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ABSTRACT

MapReduce has become indispensable for big data analytics. As a
representative implementation of MapReduce, Hadoop/YARN strives
to provide outstanding performance in terms of job turnaround time,
fault tolerance etc. It is equipped with a speculation mechanism
to cope with run-time exceptions and failures. However, we reveal
that the existing speculation mechanism has some major drawbacks
that hinder its efficiency during failure recovery, which we refer to
as the speculation breakdown. In order to address the speculation
breakdown, we introduce a failure-aware speculation scheme and a
refined scheduling policy. Moreover, we have conducted a compre-
hensive set of experiments to evaluate the performance of both sin-
gle component and the whole framework. Our experimental results
show that our new framework achieves dramatic performance im-
provement in handling with task and node failures compared with
the original YARN.

1. INTRODUCTION

Nowadays, the society has entered into its “Big Data era.” With
the balloning of the digital world’s capacity, the use of big data
analytics tools has been increasingly substantial. Among them,

MapReduce based computing has gained wide popularity since Google

introduced it [11] in 2004. Specifically, Hadoop [2] has become the
de facto standard implementation of MapReduce. Currently, it has
been evolved into its second generation called YARN [1]. YARN
is designed to overcome scalability and flexibility issues in the first
generation Hadoop.

The popularity of Hadoop is largely due to its fast turnaround
time [11]. In order to achieve that in the highly unstable heteroge-
neous environment, a mechanism called speculation is designed to
contribute to the purpose. A global speculator proactively makes
copy of the straggler task that may block the job progress. The first
copy of straggler that finishes first will let the job proceed. Even in
the presence of a whole computing node going down, as long as all
the tasks on the node are properly speculated, the job performance
will not downgrade too much.
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However, we have found that the existing speculation mecha-
nism has several deficiencies, especially for small jobs. Fig 1 shows
the job slowdown caused by a single node failure with a varying in-
put size from 1 GB to 10 GB and an increasing number of tasks.
We can see that to the jobs that have 1 to 10 GB input data or 10
to 100 tasks, a single node failure can degrade the job performance
by a varying factor from 3.3x to 9.2x.
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Fig. 1: Wordcount job performance when one node fails.

How serious is this impact? Although Hadoop is known for its
ability for processing big data, a significant portion of jobs in in-
dustrial use are actually small size jobs. For example, the distri-
bution of Facebook workloads [4] demonstrates a heavy tail ten-
dency, in which both the number of tasks and the input size follow
a power-law distribution. For Facebook workloads, about 90% of
jobs have 100 or less tasks, and a majority portion having 100 Gb
or less input data. Thus, a lot of jobs will suffer from the perfor-
mance degradation as shown above. Note that in our experiments,
we simulate only node failures, which are already extremely com-
mon. According to [10], there is an average of five node failures
during one MapReduce job execution. All these evidences indicate
an imperative need to revisit the existing speculation mechanism in
MapReduce model.

In order to address the aforementioned problem, we have stud-
ied the inability of existing speculation mechanism in handling with
failures. Then we introduce a set of techniques, including an opti-
mized speculation mechanism and a fast scheduling policy on fail-
ures. Our experimental results show that our new speculation im-
plementation has dramatic performance improvenment in handling
with failures compared with the original YARN.

In summary, our work makes the following contributions:

e We systematically reveal the drawbacks of current specula-
tion mechanism and analyze the impact, cause and implica-
tion of node failure in great detail.

e We improve the efficiency of YARN’s existing speculation
against failure by introducing our a speculation scheme FARMS



(Failure-Aware, Retrospective and Multiplicative Speculation).

e We involve YARN with a heuristic failure scheduling algo-
rithm named Fast Analytics Scheduling (FAS) to work with
FARMS, which adds strong resiliency to the heterogeneous
real-world environment.

e We demonstrate that the implementation of FARMS and FAS
improves YARN’s performance significantly under failures,
especially for small jobs.

This paper is organized as follows. Section 2 details our find-
ings on the existing speculation mechanism with experimental re-
sults. Section 3 introduces our solution designs of FARMS and
FAS. Section 4 presents the evaluation results of our implementa-
tion. We survey related work in Section 5 and conclude the paper
in Section 6.

2. BACKGROUND AND MOTIVATION

2.1 Fault Tolerance and Speculation Mecha-
nism of YARN

As the representative implementation of MapReduce, Hadoop

strives to provide outstanding performance in terms of job turnaround

time, scalability, fault tolerance, etc. In its current version called
YARN, each job is comprised of one ApplicationMaster, a.k.a AM,
and many Map- and ReduceTasks. Each MapTask reads one in-
put split that contains many <k,v> pairs from the HDFS and con-
verts those records into intermediate data in the form of <k’,v’>
pairs. That intermediate data is organized into a Map Output File
(MOF) and stored to the local file system. A MOF contains multi-
ple partitions, one per ReduceTask. After one wave of MapTasks,
AM launches ReduceTasks, overlapping the reduce phase with the
map phase of remaining MapTasks. Once launched, a ReduceTask
fetches its partitions from all MOFs and applies reduce function on
them. The final results are stored into the HDFS.

This design provides good distributed computing and scaling

abilities. In order to achieve strong fault tolerance, YARN is equipped

with data replication and regeneration mechanisms. A task is prop-
erly regenerated upon various failures (network, disk, node etc.).
Even if the original input data is unavailable because of failures, the
rescheduled task will have access to a replica of data and a correct
failover is still ensured. However, to simply conduct failover is not
good enough. YARN depends on long timeouts to declare failure
for every task. Such long timeout is necessary to avoid false pos-
itive decisions on failure, but it could prolong the recovery when
real failures occur. So a simple failure can lead to large perfor-
mance degradation, especially for small jobs who have very short
turnaround time. To make things worse, failures are prevalent in
commodity cluster as found by [10, 18, 21, 23, 7, 24]. That means
in overall, YARN’s performance can be seriously affected by fail-
ures if it solely relies on the naive task-restarting mechanism. Thus,
apart from it, YARN also has a speculation mechanism which can
help accelerate the detection and recovery process.

Speculation has been studied previously [28, 6, 3, 5]. Most of
these strategies launch a backup copy of the slowest task for a the
. The LATE scheduler [28], for instance, estimates the completion
time for every task and uses the results to rank those tasks. The task
that is estimated to finish the last will be speculated on a fast node.
After a given time interval, YARN will search again for slow task
to speculate. This strategy, along with others such as Mantri [6],
are adopted by industry to prevent the stragglers from delaying the
job performance.

2.2 Issues With The Existing Speculation

However, we find that the existing speculation mechanism have
some major drawbacks, which seriously impede its efficiency in the
real-world environment, where failures are prevalent.

2.2.1 Intra-node only

To start with, speculation is simply to make a copy of the slowest
task. But what if all the tasks are slow? For example, if every single
task of one job is converged on one single node and for some reason
the node becomes unresponsive (such as node crash or connection
lost), the speculator will not speculate any of those tasks since they
have relatively the same progress. The speculator cannot tell which
task is slower so the whole job will halt until each of the tasks gets
a timeout and then be executed from scratch again. Clearly, those
timeouts should be avoided by early speculations as soon as YARN
recognizes that the tasks on one node are all slow. However, in
the existing speculation, the speculating decision is only made by
intra-node task-progresses but not inter-node status.

One may argue that the task convergence can seldom occur be-
cause it counters with the distributed computing nature of MapRe-
duce. However, we found this phenomenon is not rare but indeed
extremely common among small size jobs. The reason is that al-
though MapReduce framework provides locality of tasks which can
help distribute the tasks evenly across different nodes, in practical
implementation such as YARN, its scheduler does not follow the
same principle restrictively. With its default scheduling policy (ca-
pacity scheduler), it requests several containers at once from one
NodeManager and when it gets enough containers for the job, it
stops requesting. When the job is small (so it does not need many
containers), the MapTasks will have a very high probability of re-
siding on the same node. This design of ResourceManager is good
for YARN’s extreme scalability, but unfortunately causes task con-
vergence and downgrades the effectiveness of speculation.

2.2.2  Prospective only

Another critical issue of current speculation relates to the corre-
lation between map and reduce phases in MapReduce model. The
existing speculation is made only among the running tasks. If a task
is finished, it will be excluded from the candidates for speculating.
The progress comparison of the existing speculation algorithm still
use the completed task’s progress (100% of course) to determine
if other running tasks are to be speculated, but no longer consider
speculating the completed tasks themselves.

Intuitively, it is a reasonable strategy since completed tasks should
have no way of straggling a job. However, MapReduce computing
typically requires the use of intermediate data that is produced by
the completed MapTasks. Clearly, it will be a problem if those
intermediate data are lost because the job will be held up until it fi-
nally finds out that the intermediate data is permanently lost. Thus,
completed tasks can also become stragglers but the current spec-
ulation mechanism is unable to address that. In other words, the
existing speculation mechanism can only make prospective copies
of tasks, but not retrospective ones. The retrospective speculation
implies that a task should be considered to be subject to failure
even if its progress has reached 100%. If speculation fails to con-
sider those completed tasks, they will face a speculation breakdown
along with serious degradation of job performance, as we will see
in later section.

2.3 The breakdown of the existing speculation

Next we demonstrate how the above issues can lead to the ex-
isting speculation mechanism’s breakdown, causing disastrous per-
formance degradation of MapReduce jobs. We take YARN as a
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Fig. 2: Running time of MapReduce jobs in presence of node failure on different spot.

study case and use Wordcount as the representative benchmark.
During each job, we generate failure of the task-hosting node at
different progress spot. But we avoid crashing the master node or
AM-hosting node because those will fail the job entirely. Other
experimental setup can be found in Section 4.

2.3.1 Speculation breakdown in small jobs

Fig. 2 shows the execution time of individual jobs. Each dot rep-
resents a job with node failure and its turnaround time, and the dot-
ted baseline below indicates the normal job execution time without
failures. Firstly, Fig. 2(a) shows the results of 1GB jobs that have
node failure at different progresses of map phase, The result is as
astonishing as it stands. Most of the jobs take time that is orders of
magnitude longer than the failure-free case, but there is an unusual
issue behind this. YARN needs to clean up the container after a task
attempt is finished. But if the attempt was running on a failed node,
YARN will keep trying to connect the corresponding NodeMan-
ager, which is currently unavailable, and finally throws a timeout
exception after a fixed number of retires, which is decided by the
IPC connection configuration settings (ipc.client.connect.*). In de-
fault, it will take about 30 minutes for connection retry. During this
time, the job will not end successfully even both map and reduce’s
progresses may have already reached 100%.

But this long timeout for container cleanup is not the sole rea-
son that hurts the job performance. Fig. 2(b) is the result of our
control group without the issue of container cleanup. We excluded
the problem by modifying YARN’s default retry policy and then
conducted the same set of tests (note that we have also excluded
this retry problem with the figures in Section 1 or Section 4). We
can still observe large performance degradation compared with the
normal job running time. The culprit here is the first issue of ex-
isting speculation, the intra-node only speculation as we discussed
before. When node contains all the MapTasks and it becomes unre-
sponsive, the speculator will not speculate any of those MapTasks
and will wait for 600 seconds for them to get timeout.

However, this delay of MapTask timeout still explains only a
part of our test cases. We can see that if node failure occurs on
40% to 60% of the overall map progress, some jobs ended only
slightly slower than no-failure case. This is because that as map
phase proceeds, different MapTasks’ progress rates can be uneven,
meaning that some MapTasks can be much faster than others, fi-
nally becomes fast enough that can trigger the speculation of the
slowest task. So when a node failure occurs during this time, the
MapTasks on the failed node are stalled, but the speculations on
other node, if there are any, will continue. When the progress rates
of those speculation copies are high enough, they will in turn trig-
ger the speculations of MapTasks on the failed node, and let the
job proceed normally thereafter. So, although the job is still slower
than usual, the avoidance of long timeouts make their performance

much better than other failure tests.

But if node failure occurs on even later phase of the overall map
progress, the disadvantage of the second issue, the prospective-only
speculation starts to appear. As many MapTasks are now com-
pleted, the ReduceTask that are trying to fetch those MOFs will
have fetch failures since the MOFs are unavailable on the failed
node. After the time for fetching one MapTask output exceeds the
limit (determined by mapreduce.reduce.shuffle.read.timeout), the
MapTask will be declared failed and a new attempt will be sched-
uled. This seriously stalls the overall job progress because Reduc-
eTasks are idle during this time. To make things worse, if the fetch
failures experienced by a single ReduceTask exceeds another limit,
that ReduceTask also can be declared failed and rescheduled. Addi-
tionally, if the corresponding MapTasks are not timely speculated,
the rescheduled ReduceTask will have a second fetch failure and
thus be scheduled for a third time.

On the other hand, intra-node only speculation is also broken
down during this period for not MapTasks but ReduceTasks. Re-
call that in MapReduce workflow, reduce phase does not require
the completion of map phase, ReduceTask can start running when
one wave of MapTasks is finished. So in the end half of the map
phase, some ReduceTasks may have already been launched. If the
job has only one ReduceTask (often the case for small jobs) and it
is on the crashed node, it will certainly not be speculated since it
has no other ReduceTask to compare to. The entire job will halt
until the ReduceTask gets a timeout (600 seconds in default, too).
Thus, these cases (mostly during 50% to 100% of map phase) have
similarly bad performance.

2.3.2  Speculation breakdown in larger jobs

What if the data size is larger? Now the effects of task conver-
gence is eliminated, but the cost of node failure on the map phase is
still significantly high. As we can see from Fig. 2(c), which is the
results of the same test but with 10GB of input, the running time
of most failure cases are nonetheless more than twice as much as
the failure free case. Note that right now the number of MapTasks
is large enough so they were assigned evenly to different nodes.
Thus, the speculator can successfully speculate the MapTask that
reside on the failed node as soon as it detects that it is slower than
others. But we found that the majority of jobs still suffer various
performance degradation. The causes are similar to the 1GB test
but with slight variations:

e Intra-node speculation may be invalid for multiple Reduc-
eTasks, too. We already show that the failure of only one Re-
duceTask will cost us 600 seconds as the ReduceTask time-
out. In fact, if a crashed node contains multiple ReduceTasks,
there is a chance that the progress of remaining ReduceTasks
is not slow enough for them to get speculated, which is con-
tingent on the YARN’s speculation algorithm. In Fig. 2(c),



the jobs that have more than 600 seconds execution time are
mostly due to this cause.

e The other test cases in Fig. 2(c) that spend less than 600
seconds but a lot more than no-failure case suffer from the
prospective only speculation. We can see that even if the in-
put size is larger, the cost of resuming the completed tasks is
still unbearable compared to normal turnaround time.

e The fact that speculations are conducted intermittently is not
effective. In Fig. 2(c), most of the jobs in early phase suffer
from this cause. A node fails and all tasks on it wait one-by-
one to be speculated. Depending on the speculation interval,
the jobs have various delays on their completion time.

2.4 Complexity of Timeout Setting

We have already seen that the default timeouts are too long for
MapReduce framework to detect failures and thus can prolong the
speculation and failover process. One may assume that the problem
can be easily solved by simply decreasing the timeouts. However,
those long timeouts are necessary for it to adapt to heterogeneous
environment since the networking situation is unknown and unsta-
ble. If the timeout is too small, tasks could be falsely declared
failed when the network is just experiencing some temporal con-
gestion. Fig. 3(a) shows a example of that. We changed YARN’s
timeout for MapTask/ReduceTask to 5 seconds and run it in an un-
stable network where a lot of networking delays, varying from 1 to
8 seconds, are generated randomly. We can see that the progress of
both map and reduce are seriously affected. They either stall at the
delays when they need network transfer (e.g. about 80s, some Re-
duceTasks are shuffling), or even backslide if the delays exceed the
timeout and the corresponding tasks are declared failed (at about
130s).

Thus, simply changing configurations is not feasible for unstable
networks, let alone if there are more unstable factors such as failed
nodes in the environment. Fig. 3(b) is another example of MapRe-
duce jobs with both network delays and node failure. It shows that
many MapTasks have failed because of network delays, causing
progress backslides. Then, the progresses are further impeded by
a node failure (at about 100s), after which one ReduceTask is de-
clared failed immediately but the reduce phase cannot proceed be-
cause it needs the MOFs on the lost node. So it keeps fetching
the MOFs until a fetch failure is incurred. Then it continues to re-
quest other lost MOFs and undergoes two more fetch failures (290s
and 480s). Until those missing MOFs are reproduced by the cor-
responding MapTask speculations, the reduce phase can continue
and the job is completed quickly after that.

100%

80%

Progress
g
2

ao0%{

— — Reduce|

Progress

100%

80%

,,,,,,,,,,,,,,

100
Time(s)

150

200

200 300 400
Time(s)

(a) Unstable network (b) Unstable network and node

Fig. 3: The progress of map and reduce of jobs with modified
timeout.

3. DESIGN AND IMPLEMENTATION

In this section, we will unfold our designs and some impor-
tant implementation features in order to tackle down the aforemen-
tioned issues of the existing speculation.

3.1 Overview of FARMS

We start with our new speculation design that is Failure-Aware,
Retrospective and Multiplicative Speculation (FARM-Speculation,
or FARMS). Fig. 4 shows the demonstration, where the existing
speculation is shown on the left and FARM is shown on the right.
Each small box represents a running task and its brightness indi-
cates the task’s progress (darker box indicates later phase of a task).
In the existing speculation, a straggler is speculated upon period-
ical progress comparison and its copy will be attached to the task
scheduling queue.

First of all, we have to understand that the existing speculation’s
inability to address the aforementioned issues roots in its unaware-
ness of the failures. Actually, because the speculator only coordi-
nates the tasks progress at task level, it does not need the node level
status for the computation. Thus, a simple node failure can strag-
gle the whole job. Our solution is straightforward. In FARMS, we
leverage the failure information that is collected by a global mon-
itor that runs with the ResourceManager.Tasks are associated with
their host nodes, so the affected tasks can be speculated collectively
and incrementally when a malfunctioning node is detected.

Secondly, in FARMS, we continue to list the completed tasks
in the speculation candidates. We add transitions that can specu-
late the completed tasks that associated with a failed node. When
the speculation task attempts have completed, ReduceTasks will be
notified to fetch MOFs from the new task attempts instead of the
original ones. But note that the speculation of completed tasks are
not based solely upon successful detection of unresponsive node,
the fetch failure of certain MOFs is also taken into consideration.
The difference is on the granuarity of speculation. If a single fetch
failure is notified by YARN, we speculate that particular completed
task. To avoid unnecessary speculative copies, the node-based spec-
ulation and the task-based speculation are mutually excluded. When
one task is speculated by either way, it will not be speculated again
by another cause.

Thirdly, we change the single speculation to batch speculation,
meaning that when we decide to launch additional speculations,
they can be all launched at once. But note that such speculations
can be costly sometimes because if we make false-negative deci-
sion on the node exceptions, there will be a lot of unnecessary ad-
ditional resource consumption that comes with the speculation. Al-
though we have optimized our decision algorithm (will introduce in
Section. 3.2) but we still want to minimize the cost. Thus, we incor-
porate an multiplictive speculation mechanism to FARMS that can
multiplicatively make speculation copies of the stragglers. Upon
the detection of node exceptions, the number of tasks to speculate
increases in exponential order. The condition to keep making spec-
ulation copies is contingent on the liveness of the corresponding
node. For example, if one node is unresponsive, we first speculate
2 tasks. We monitor the progress of the problematic tasks and if
they remain slow or unresponsive, we speculate another 4 tasks.

3.2 Fast Analytics Scheduling

Finally, we propose a new scheduling process that leverages the
analytics information. We name it as the Fast Analytics Schedul-
ing (FAS). As discussed before, the trade-off between speeding up
failure detection and truncating resource consumption is critically
important. In FAS, we use a dynamic threshold to determine if a
failure should be speculated or not. The positive results will be
added to the speculated list, and the negative ones will be tolerated.

Before we go into details, some design principles of the new
algorithm need to be sorted out. In general, the algorithm should
meet the following requirements.

(1) The decision made in most cases should decrease the job ex-
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ecution time.

(i) The decision should be as accurate as possible, avoiding too
much unnecessary additional resource consumption.

(iii) Even when the decision misjudges the situation, the impact to
job performance should be cheap.

(iv) It can be self-adjusted to different failure patterns.

To meet (i), we need to keep the rescheduling of tasks aggres-
sive enough so it can gain at least some performance improvement.
That means, the threshold cannot be too large, otherwise there will
be no difference from the default timeout mechanism and will hurt
the performance as well. But to meet (ii) and (iii), we need the
threshold to be dynamically adjusted according to the specific clus-
ter conditions. So we have to limit the number of positive decisions
made and so is the speculations imposed to the job execution. Fi-
nally, we need to tune the parameters in our algorithm for the re-
quirement (iv). By doing so, it can have optimal performance under
different failure scenarios.

Our overall algorithm is detailed in Algorithm 1. We take a sim-
ple heuristic method that deduces the status of the node. As dis-
cussed before, in order to fit the heterogeneous environment better,
YARN declares the node dead only after waiting for a relatively
long period of timeout (600 seconds by default). But we do not
need to wait that long to provide equal or better fault tolerance. We
can just speculate those tasks on the node while still waiting for it
to resume responsive again. So if a node is detected malfunction-
ing, we aggressively speculate all the tasks on it. However, this
approach incurs additional resource consumption of other nodes.
This is necessary when the node failure is permanent because all
the computations need to be re-conducted anyway, but is not so
when the failure case is a transient one. Thus, we keep monitor-
ing the node status after the speculations are launched. If finally it
is revealed that the failure is a transient one, we will measure the
time duration that the node remains lost. After that, the threshold
to which we declare a node failure will be dynamically adjusted
according to the most recent lost time of that node. Through this
step, each threshold is well adapted to the specific node environ-
ment. However, if the network is temporarily down for a very long
time, we do not want the threshold to be too high because it would
still be better to proactively schedule them rather than waiting for a
long time and then schedule. The latter one in some sense falls into

the same timeout mechanism of default YARN, which is already
shown extremely inefficient. So we decrease the threshold every
time it makes a right prediction, keeping it short enough to gain
performance improvement.

Intuitively, it is good to blacklist the node that experiences fre-
quent failures so the majority of jobs will be free from node fail-
ures. However, we do not recommend that because commercial
cluster trace [3] shows that the problematic nodes are very com-
mon and they are typically distributed evenly across a cluster be-
cause usually the faulty nodes have already been blacklisted during
some periodic checks before the job execution.

Algorithm 1 Enhanced Failure Recovery with FAS

1: N + {The compute node}

2: Ty < {Tasks running on N}

3: threshold < {Time threshold to decide a node failed}

4: Fail,,, < {Number of nodes currently already speculated}

5: Fail g, < {Maximum number of node failures allowed}

6: P, = 1.5 {Heuristic parameter used to increase the threshold}
7: P, = 0.5 {Heuristic parameter used to decrease the threshold }
8: if N’s lost time > threshold then

9 if Fail,,, < Fail,, then

Failypee = Failgpec + 1
11: for all rask € Ty do
12: schedule new attempt of zask on other node.
13: end for
14: continue to monitor the node status...
15: if N resumes responsive then
16: t = time length of the node’s loss of connection
17: threshold = (average of ¢ of the last 5 runs) xP,
18: else
19: threshold = threshold X Py
20: end if
21:  endif
22: end if

{When the job is done, document the longest connection lost time ¢ of
N during the job.}

4. EXPERIMENT EVALUATION

4.1 Experiment Environment

Hardware Environment: All experiments are finished on a clus-
ter of 21 server nodes that are connected through 1 Gigabit Ether-



net. Each machine is equipped with four 2.67 GHZ hex-core Intel
Xeon X5650 CPUs, 24GB memory and one 500GB hard disk.

Software Environment: We use the latest release of YARN 2.6.0
as the code base with JDK 1.7. One node of the cluster is dedicated
to run ResourceManager of YARN and NameNode of HDFS.

Benchmarks: Through the whole experiments we have selected
three representative MapReduce applications including Terasort,
WordCount, and Secondarysort.

4.2 FARMS Evaluation

We have examined the FARMS against node failures to see if it
can tackle down their negative impacts. Since node failure has very
different impacts on the job execution (Section 2) due to varying
job size, we have conducted two sets of experiments on jobs that
have small or relatively larger input size. For small size jobs, we ran
the three benchmarks with 1GB of input and we crash a node that
hosts the MapTasks at a different progress spot during the overall
map phase. For larger size jobs, the input size is 10GB and the node
to crash is picked randomly.

Fig. 5 and Fig. 6 show the performance comparison between the
original YARN and ours using FARMS against node failure at dif-
ferent phases. At each spot, we test it at least three times and get the
average. Since the prolonged job finish delay caused by YARN’s
retry policy is somewhat “unusual” because it can be tuned by sim-
ple re-configuration, so in our experiment we have neglected this
issue by modifying YARN’s default retry policy and still regard it
as the “Original YARN” case.

From the figures, it is clear that for small size jobs, the perfor-
mance improvement is striking. FARMS speeds up the job execu-
tion time by almost an order of magnitude. It manages to keep the
job completion time to be comparable with the no failure case. For
larger jobs, it can also tackle down the failure delay significantly.
Moreover, the original YARN has very distinct performance due to
different failure occurrence spot and benchmark type. But FARMS
smooths out the variation and provide constancy and predictability
for job executor.

4.3 Overall Evaluation

The evaluation of FARMS demonstrates the advantage of FARMS
in handling node failures. But we also want to know how FAS can
help FARMS fit in the real-world environment. Thus, we run dif-
ferent size of Terasort, Wordcount and Secondarysort jobs in se-
quence. We referenced [4] to set the size of jobs, as shown by
Table 1. We let the job arrives at random times following a Poisson
distribution.

Table 1: Ratio of test group in data size.

Group Size Ratio
1 1GB 85%
2 10 GB 8%
3 50 GB 5%
4 100GB | 2%

We then generate task failure, node crash and network delays,
each with a frequency as introduced in previous sections. We con-
duct tests with the exact same setup (job group, failure injection
method and interval) for both original YARN and ours. Fig 7 shows
the results of the overall evaluation. We can see that combining
FARMS and FAS provides performance that is almost comparable
with the no-failure YARN. For smaller jobs that are basically in-
tact from node failures, all three cases are similar, but ours slightly
outperforms original YARN with failures and, surprisingly, is even
slightly better than original YARN without failures. This shows

how the aggressive speculation can benefit small jobs. For larger
jobs that are more often affected by node failures, original YARN
performs a lot worse under failure but ours manages to keep their
performance comparable to the no failure case. This shows that al-
though not too much improvement can be gained for large jobs, the
FARMS+FAS implementation would not hurt their performance.
In overall, our performance is 15.3% better than the original YARN
under our experimental setup.

S. RELATED WORK

Speculation mechanism was introduced with the inital versions
of many of the representative parallel computing paradigms such
as MapReduce [11] and Dryad [17]. Since then, it has been exten-
sively studied with a variety of viewpoints [28, 6, 5, 3]. But we find
that none of these works has addressed the issues of speculation in
handling with failures as discussed in this paper.

To name a few, LATE [28] scheduler takes node heterogeneity
into account. It deliberately places the speculative copies onto fast
nodes but not slow ones. But the question about when to make a
speculation on failure-related stragglers remains unsolved. Also,
its intermittent speculative strategy can cause significant amount of
performance loss upon node failure because the job only proceeds
till all speculative tasks are completed. Mantri [6] searches for the
causes of stragglers and build its optimized speculation algorithm
based on the straggler categories. It identifies in part the impact of
failure-related stragglers. However, it only considers recomputa-
tion as the worst outcome incurred by failure, but does not address
the delayed execution of speculation upon failure. GRASS [5] im-
proves speculation’s performance of the error-bound and deadline-
bound approximation jobs by using two distinct scheduling strate-
gies, ak.a. Greedy Speculative and Resource Aware Speculative
scheduling. But neither of the two strategies can serve the purpose
to failure cases.

Among the studies of speculation, DOLLY [3] has similar re-
search focus compared with our work. It digs into the straggler
problem of small size jobs of MapReduce framework. They demon-
strates that to aggressively launch a clone for every task is a good
way to ameliorate the performance degradation that stragglers may
impose on the MapReduce applications. Although their design can
also be helpful for solving the performance breakdown of node fail-
ure found in this paper, it has an obvious downside that cloning
every task will incur a lot more unnecessary resource consumption
and network overheads, especially for a shared MapReduce clus-
ter that is already heavily loaded as discussed in [9, 22, 25]. In
addition, those extra overloads are needed in every job execution,
despite the nodes were being faulty, just delaying, or not having any
problem at all. Without handling with failures respectively, relying
on such aggressive speculations for fault recovery is unpractical.

Besides speculation, our work has also set foot in the issue of
MapReduce’s fault tolerance. The existing efforts of this area in-
clude to analyze code bugs to prevent failure occurence [16, 27,
15], localize the failure timely and accurately [19], enhance data
placement to achieve higher data availability [8], etc. Although the
failure resiliency has gained so much attentions, we must be clear
that strong failure resiliency does not imply optimal job perfor-
mance. Failures can cost significant degradation of job turnaround
time even if the job can eventually complete successfully, as shown
in this paper. There are studies like [20, 13, 12, 26], along with our
work, have revealed that due to the fact that failures are norm rather
than exception in the real-world production deployment, to recover
speedily from failures can be also essential. Similar to our work,
Piranha [14] also recognizes the delays of small jobs in Hadoop
framework but it focuses more on scheduling optimization.
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Quiane-Ruiz et al. in [20] introduces RAFTing MapReduce
for preserving the computation status of MapTasks and replicat-
ing the MOFs to reduce side. This design avoids the recomputation
of MapTasks on the failed node, but it requires pre-assignment of
ReduceTasks and additional network overheads. Moreover, it ad-
dresses only one negative factor of node failure which is the loss
of MOFs, without taking care of failures happened on early map
phase and looking into the means of failure’s detection. Thus, it
would still suffer from the performance degradation discussed in
this paper and have problem dealing with real-world failure sce-
narios. However, we do think that the idea to conserve MapTask
output may be beneficial to speculation as well to avoid unneces-
sary recomputations.

Dinu et al. in [13] conducts a comprehensive study on the im-
pacts of node failure in MapReduce model. They revealed that a
single node failure can significantly downgrade the performance of
MapReduce applications. Specifically, they found that the failure
of the node containing ReduceTasks can infect other healthy tasks
and nodes, causing drastic performance degradation. Our previ-
ous work [26] has revealed issues similar to them, which we re-
ferred to as “failure amplification”, and more importantly, also pro-
vided techniques to address the issues. But both works did not look
into the failures occurring on map phase. Dinu’s subsequent work
RCMP [12] studies on how to conduct recomputation upon failures

at the job-level. Our paper is orthogonal to those works by ad-
dressing map phase failures and leverage an optimized speculation
mechanism to expedite the job performance at the task-level.

6. CONCLUSION AND FUTURE WORK

This paper details issues of the existing speculation mechanism
that has long been neglected in the representative implementation
of MapReduce model, i.e., YARN. It has revealed that existing
speculation has flaws for failure recovery of small size jobs that
have led to serious job execution delay. It demonstrates an exten-
sive study about how the issues can cause breakdown of the ex-
isting speculation in presence of failures. Based on the findings,
a new speculation mechanism called FARMS is proposed and a
refined failure scheduling policy to leverage FARMS is designed.
The results of a comprehensive evaluation show that our framework
has dramatic performance improvement in handling with task/node
failures than the original YARN and can adapt to an unstable envi-
ronment very well. In the future, we plan to further explore the
inefficiency of speculation, especially during reduce phase. We
also plan to incorporate proper work-conserving mechanism for the
speculations.
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