YARN scheduler to
assign a MapTask preferentially to the storage server that
has the data split, i.e., the stripe is placed on the OST local
to the MapTask. When the stripe size is smaller than the
data split, we place the MapTask to the storage server that
hosts the most number of stripes for the targeted split.

Besides the preferred use of locality-based striping for
Step 1, we use this policy exclusively for the intermediate
data as they are generated and retrieved for Steps 2, 3, 5
and 6. In these steps, spilled intermediate data are tempo-
rarily written to Lustre and soon read by the same task.
Placing them in a stripe-aligned manner on the local OST
can reduce network and disk I/O to a remote OST. In our

Fig. 4. Using KVM to alleviate YARN’s interference to Lustre. Fig. 5. End-to-end data path for MapReduce on Lustre.

XU ET AL.: EXPLOITING ANALYTICS SHIPPINGWITH VIRTUALIZED MAPREDUCE ON HPC BACKEND STORAGE SERVERS 189

VAS framework, we have implemented a new class Lustre-
FileSystem in YARN, which extracts the input file location
from Lustre, then pass this information to YARN. Note that
Steps 4 and 5 for shuffling and merging of intermediate
data are discussed next (see Section 4.3).

4.3 Pipelined Merging and Reducing
of Intermediate Data

We take advantage of the fact that HPC storage systems
provide a global shared file system such as Lustre. We are
aware that some HPC storage systems such as Gordon [5]
have solid state drives, which can break this assumption.
However, we do not want to limit our analytics shipping
framework to the environment with SSDs, and leave the
exploration of SSDs in future work. We focus on exploiting
the feasibility of analytics shipping in a typical Lustre
environment.

With all the MOFs available to any task on Lustre, we can
avoid an explicit shuffling stage in a ReduceTask. Even
though there is still a need to bring the data into memory,
merge them, and process them through the reduce function,
a ReduceTask can go through an implicit shuffling step, i.e.,
reading data fromMOFs through file I/O operations.

We describe our management of intermediate data based
on the data movement steps shown in Fig. 5. For Steps 4
and 5, we develop a technique called pipelined merging and
reducing of intermediate data to mitigate the need of spilling
and retrieving data. This technique fully leverages the fact
that intermediate data stored as MOFs are available to all
tasks without explicit shuffling. Specifically, we eliminate
the explicit fetching step in a ReduceTask and form a new
pipeline of data merging and reducing. As shown in Fig. 6,
the optimized merger directly reads intermediate data
generated by MapTasks from Lustre, and merges them into
a stream of key-value pairs to the final reduce function. This
new strategy can avoid the spilling of data in Step 4 and
eliminate all the associated I/O operations.

To form a full pipeline of merging and reducing of data,
the new merger does not start until all MOFs are available,
similar to the strategy in [26]. In addition, we introduce two
threads, one on file I/O and the other on merging data.
These two threads are implemented in the Fetcher file class
of YARN. The read thread in the merge function reads

MOFs from Lustre directly without explicit shuffling. These
threads are pipelined to avoid the serialization of I/O and
computation. Double buffers are provided in both threads
to facilitate this pipeline. For example, in the file I/O thread,
one buffer is provided for buffering data from Lustre, the
other for buffering data ready to the merging thread.

5 EVALUATION

In this section, we evaluate the performance of our VAS
framework compared to the original YARN. We first
describe our experimental environment, then we provide
our experimental results in detail.

5.1 Experimental Setup

Our experiments are conducted in a 22-node cluster. Each
node contains dual-socket quad-core 2.13 GHz Intel Xeon
processors and 8 GB DDR2 800 MHz memory, along with
8X PCI-Express Gen 2.0 bus. Each node has a 500 GB, 7200
RPM Western Digital SATA hard-drivers. All nodes are
equipped with Mellanox ConnectX-2 QDR Host Channel
Adaptors, which are configured to run in the 10G mode and
connect to a 48-port 10G switch. These nodes are also con-
nected to a 48-port Gigabit Ethernet switch. We install
InfiniBand software stack and Mellanox OFED version 2.0,
with SR-IOV enabled.

In our evaluation, all experiments are based on Hadoop
2.0.4 and Lustre 2.5.0. Each container is allocated 1 GB mem-
ory and the maximum memory configured for the virtual
machine on each node is 6 GB. The replica ratio is config-
ured to be 1. A group of benchmarks have been leveraged
for performance measurements, including TeraSort, Word-
Count, SecondarySort and TestDFSIO in the YARN distri-
bution. Among them, TeraSort and SecondarySort generate
a large amount of intermediate data. WordCount produces
only a small quantity of intermediate data. TestDFSIO
benchmark is designed to test the raw performance of a file
system, in which the write and read throughput are mea-
sured. These diverse benchmarks are used to evaluate our
framework from a variety of aspects.

5.2 Overall Performance

Fig. 7 compares the overall performance of YARN on HDFS
(YARN-HDFS), YARN on Lustre (YARN-Lustre) and our
VAS framework (VAS) for the four benchmarks. Fig. 7a
shows the job execution time of TeraSort, WordCount and
SecondarySort. For all three benchmarks, YARN-Lustre
performs the worst. That is because simply porting MapRe-
duce to Lustre cannot fully leverage the advanced features
of Lustre and suffers from lock contention for the access of
intermediate data. YARN-HDFS is up to 16.2 percent faster
than YARN-Lustre because it leverages input locality for
fast data movement. On average, our VAS framework
achieves an execution time 12.4 and 25.4 percent better than
YARN-HDFS and YARN-Lustre, respectively. Specifically,
VAS outperforms YARN-HDFS and YARN-Lustre by 16.8
and 30.3 percent, respectively, for TeraSort. The improve-
ment of VAS over YARN-HDFS is mainly due to our
pipeline technique for intermediate data. Such improve-
ment is more significant for the benchmarks with a lot of

Fig. 6. Pipelined merging and reducing of intermediate data without
explicit shuffling.

190 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 1, JANUARY 2016

intermediate data such as TeraSort than those with little
such as WordCount.

These performance gains demonstrate the strengths of
our techniques in stripe-aligned data placement, task sched-
uling, and pipelined merging and reducing. The first two
techniques help to improve the locality of the VAS and
reduce the network transmission, thus increasing the Map-
Task read and ReduceTask write performance. The last two
techniques are able to eliminate I/O operations in Reduce-
Task, leading to faster data processing.

To shed light on how different schemes can leverage Lus-
tre for I/O, we further measure the average I/O throughput
using TestDFSIO. As shown in Fig. 7b, VAS achieves
14.6 and 69.7 percent better read bandwidth, and 18.7 and
108 percent better write bandwidth, compared to YARN-
Lustre and YARN-HDFS, respectively. In general, DFSIO

displays better performance on Lustre than on HDFS. This
is because of the I/O capability of Lustre. In addition, the
performance improvement of VAS over YARN-Lustre
comes from our exploitation of data locality and optimiza-
tion on intermediate data shuffling. Since HPC uses parallel
file systems such as Lustre instead of HDFS, in the rest of
this paper, we focus on the comparison between VAS and
YARN-Lustre, omitting the case of YARN-HDFS.

5.3 Locality Improvement and the Benefit

By default, VAS allocates a MapTask to an OSS with the
entire split available locally as a stripe or the OSS with the
most number of stripes if the input data split is striped. In
addition, MapTasks will be controlled to dump its spill data
and MOFs to local OSTs. Similarly, ReduceTasks write any
of its spill/merge data and output to local OSTs. Here we
focus on the comparison between YARN-Lustre and our
VAS framework that is enabled with only the locality opti-
mization (VAS-Locality-Only), i.e., without our technique
on pipelined merging as detailed in Section 4.3. We run Ter-
aSort on 10 slave nodes with input data varying from 10 GB
to 40 GB. During the tests, we measure the percentage of
local MapTasks, and profile the performance of I/O opera-
tions and job execution time. Fig. 8a shows the percentage
of local MapTasks. As shown in the figure, YARN-Lustre
randomly launches MapTasks, achieving only 11.6 percent
in terms of the percentage of local MapTasks. In contrast,
our VAS framework achieves high percentage of local Map-
Tasks by effectively managing the distribution of data splits.
VAS-Lustre schedules 82.1 percent of MapTasks with its
data on the local OST.

To examine the performance benefits of data locality, we
have measured the average input read time by MapTasks.
As shown in Fig. 8b, the performance gain is not significant
for 10 GB data size. This is because the virtual VMs are con-
nected with 10 Gigabit Ethernet. Data locality cannot bring
much benefit when the data size is small. As the data size
increases to 40GB, the MapTask reading time in VAS out-
performs YARN by as much as 21.4 percent. On average,
the reading performance of MapTasks in VAS is 15 percent
better than YARN-Lustre due to improved data locality.

Fig. 8c presents the write performance of ReduceTasks.
In YARN, since the number of ReduceTasks is fixed while
the number of MapTasks is proportional to the size of input
data. The writing time of ReduceTasks grows with an
increasing size of total data. As shown in the figure, VAS-
Locality-Only leads to 19.3 percent better write performance
than YARN-Lustre when the data size is 40 GB. This

Fig. 8. Locality improvement.

Fig. 7. The overall performance of three schemes.

XU ET AL.: EXPLOITING ANALYTICS SHIPPINGWITH VIRTUALIZED MAPREDUCE ON HPC BACKEND STORAGE SERVERS 191

performance improvement comes from the better locality in
spilling data and storing output. Moreover, the result also
demonstrates that leveraging data locality over Lustre can
obtain better write performance for the ReduceTasks.

Fig. 8d shows the job execution time. VAS-Locality-Only
demonstrates up to 4 percent better job execution time than
YARN-Lustre for a varying amount of input data. The over-
all percentage of improvement on the job execution time is
much smaller because the weights of the MapTask reading
time and the ReduceTask writing time are quite low in the
total job execution time.

5.4 Network and Disk I/O Utilization

We also examine the effectiveness of network and disk I/O
utilization. These experiments are conducted with TeraSort
running on 30 GB dataset. Fig. 12 shows the network
throughput and I/O request numbers during the MapRe-
duce job execution. In Fig. 9a, VAS cuts down the total net-
work throughput by up to 26.7 percent since it introduces
the stripe-aligned I/O and task scheduling, which allows
both MapTasks and ReduceTasks to access data locally
rather than resorting to remote storage targets in most cases,
thus reducing the network transmission overhead, particu-
larly in Steps 1, 2, 3, 5 and 6 as shown in Fig. 5).

Fig. 9b shows the I/O request numbers during execution.
VAS significantly reduces the disk I/O request numbers by
62.3 percent on average compared to YARN-Lustre. This is
because the avoidance of explicit shuffling in VAS, which
eliminates the associated data spilling and retrieval. There-
fore, at the beginning of job execution (namely the map
phase), I/O requests in the two cases are very close to each

other. When the job further progresses to the reduce phase,
we can observe that the I/O request number of VAS
becomes much lower than YARN-Lustre. These results indi-
cate that our techniques not only improves the shuffle phase
but also provides an efficient pipeline of data merging and
reducing, resulting in fast job execution.

5.5 Tuning of Input Split Size

To gain more insights on the impact of the input split size,
we measure the performance of TeraSort with the default
striping configuration, i.e., when each MapReduce split is
equal to a Lustre stripe. In our VAS framework, MapTasks
in YARN take input data from Lustre. The choice of the
input split size represents an important tradeoff between
data access sequentiality and task execution parallelism. To
be specific, a split size too small can increase scheduling
overheads, while a split size too big may reduce the concur-
rency of task execution. Fig. 10 shows the execution time of
TeraSort for YARN-Lustre and VAS with the input split size
varying from 32 MB to 512 MB. Both schemes perform best
when input split size is set as 128 MB. These results suggest
that 128 MB provides the best tradeoff between task paral-
lelism, management overhead and I/O granularity.

5.6 The Impact of Lock Management

Lustre distributed lock management is known as a critical
factor for the parallel I/O performance. In our VAS frame-
work, many I/O operations from many map and reduce
tasks overlap with each other, thereby presenting a scenario
of parallel I/O. To alleviate the impact of Lustre lock con-
tention on the central MDS, there is an option (localflock) to
delegate the management of Lustre locks to each OSS.

We have also measured the I/O performance of four dif-
ferent execution cases: YARN-Lustre, YARN-Lustre with
localflock enabled (YARN-Lustre-localflock), VAS, and VAS
with localflock enabled (VAS-localflock). Fig. 11 shows the
MOF reading time for ReduceTasks and the MOF writing
time for MapTasks when running TeraSort on 30 GB data.
Fig. 11a shows that VAS with the localflock option (VAS-
localflock) can improve the performance of reading interme-
diate files in ReduceTasks by up to 55.2 and 15.9 percent,
compared to YARN-Lustre-localflock and VAS, respec-
tively. To be specific, YARN-Lustre-localflock reduces the
read time of MOFs by 69 percent compared to YARN-
Lustre. This performance difference is due to the serious

Fig. 9. Profile of resource utilization.

Fig. 10. The impact of input split size.

192 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 1, JANUARY 2016

lock contention when many ReduceTasks are reading the
same MOFs. The localflock option can greatly alleviate the
impact of such contention. However, the option of localflock
does not have a significant performance impact for the VAS
framework. This can be explained by two reasons. First, our
pipelined merging/reducing technique reduces the fre-
quency of I/O operations. Second, VAS has modified the
original MOF format. In the original YARN MapReduce,
each MapTask generates one MOF file while ReduceTasks
fetch their segments according to the offsets in the MOF file.
In the VAS framework, each MapTask creates separate files,
one for each ReduceTask. This avoids the lock contention
issue on a shared MOF file.

As depicted in Fig. 11b, VAS-localflock slightly increases
the average write time. This is because VAS leads to more
metadata operations because of the creation of more inter-
mediate files.

5.7 Scientific Applications

In this subsection, we run an HPC application—NPB BT-IO
[13] on Lustre clients, at the same time launch a MapRe-
duce analytic application—K-Means [7] in YARN. Two
cases are evaluated. In the first case, the MapReduce pro-
grams are shipped to Lustre Storage Servers (VAS-Lustre-
SeverVM). This configuration represents the scenario in
which a MapReduce program is shipped to the backend
storage servers. In the second case (VAS), an additional
cluster of Lustre Clients (YARN-LustreClient) is configured
to run MapReduce programs. This configuration represents
the scenario in which a MapReduce program runs at the
computing partition and has to retrieve data from HPC
backend storage servers.

NPB (NAS Parallel Benchmarks) are derived from
computational fluid dynamics (CFD) applications. BT-IO
is one of the NPB benchmarks that basically solves a set
of nonlinear equations and writes the entire solution field
storage every five time steps. Two I/O patterns EP-IO
and MPI-IO-FULL are measured in this evaluation. EP-IO
is Embarrassingly Parallel I/O, in which every processor
writes its own file. MPI-IO-FULL adopts collective I/O to
write a single file. K-Means clustering is a technique of
vector quantization that aims to partition datasets into k
clusters, in which each dataset of the cluster obtains the
nearest mean. The dataset adopted in this measurement
is a set of around 20,000 postings to 20 different news-
groups. We utilize a MapReduce program to solve the
K-Means problem.

Fig. 12a and 12b show the job execution time and
throughput of BT-IO for both EP-IO and MPI-IO-FULL
cases, when a concurrent MapReduce program is run-
ning. As shown in the figure, shipping MapReduce pro-
grams to Lustre storage servers has negligible impact to
the I/O performance of NAS BT-IO. This is because the
virtualization technique in VAS provides good resource
segregation, with little performance interference to Lustre
storage servers.

We also measure the performance ofMapReduce program
(K-Means) when it is shipped to HPC storage servers (VAS-
LustreSeverVM) compared to the case when it is not shipped
(YARN-LustreClient). Again, in both cases, a concurrent I/O
program (BT-IO) is running. As shown in Fig. 13, The VAS-
LustreSeverVM configuration outperforms YARN-LustreSe-
verVMwhen the BT-IO program is running in either EP-IO or
MPI-IO-Full mode. These evaluation results demonstrate that
our VAS framework is able to deliver better analytics perfor-
mance for MapReduce programs when they are shipped to

Fig. 11. Impact of Lustre lock management.

Fig. 12. The performance of NAS BT-IO when MapReduce programs are
running on the backend storage servers.

Fig. 13. The performance of K-Means when BT-IO is generating I/O traf-
fic to HPC storage servers.

XU ET AL.: EXPLOITING ANALYTICS SHIPPINGWITH VIRTUALIZED MAPREDUCE ON HPC BACKEND STORAGE SERVERS 193

the HPC storage servers, avoiding the costly data movement
from storage servers to the computing partition.

6 RELATED WORK

Similar to our work, the active storage implementation in [18]
was also designed to exploit the idle computation power in
the storage nodes for running some general programs. Dif-
ferently, our VAS framework leveraged the MapReduce
programming model for parallel and efficient data analysis.

In order to avoid enormous data migration back and forth
in the supercomputer, there have beenmany studies provid-
ing in situ data analytics along with scientific simulations
[27], [31]. For example, Tiwari et al. [24] implemented an
active flash prototype to conduct analysis on the solid-state
drives before simulation results are stored back to disks. In
addition, some other analysis techniques have been devel-
oped for better coordination with the large-scale scientific
simulations. Among them, Bennett et al. [14] exploited the
DataSpaces and ADIOS frameworks for supporting efficient
datamovement between in situ and in transit computations.

There have been several attempts of integrating MapRe-
duce based data analytics model into compute-centric High
Performance Computing environment to work with distrib-
uted file systems. For example, Ananthanarayanan et al.
[12] compared the performance of HDFS with a commercial
cluster filesystem (IBM’s GPFS) for a variety of MapReduce
workloads. Maltzahn et al. [17] showed the feasibility of
executing Hadoop with the Ceph file system. Tantisiriroj
et al. [22], [23] integrated PVFS with Hadoop and compared
its performance with Hadoop on HDFS. However, the
evaluation results showed that, after carefully tuning the
parameters of the distributed file systems, Hadoop could
only deliver similar performance as Hadoop on HDFS.

Wilson et al. [28] has explored a different approach to
enable Hadoop MapReduce atop traditional HPC storage
infrastructure. The authors have chosen to implemented a
file system called Replicating Array of Independent NAS
File System (RainFS). In contrast, our work pursues a new
run-time system that ships MapReduce programs without
having to replace proven HPC storage systems such as
Lustre with a new file system.

In [16], performance studies were conducted to compare
Hadoop with HDFS and Hadoop with Lustre. The results
showed that Hadoop with Lustre performed significantly
worse than Hadoop with HDFS mainly due to the inefficient
intermediate data access and processing on Lustre. In most
cases, integrating Hadoop with parallel file systems so far
demonstrated unsatisfactory performance. That is because
simply porting Hadoop to HPC systems would suffer from
issues such as resource contention and performance inter-
ference, etc. Our virtualized analytics shipping framework
on Lustre is able to address such issues through a set of new
techniques and demonstrate more efficient analysis than
Hadoop on HDFS.

7 CONCLUSION

Simulation codes on large-scale HPC systems are generating
gigantic datasets that need to be analyzed for scientific dis-
covery. While in-situ technologies are developed for extrac-
tion of data statistics on the fly, there is still an open

question on how to conduct efficient analytics of permanent
datasets that have been stored to HPC backend storage. In
this paper, we have exploited the analytics shipping model
for fast analysis of large-scale persistent scientific datasets
on backend storage servers of HPC systems without moving
data back to the compute nodes.

We have undertaken an effort to systematically examine
a series of challenges for effective analytics shipping. Based
on our examination, we have developed a Virtualized Ana-
lytics Shipping framework as a conceptual prototype,
using MapReduce as a representative analytics model and
Lustre as a representative HPC backend storage system
With the VAS framework, we have also provided several
tuning and optimizations including fast network and disk
I/O through dynamic routing, stripe-aligned data distribu-
tion and task scheduling, and pipelined intermediate data
merging and reducing. Together, these techniques have
realized an efficient analytics shipping implementation,
which supports fast and virtualized MapReduce programs
on backend Lustre storage servers. In future, we plan to
investigate the benefits of our VAS framework to short and
ad-hoc analytics jobs, and its applicability to large-scale
leadership computing facilities.

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of
Yandong Wang while he was a student at Auburn and for
the discussions they had with Eric Barton and Omkar
Kulkarni from Intel. This work was supported in part by
awards from Intel and Lawrence Livermore National Labo-
ratory, and by the NSF awards 1059376, 1320016, 1340947
and 1432892. Weikuan Yu is the corresponding author of
the article.

REFERENCES

[1] Apache Hadoop NextGen MapReduce (YARN). [Online].
Available: http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/
hadoop-yarn-site/YARN.html, 2014.

[2] Apache Hadoop Project. [Online]. Available: http://hadoop.
apache.org/, 2014.

[3] Center for Plasma Edge Simulation. [Online]. Available: http://
cims.nyu.edu/cpes/, 2014.

[4] Chroot. [Online]. Available: https://wiki.archlinux.org/index.
php/Change_Root, 2015.

[5] Gordon: Data-Intensive Supercomputing. [Online]. Available:
http://www.sdsc.edu/supercomputing/gordon/, 2015.

[6] Kernel Based Virtual Machine. [Online]. Available: http://www.
linux-kvm.org/page/Main_Page, 2014.

[7] KMeans over MapReduce. [Online]. Available: http://cmj4.web.
rice.edu/MapRedKMeans.html, 2014.

[8] Lustre 2.0 operations manual. [Online]. Available: http://wiki.
lustre.org/images/3/35/821-2076-10.pdf, 2011.

[9] The Combustion Research Facility at Sandia National Laborato-
ries. [Online]. Available: http://crf.sandia.gov/, 2014.

[10] The Xen Project. [Online]. Available: http://wiki.xen.org/wiki/
Main_Page, 2015.

[11] VMware, Inc. [Online]. Available: http://vmware.com/, 2015.
[12] R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha, P. Sarkar,

M. Shah, and R. Tewari, “Cloud analytics: Do we really need to
reinvent the storage stack,” presented at the Proc. 1st USENIX
Workshop Hot Topics Cloud Comput., San Diego, CA, USA, 2009.

[13] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L.
Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K.Weeratunga,
“The nas parallel benchmarks,” Int. J. High Perform. Comput. Appl.,
vol. 5, no. 3, pp. 63–73, 1991.

194 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 1, JANUARY 2016

[14] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy,
T. Jin, S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay,
D. Thompson, H. Yu, F. Zhang, and J. Chen, “Combining in-situ
and in-transit processing to enable extreme-scale scientific analy-
sis,” in Proc. High Perform. Comput., Netw., Storage Anal. Int. Conf.,
Nov. 2012, pp. 1–9.

[15] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” in Proc. 6th Conf. Symp. Opear. Syst. Des.
Implementation—Volume 6, Berkeley, CA, USA, 2004. USENIX
Association, pp. 10–10.

[16] D. Luan, S. Huang, and G. Gong, “Using Lustre with Apache
Hadoop,” Sun Microsystems Inc., 2009.

[17] C. Maltzahn, E. Molina-Estolano, A. Khurana, A. J. Nelson, S. A.
Brandt, and S. Weil, “Ceph as a scalable alternative to the hadoop
distributed file system,” login: USENIXMag., 2010.

[18] J. Piernas, J. Nieplocha, and E. J. Felix, “Evaluation of active stor-
age strategies for the lustre parallel file system,” IN Proceedings of
the 2007 ACM/IEEE Conference on Supercomputing. New York, NY,
USA: ACM, pp. 28:1–28:10, 2007.

[19] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “Indexfs: Scaling file
system metadata performance with stateless caching and bulk
insertion,” in Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, Piscataway,
NJ, USA: IEEE Press, pp. 237–248, 2014.

[20] H. Shan and J. Shalf, “Using IOR to analyze the I/O performance
for HPC platforms,” In Cray Users Group Meeting (CUG) 2007,
Seattle, Washington, USA, 2007.

[21] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proceedings of the IEEE 26th Symposium
on Mass Storage Systems and Technologies. Washington, DC, USA:
IEEE Computer Society, pp. 1–10, 2010.

[22] W. Tantisiriroj, S. Patil, and G. Gibson, “The crossing the chasm:
Sneaking a parallel file system into hadoop,” in Proc. Petascale
Data Stroage Workshop, 2008.

[23] W. Tantisiriroj, S. W. Son, S. Patil, S. J. Lang, G. Gibson, and R. B.
Ross, “On the duality of data-intensive file system design: Recon-
ciling hdfs and pvfs,” in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage Anal., 2011, pp. 67. .

[24] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma, P. J.
Desnoyers, and Y. Solihin, “Active flash: Towards energy-effi-
cient, in-situ data analytics on extreme-scale machines,” in Proc.
11th USENIX Conf. File Storage Technol., Berkeley, CA, USA, 2013,
pp. 119–132.

[25] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
hadoop yarn: Yet another resource negotiator,” in Proc. 4th Annu.
Symp. Cloud Comput., New York, NY, USA, 2013, pp. 5:1–5:16.

[26] Y. Wang, X. Que, W. Yu, D. Goldenberg, and D. Sehgal, “Hadoop
acceleration through network levitated merge,” in Proc. 2011 Int.
Conf. High Perform. Comput., Netw., Storage Anal., 2011, pp. 57.

[27] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel in situ cou-
pling of simulation with a fully featured visualization system,” in
Proc. 11th Eurographics Conf. Parallel Graph. Vis., Aire-la-Ville,
Switzerland, 2011, pp. 101–109.

[28] E. H. Wilson, M. T. Kandemir, and G. Gibson, “Will they blend?:
Exploring big data computation atop traditional hpc nas storage,”
in Proc. Int. Conf. Distrib. Comput. Syst., 2014, pp. 524–534.

[29] W. Yu, J. S. Vetter, R. S. Canon, and S. Jiang, “Exploiting lustre file
joining for effective collective I/O,” presented at the 7th Int. Conf.
Cluster Comput. Grid, Rio de Janeiro, Brazil, May 2007.

[30] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I.
Stoica, “Spark: Cluster computing with working sets,” in Proc.
2Nd USENIX Conf. Hot Topics Cloud Comput., Berkeley, CA, USA,
2010, pp. 10–10.

[31] F. Zhang, S. Lasluisa, T. Jin, I. Rodero, H. Bui, and M. Parashar,
“In-situ feature-based objects tracking for large-scale scientific
simulations,” in Proc. SC Companion, IEEE Computer Society,
2012, pp. 736–740.

Cong Xu received the Bachelor’s degree from
Beijing University of Posts and Telecommunica-
tions, Beijing, China, in 2009, and the Master’s
degree from Auburn University, Auburn, AL, in
2012. He is currently working toward the PhD
degree at the Parallel Architecture and System
Laboratory in the Department of Computer
Science and Software Engineering at Auburn
University. His research interests include high
performance computing, cloud computing, and
big data analytics.

Robin Goldstone received the Master’s Degree
in computer science from California State Univer-
sity, Chico, CA. She is currently a computer
scientist working in the High Performance Com-
puting (HPC) division at Lawrence Livermore
National Laboratory (LLNL), Livermore, CA. She
is also a member of LLNLs HPC Advanced Tech-
nologies Office where she is involved in technol-
ogy evaluation and planning for next generation
HPC systems, as well as developing novel archi-
tectures for Data Intensive computing. She was

previously involved in the deployment of some of the world’s fastest
supercomputers, including ASCI White and BlueGene/L.

Zhuo Liu received the Bachelor’s degree from
Huazhong University of Science and Technology,
Wuhan, China, in 2007. He is currently working
toward the PhD degree at the Parallel Architec-
ture and System Laboratory in the Department of
Computer Science and Software Engineering at
Auburn University, Auburn, AL. His research
interests include cloud computing, big data ana-
lytics, parallel I/O and storage systems.

Hui Chen received the Bachelor’s and the PhD
degrees from Beijing University of Posts and Tel-
ecommunications, Beijing, China, in 2006 and
2012, respectively. He is currently a postdoctoral
researcher in the Parallel Architecture and Sys-
tem Laboratory in the Department of Computer
Science and Software Engineering at Auburn
University, Auburn, AL. Before coming to Auburn
University, he worked in Shenzhen Institutes of
Advanced Technology, Chinese Academy of
Sciences for two years. His research interests

include cloud computing, energy efficiency management of data center
and big data processing.

XU ET AL.: EXPLOITING ANALYTICS SHIPPINGWITH VIRTUALIZED MAPREDUCE ON HPC BACKEND STORAGE SERVERS 195

Bryon Neitzel received the Master’s degree in
computer science from Florida Atlantic Univer-
sity, Boca Raton, FL. He is currently the direc-
tor of engineering in the High Performance
Data Division at Intel Corporation, Santa Clara,
CA. He leads development of Exascale IO soft-
ware teams which are responsible for exploiting
new hardware technologies to improve HPC IO.
He also leads teams that develop Hadoop
solutions on the Lustre filesystem, and previ-
ously led the Lustre software engineering team

for the last four years.

Weikuan Yu received the Bachelor’s degree in
genetics from Wuhan University, Wuhan, China,
and the Master’s degree in developmental biol-
ogy from the Ohio State University, Columbus,
OH, where he also received the PhD degree in
computer science in 2006. He is currently
an associate professor in the Department of
Computer Science and Software Engineering at
Auburn University, Auburn, AL. Prior to joining
Auburn, he served as a research scientist for two
and a half years at Oak Ridge National Labora-

tory until January 2009. He is also a joint professor in the Departmental
of Biological Sciences at Auburn University. At Auburn University, he
leads the Parallel Architecture and System Laboratory for research and
development on high-end computing, parallel and distributing network-
ing, storage and file systems, as well as interdisciplinary topics on
computational biology. He is a senior member of the IEEE and member
of the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

196 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 1, JANUARY 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

