
SFMapReduce: An Optimized MapReduce

Framework for Small Files

Fang Zhou Hai Pham Jianhui Yue Hao Zou Weikuan Yu

Auburn University

Auburn University, AL, 36849

{fzhou,htp0005,jianhui.yue,hzz0034,wkyu}@auburn.edu

Abstract—Hadoop, an open-source implementation of MapRe-
duce, is widely used because of its ease of programming, scala-
bility, and availability. With the explosive development of cloud
computing, business and scientific applications increasingly take
advantage of Hadoop. The sizes of files stored and processed
in Hadoop are not bound to very large files anymore. However,
Hadoop cannot provide stable and efficient services for small files
at both storage and processing levels. To solve these problems,
we propose an optimized MapReduce framework for small files,
SFMapReduce. In SFMapReduce, we present two techniques,
Small File Layout (SFLayout) and customized MapReduce (CMR).
SFLayout is used to solve the memory problem and improve I/O
performance in HDFS. CMR provides an interface for MapReduce
so that SFMapReduce can process MapReduce with SFLayout
efficiently. Our experimental results show that SFMapReduce
decreases the memory pressure on the Hadoop NameNode, and
provides better loading and retrieving throughput. On average,
SFMapReduce achieves an improvement on MapReduce process-
ing by 14.5 times and 20.8 times, compared with the original
Hadoop and HAR layout.

I. INTRODUCTION

Hadoop, an open-source implementation of MapReduce, has

become an increasingly popular technology to process and

analyze big data. It provides a reliable, scalable, distributed

computing framework so users can focus more on the detailed

applications.

The targeted data in Hadoop has been primarily very large

files, such as large log files. Hadoop can provide a good perfor-

mance of storing and processing for those large files. However,

with the wide use of Hadoop, the large file is not the only kind

of files stored in the Hadoop FileSystem (HDFS). In education,

BlueSky is an E-learning cloud computing framework [1].

Most files stored in BlueSky are ppt files, whose file size

normally starts from tens of Kilobytes to a few Megabytes. In

climatology, The Earth System Grid (ESG) at LLNL stores over

27 Terabytes climate change files. The average size of these

files is 61 Megabytes [2]. In the area of biology, some research

applications create millions of files with an average size of less

than 200 Kilobytes [3]. Similarly in astronomy, the files stored

in Data Archive Server (DAS) at Fermi National Accelerator

Laboratory (FNAL) are usually less than 1 Megabytes [4].

Small files appear not only at the storage level but also

at the processing level. An increasing number of data anal-

ysis applications relies on Hadoop, such as remote sensing

image analysis [5], web-scaled analysis for multimedia data

mining [6], signal recognization [7], astronomy [8], mete-

orology [9], and climate data analysis [10]. Facebook also

introduces the situation of data warehouse in [11], where they

always need to process a lot of small files everyday.

The HDFS NameNode holds the metadata and block distri-

bution in memory for each file. For large files, the memory

pressure in NameNode is typically not a concern. However,

when there are a lot of small files, the memory of NameN-

ode would be exausted for storing the metadata and block

information. Another problem is the costly block reports, by

which DataNodes communicate with the NameNode. Heartbeat

includes the node status and a block report provides the list of

all blocks stored in a DataNode. If a large number of small

files are stored in HDFS, the number of blocks stored in a

DataNode would be very large. This situation increases the

size of block reports sent from the DataNode, which incurs

more overhead in the cluster. In addition, the performance of

MapReduce programs degrades dramatically when their inputs

include a large number of files. Plenty of creating and closing

processes bring frequent context switchings, which lead to too

much overhead.

In this paper, we propose a Small File MapReduce Frame-

work (SFMapReduce) that can solve these problems system-

atically. Two techniques are introduced in our framework,

which includes Small File Layout (SFLayout) and Customized

MapReduce (CMR). SFLayout is an innovative file layout

designed to use in HDFS for solving the storage problem of

small files. SFLayout combines small files into an integrated

file, which decreases the memory pressure of NameNode. In

addition, we design several useful operators to manage the

files stored in SFLayout. In order to process the files stored

in the form of SFLayout, CMR is proposed to run the related

MapReduce jobs. Moreover, CMR avoids the extra overhead

and improves the MapReduce performance, compared with

the conventional Hadoop. The cost of creating and closing

a container keeps constant for any size of files. However,

traditional Hadoop MapReduce generates containers for each

small file. The cost of containers cannot be ignored in this

situation. CMR is proposed to avoid the extra overhead and

improve the MapReduce performance. CMR provides two cus-

tomized components to transfer a SFLayout file to traditional

Key/Value pairs in the processes of map and reduce phases.

This approach reduces the overhead in running MapReduce

23978-1-4673-7891-8/15/$31.00 ©2015 IEEE

programs with lots of small files. CMR also contains a selector

that is used to select specific files from SFLayout based on

special conditions. SFMapReduce is designed to combine small

files into an integrated file with a new layout and then run

MapReduce programs based on the new layout.

The experiments’ results illustrate the robustness of our

framework. SFMapReduce provides better loading throughput

than the original MapReduce and HAR file layout by 2.78x and

2.99x, respectively. At the same time, SFMapReduce provides

better retrieving throughput than these two frameworks by

1.64x and 1.13x. Furthermore, SFMapReduce also outperforms

the MapReduce’s processing performance by 14.5x and 20.8x

for different benchmarks on average.

In general, we have made four contributions in this paper:

First, we identify the limitations of current frameworks for

small files, such as memory pressure on NameNode, low

loading and retrieving throughput, slow MapReduce processing.

Second, we design and implement a new layout to store small

files. This layout helps Hadoop solve the memory problem in

NameNode and improve the loading and retrieving throughput.

We also provide new API and operators to manage these

small files. Third, we propose Customized MapReduce (CMR)

inside Hadoop for running MapReduce programs efficiently

on SFLayout. This technique enhances the MapReduce per-

formance with the selective fuction which provides users great

efficiency and flexibility. In the end, we conduct experiments

to test the performance of SFMapReduce compared with the

original Hadoop and some other frameworks. The experimental

results show the effectiveness and efficiency of our framework.

The rest of this paper is organized as follows: Section II

introduces the background and motivation in our research. Sec-

tion III describes the design and framework of SFMapReduce.

Section IV demonstrates experimental results, evaluation and

analysis. Section V presents related work. We will conclude

our paper in section VI.

II. BACKGROUND AND MOTIVATION

In this section, we will first introduce the original mechanism

of Hadoop Framework. Then we illustrate its problems of

storing and processing small files. Next, to show the motivation

for this work, we perform theoretical analyses to diagnose the

reasons behind. And finally, we use experiments to demonstrate

these inefficiency and ineffectiveness of Hadoop.

A. Overview of Hadoop Framework

Apache Hadoop contains three main components: Hadoop

Common, HDFS, and Hadoop MapReduce. Particularly,

Hadoop Common provides necessary utilities that support the

other Hadoop modules. HDFS provides scalable, fault-tolerant,

and distributed storage services. Hadoop MapReduce supports

distributed and parallel processing of large scale of data.

1) HDFS: HDFS is comprised of a NameNode and several

DataNodes. The NameNode takes the responsibility of manag-

ing all metadata information and responding to file operations,

while each DataNode is responsible for storing replicated

data blocks. Each data file is split into several blocks with

the default size of 128MB, which are replicated in HDFS

based on configuration. The NameNode regularly receives the

heartbeat from DataNodes in a fix time interval - 3 seconds by

default. On every heartbeat, each DataNode sends its status to

the NameNode including the capacity, used space, remaining

space and some other information. Upon receiving a heartbeat

message, NameNode updates each DataNode’s status and keeps

it in memory. If it does not get any heartbeat from a DataNode

in 10 minutes, it will remove that DataNode from the live

node list and then add the node into the dead node list.

Additionally, NameNode also stores each file and directory’s

metadata in memory. Thus in essence, the memory consumed

in the NameNode is determined by the number of files stored

in HDFS.

2) Hadoop MapReduce: The first design of Hadoop strug-

gled with scalability because of its highly coupled structure.

However, the second generation, named Yarn, significantly im-

proves this property by seperating the JobTracker into two new

components, the ResouceManager (RM) and the Application-

Master (AM). The old TaskTracker has been also supplanted by

the NodeManager (NM). The AM and the NM use heartbeats

to communicate with the RM. When a new job is submitted

into Hadoop, the RM starts an AM on one slave node. Then

this AM sends a resource request to the scheduler in the RM.

After the scheduler allocates the resource, the AM needs to

negotiate with NMs to start the containers. Once a container

finishes, the AM and the NM can receive the notifications and

use heartbeats to update the information to the RM.

B. Problems in Dealing with Small Files in Hadoop Framework

For storing and processing large files, Hadoop performs well.

However, when dealing with the small files, the inefficiencies

happen at both storage and processing levels.

1) The Problem of Storing Small Files: The NameNode

holds each file’s metadata in memory for quick response,

including the file path, the block distribution, and so on. A

file stored in HDFS correspondingly creates at least one block

based on its size and the HDFS data block size. If the file size

is less than the block size, only one block is created. When a

large number of small files are stored in HDFS, lots of metadata

are kept in memory on the NameNode. According to Hadoop’s

properties [12], in NameNode memory, a single directory object

occupies 144 Bytes plus the length of its name; a single file

object needs 112 Bytes plus the length of its name; and the size

of each block object is 112 Bytes plus 24 Bytes times number

of replicas. As a result, it is straightforward to speculate that if

the number of files increases fast, the memory on NameNode

would be exhausted. Another issue is the big size of block

report which is used to coordinate block information of each

DataNode with the one in NameNode. In detail, the default

update interval for block report is 21,600 seconds. Although

this interval is rather long, Hadoop cannot accept any read and

write operation while updating the block information because

of the data synchronization process. If there are huge number

of small files in HDFS, the preparation of block report may

take a few minutes.

24

2) The Problem of Processing Small Files: Before a con-

tainer starts, the AM needs to negotiate with the RM and NMs.

This doesn’t cause much overhead when the scale of data input

matches up with the container’s computation capability, but it’s

not the case for small files in which the processing cost of com-

putation is much higher. The reason is that containers cannot

be re-used in Yarn, which means that the processes of creating

and destroying containers happen continuously. The context

switching, as a result, brings a lot of overhead. Moreover,

one more issue is the I/O and communication overhead in the

Reduce phase. In traditional MapReduce mode, Reduce tasks

are used to gather different Map output files (MOFs) generated

by Map tasks, compute the records based on keys, and then

write the results to HDFS. However, by default, a small file

only generates one InputSplit for the Map phase, which means

only one Map task is launched for it. In this situation, the role

of Reduce task is weakened since the operations in a Reduce

task have been already done in the Map task. To sum up, the

main overhead for processing a small file is imposed by storing

MOF on the local disk for Map task and extracting MOF via

network for Reduce task. For a large number of small files, this

cost becomes much higher.

C. Demonstration of Hadoop Performance for Small Files

We have conducted some tests with small files to collect

memory usage and MapReduce processing performance in

Hadoop. The results show that Hadoop suffers a lot from

storing and managing small files. The first experiment is to

show the memory pressure in NameNode when there is a

large number of small files stored in HDFS. The second one

measures processing performance for a large number of small

files compared with just only one large file, with the total

data size being the same. We run these tests on a Hadoop

cluster including 1 master node and 8 slave nodes. Each node

in the cluster has two 2.67GHz hex-core Intel Xeon X5650

CPUs, 24GB memory and two 500 GB Western Digital SATA

hard drives. Besides, Hadoop retains the default configuration.

We use the Wordcount [13] benchmark and the test dataset

is created randomly by Linux dictionary file1. We prepare 5

data sets for NameNode memory tests, which include 10,000,

100,000, 1,000,000, 10,000,000 and 100,000,000 files. The

average file size in each set is 30 KB, which is typical in small

files processing [1]. We also create other 10 testsets of small

files from 1000 files to 45000 files for MapReduce tests. The

average file size in these ones is 1023.65 KB. We also integrate

these sets into ten large files as control groups.

1) Memory Pressure on NameNode for Small Files: We store

each testset and the related integrated large file in an initialized

Hadoop environment, respectively. Figure 1 shows the memory

usage in the NameNode. When we store the amount of 3 TB

small files into HDFS, the memory used by NameNode is more

than 22 GB. According to the object size of file, directory, and

1Words file (/usr/share/dict/words) is the standard file on all Unix and Unix-
like operating systems. It is used by spell-checking systems, such as ISpell,
and normally includes 235,886 English words.

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5

N
a
m

e
n

o
d

e
 M

e
m

o
ry

 (
M

B
)

Set ID

Original Hadoop

Fig. 1: NameNode Memory Usage

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5 6 7 8 9 10

R
u

n
n

in
g

 T
im

e
 (

s
)

Set ID

13.26X

Seperated Files

An Integrated File

Fig. 2: Wordcount Performance with Two Different Inputs

block stored in memory on NameNode, we can deduce that

more than 400 Million small files, whose total size is maybe

about 12 TB, require nearly 90 GB of memory. Subsequently,

although the total size of small files is not large, the memory

can be used up quickly, causing the NameNode and then the

cluster to shutdown.

2) Hadoop MapReduce’s Processing Performance for Small

Files: After storing the 10 testsets of small files and the

corresponding integrated large files into HDFS, we test the

MapReduce performance for these sets by running the original

Wordcount provided by Hadoop. Thus there are two input

modes in the tests: one is the directory storing all the small

files; the other is the location of the respective large integrated

file. As shown in Figure 2, when the number of small files

increases, the gap between two input modes grows rapidly. In

our small scale testing, the average performance of the set of

small files is 10.49x lower than the that of the integrated file.

Especially for testset 9, the performance of the integrated file

is 13.26x higher than the other. We can reasonably project that

the gap will continue to expand with the increasing number of

files.

III. DESIGN AND IMPLEMENTATION

In order to solve the issues discussed in Section II, we design

SFMapReduce, a new framework based on Hadoop/Yarn, In

this section, we will describe the architecture of SFMapReduce,

25

SFMapReduce Architecture

SFLayout

SFInputSplit
SFRecord

Reader
<SFHeader,

SFData>
<SFHeader,

SFData>
<SFHeader,

SFData>

<SFHeader,
SFData>

<SFHeader,
SFData>

<SFHeader,
SFData>

<SFHeader,
SFData>

<SFHeader,
SFData>

<SFHeader,
SFData>

SFLayoutSFLayoutSFLayout

... ...

Selector

M
A
P

M
A
P

M
A
P

M
A
P

M
A
P

M
A
P

M
A
P

M
A
P

M
A
P

SFInputSplit
SFRecord

Reader

Selector

SFInputSplit
SFRecord

Reader

Selector

Fig. 3: SFMapReduce Architecture

the related techniques inside SFMapReduce, and the implemen-

tation details.

A. Architecture of SFMapReduce

Figure 3 shows the architecture of SFMapReduce. It is a

pluggable framework based on current Hadoop/Yarn. Users can

easily choose between SFMapReduce and original MapReduce

framework. In SFMapReduce, the layout of the input file should

be SFLayout. After a user submits a job to SFMapReduce, it

first uses SFInputFormat class to produce CombineFileSplits

so that Hadoop can start Map tasks. This step is similar to the

original MapReduce in Hadoop. The biggest difference is that

we use a new SFInputFormat class especially for SFLayout

instead of the original InputFormat class in Hadoop. There is

a Selector inside SFInputFormat, which helps generate Input-

Splits with selective Key/Value (KV) pairs based on specific

conditions. After generating CombineFileSplits, each Map task

starts processing with the corresponding KV pairs extracted

from SFRecordReader. We design a new RecordReader because

SFLayout is the new input format in our framework so that we

cannot use original RecordReader to extract and parse SFLay-

out files. This step is also similar to the original RecordReader

working in Hadoop. In SFMapReduce, MapReduce programs

become Map-Only programs for decreasing overhead. That is

why there is no Reduce task in the architecture. Finally, we

get the result files in the form of SFLayout. This is the whole

processing architecture for one job in our framework.

B. SFLayout

In this section, we first present the main structure of SFLay-

out, then introduce the design of related SFLayout operators.

1) The Main Structure of SFLayout: For better availability

and efficacy, combining small files together into a large file is

a very good and natural method. This is exactly what we have

designed in the SFLayout. Figure 4 shows a general architecture

for SFLayout. SFLayout is comprised of three components:

SFIndex, SFHeader, and SFData. In detail, SFIndex contains

the metadata of a small files and some other user-defined

attributes. SFHeader and SFData are normally used for MapRe-

duce processing. While SFHeader is the Key part, SFData is

the Value part in the corresponding KV pair. SFLayout actually

creates two separated files in HDFS. One file is called the

SFLayout Structure
Index File Data File

UUID
…...

Offset

UDA

SFHeader

SFData

SFHeader

SFData

…...

SFData

SFHeader

…...

UUID
…...

Offset

UDA
…...

UUID
…...

Offset

UDA
…...

…...

SFIndex 1 Small File 1

Small File 2

Small File N

SFIndex 2

SFIndex N

Fig. 4: SFLayout Structure

index file. The other is called the data file. For quick searching

and easy maintenance, the index file is designed to only keep

SFIndex so that the index file is not very large. The index file

stores one file’s SFIndex next to another one. In the data file,

SFHeader and SFData are stored one by one. In the rest of

this section, we will mainly introduce the detail of SFIndex,

SFHeader, and SFData.

SFIndex: The information stored in SFIndex includes default

file metadata and user-defined attributes. Default file metadata

contains universally unique identifier (UUID), file name, file

size, creation time, file owner, offset, and valid tag. The UUID

is a 128-bit identifier, which is used to uniquely identify a file

in the set of files. In our design, we choose the MAC address

and the creation time to compute the UUID for each file. The

file name, file size, creation time, and file owner are easily

extracted from the file itself. Offset shows the starting position

of the corresponding SFHeader in the data file. It is used for

locating the KV pair position in the data file. And last, the valid

tag shows the validation of the file.

SFHeader: SFHeader is used as Key for MapReduce pro-

cessing so that it only needs to keep just enough identified infor-

mation. Restrictly, the SFHeader is a subset of the SFIndex. In

order to correctly identify each file in MapReduce processing,

SFHeader at least stores the UUID and file name information.

In addition, according to the detailed algorithms in MapReduce,

users might want to add some more attributes in the SFHeader.

For example, if they want to process an unstructured file in

MapReduce, the SFHeader should include some more attributes

that can be used to parse it in Map tasks.

SFData: SFData is stored next to the corresponding SF-

Header in the data file. SFData only stores the file content

itself in byte serialization. Note that the offset value in SFIndex

points to the starting position of SFHeader in the data file.

2) The Design of SFLayout Operators: In our framework,

we provide four operators to manage and maintain the SFLay-

out file. They include Add, Remove, Update, and Get. We

describe the details of these operators as follows.

26

Add: Add is the most important operator for SFLayout.

When a user wants to add local files to an SFLayout file

in HDFS, she/he just simply runs the Add operator in the

command line. Here, the user should show the source files or

the directory in the local disk and the destination file path of the

SFLayout file in HDFS. The framework extracts the metadata

and user-defined attributes from the source file, then stores them

to index file. Meanwhile, SFHeader and SFData are stored in

the data file in the similar way.

Remove: HDFS does not support the update or modify

operations so we cannot change the value of a file stored in

HDFS. The valid tag in SFIndex helps our framework provide

the elegant Remove function. In the valid tag, ”0” states the

unavailability of the file, and ”1” shows the availability of

the file. The default value is ”1”. If a user wants to delete

the file from the SFLayout file, she/he just simply runs the

Remove operator with the target file name on an SFLayout

file. According to the file name, our framework starts to create

a new index file where we only change the value of valid tag

from 1 to 0, then delete the old index file and change the name

to the original one. This operation does not take too much

overhead because the index file is always very small compared

with the data file. After the operation, although the space is

still occupied, the removed file is transparent to the users.

Update: After a period of use, especially for some Remove

operations, there may be a large number of gaps, which are

worthless and ineffective in the SFLayout file The Update

operator provides a method to erase these gaps in the SFLayout

file. The framework creates a new SFLayout file without any

gap and replaces the old one. It should be noted that HDFS

cannot support update operation so once a file is stored in

HDFS, we cannot change any bytes of the files. This is the

reason that we create a new file in HDFS and replace the old

file with the new one.

Get: Sometimes, users need to get some files from HDFS

back to local disk. In order to meet this demand, we design the

Get operator. We provide two access modes to get the files back

from HDFS. One is sequential access and the other is random

access. The sequential access is to copy all the files stored in

SFLayout to the local disk. The random access is used to copy

appointed files stored back based on specific conditions.

The operators discussed above are highly optimized because

of minimizing the number of processes and the I/O overhead

based on our design. These operators can provide good loading

and retreving throughput, which are very common operations

for processing small files.

C. Customized MapReduce

The original Hadoop MapReduce processing is not suitable

for our framework because it still handles the traditional file

layout. It is necessary for us to build new MapReduce com-

ponents for SFLayout. In the following paragraphs, we present

Customized MapReduce (CMR) technique.

1) Map-Only Application: As discussed above, only one

Map task is created for a small file. And thus obviously, it can

directly compute the final results without any help from Reduce

task. So that is why there is only Map function existing in our

SFMapReduce application. More specifically, in the traditional

MapReduce applications, the Map task costs I/O and computing

overhead when storing the MOF into the local disk. The Reduce

task degrades the performance because of the extra cost of

creating process and network communication. In our Map-Only

application2, we start the write input stream for the destination

file in the setup() function and close it in the cleanup() function

inside the Map class, which helps us finish the work faster than

continue with running Reduce tasks.

2) SFInputFormat: In Hadoop, InputSplit is the minimum

input unit for the Map task. The information kept by InputSplit

includes file path, the data offset in the file, the data length,the

list of nodes where the file is stored, and the information

of related storage blocks. The number of InputSplits directly

decides the number of Map tasks. Typically, the large file used

in MapReduce programs produces more than one InputSplit.

However, for the target small files, Hadoop normally generates

one InputSplit for one file. This means Hadoop has to create

a large number of Map tasks, i.e. processes. To continuously

create and close a multitude of processes and context switchings

incurs a lot of overhead, which really hurts the performance.

Design: In order to decrease the number of InputSplits,

we choose CombineFileSplit as the InputSplit of Map tasks.

CombineFileSplit is a built-in InputSplit in Hadoop, which is

a set of input files. In Hadoop, InputFormat is used to generate

InputSplits. InputFormat describes the input-specification for a

MapReduce job. However, InputFormats provided by Hadoop

cannot be used on the SFLayout file. For parsing SFLayout

correctly and decreasing the number of Map tasks, we design

SFInputFormat as a component in CMR. SFInputFormat is used

to parse and collect the information stored in the SFLayout file

and generate a list of CombineFileSplits.

Selector: For the flexibility and functionality, we design a

selector component in the SFInputFormat. To be specific, we

add a selector() function in the SFInputFormat class. According

to the SFIndex in the input file, the selector() function can

easily get the information of each small file. Before adding

a small file into the InputSplit, we need to first consider the

returned value of the selector(). If the file’s information accords

with the conditions, then selector() returns true and this file is

added into the InputSplit. If not, false is returned and this file is

skipped. With the help of the selector() function, users can run

the jobs flexibly and selectively. In our framework, the default

selector() function always returns true. Users can write any

complex judgment inside the code based on their demands.

Partition Algorithm: The partition algorithm in SFInputFor-

mat is the most substantial because it is used to generate the

CombineFileSplits. A very important threshold, SFSplitSize,

is used to limit the total size of the files contained by a

CombineFileSplit, which decides how much data one InputSplit

can contain. Our partition algorithm is shown in detail in

2Map-Only Application is our recommendation for processing small files.
Actually, SFMapReduce framework can process all kinds of MapReduce
programs.

27

Algorithm 1 SFInputFormat Partition Algorithm

1: Input: SFLayout: sfLayout, the threshold of split size:

size limit

2: Output: A List of InputSplit: lis

3: Initialization

4: while sfLayout.hasNext() do

5: if InputSplit is = NULL then

6: is ← NewCombineF ileSplit()
7: is.size ← 0
8: end if

9: SFIndex sfIndex ← sfLayout.getIndex()
10: if Selector(sfindex) then

11: Add the file path, offset, length, and block information

into the CombineFileSplit is

12: is.size += sfIndex.getLength()

13: if is.size > size limit then

14: lis.add(is)

15: is ← null

16: end if

17: end if

18: end while

19: if is ! = NULL then

20: lis.add(is)

21: end if

Algorithm 1. First, the algorithm checks whether we have

initialized the CombineFileSplit. If it is existed, then continue

with running; if not, initialize a new CombineFileSplit (lines

5-8). The next step is to get an SFIndex from the SFLayout

(line 9). After getting the SFIndex, we first use the selector()

function to check whether this file meets with the users’

requirements. (line 10). If the result is true, then we extract the

necessary information and store it in the CombineFileSplit (line

11). Then we update the size of the current CombineFileSplit

(line 12) and continue to check if the size reaches the limit

of the SFSplitSize (lines 13-16). If the size is larger than

the SFSplitSize, then we add the CombineFileSplit into the

list and clear the InputSplit variable. Finally, the function

returns the list of CombineFileSplits. From the algorithm, we

can find out that SFInputFormat creates a much less number

of InputSplits than traditional method in Haddop. This can

significantly decrease the number of Map tasks, which greatly

improves the performance of our framework.

3) SFRecordReader: RecordReader is a very important

component in Hadoop MapReduce. It takes the responsibility

to transfer the byte stream, provided by InputSplit, to the

record stream (KV pairs), used by Map tasks. However, the

original RecordReader cannot support the SFLayout. In order

to solve this problem, we design a new RecordReader named

SFRecordReader. In the new SFRecordReader, we override the

related functions to provide the necessary services to Map tasks.

Responding to the requests from Map tasks, SFRecordReader

returns SFHeader as Key and SFData as Value.

TABLE I: List of key Hadoop configuration parameters.

Parameter Name Value

yarn.nodemanager.resource.memory-mb 22528 MB

yarn.scheduler.maximum-allocation-mb 6144 MB

yarn.scheduler.minimum-allocation-mb 2048 MB

yarn.nodemanager.vmem-pmem-ratio 2.1

MapReduce.map.java.opts 2048 MB

MapReduce.reduce.java.opts 2048 MB

MapReduce.task.io.sort.factor 100

dfs.block.size 128 MB

dfs.replication 3

io.file.buffer.size 8 MB

D. Implementation

We have implemented our framework based on Hadoop/Yarn

2.6. For the layout, we implement the SFLayout class including

four main operator functions, the SFIndex class and SFData

class using Java. For CMR, we create the SFInputFormat

extended from CombineFileInputFormat and SFRecordReader

class derived from existing classes in Hadoop and override the

related functions.

Our framework is implemented as a plugin so users can

directly use our framework without any changes in the currently

using Hadoop clusters. This is also a big advantage of our

framework.

IV. EVALUATION

In this section, we evaluate the effectiveness of SFMapRe-

duce compared with some existing frameworks. We will first

describe the experiemental environment, then provide the re-

sults with analyses

A. Experimental Environment

1) Cluster Setup: Our private cloud is comprised of 17

computer servers, each of which has a 2.67 GHz hex-core Intel

Xeon X5650 CPU, 24 GB memory and two 500 GB Western

Digital SATA hard drives. The machines are connected through

1 Gigabit Ethernet. In experiments, we create a Hadoop cluster

of these 17 nodes.

2) Hadoop Setup: We use Hadoop/Yarn-v2.6.0 as the code

base with JDK 1.7. One node is dedicated as the ResourceM-

anager and the Namenode of Yarn and HDFS. As a result, in

our cluster, we have 16 slave nodes. The key configurations of

Hadoop/Yarn we use can be seen in the Table I.

3) Benchmark: In the experiments, we choose the most

representative program: Wordcount, TeraSort, and Grep to test

the performance. It should be noted that these three benchmarks

are Map-Only applications. The reason why we use the Map-

Only program has been discussed in the Section III-C. The

detail of these benchmarks can be seen in [13], [14], and [15].

4) Alternative Solution Setup: Instead of comparing with the

original Hadoop, we also compare our SFMapReduce with one

solution inside Hadoop (HAR).

Hadoop Archive (HAR): HAR is a special file layout built

in Hadoop for small files. A HAR file usually ends with a

.har extension. It includes a Masterindex, Index, and the data

file including all the small files. In our test, we use the data

28

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60

N
a
m

e
n

o
d

e
 M

e
m

o
ry

 (
K

B
)

Data Size (GB)

SFMapReduce
Original Hadoop

Fig. 5: Memory Usage in Namenode

prepared to create the corresponding HAR files, then use these

files as the input for related benchmarks.

5) Data Preparation: For Wordcount and Grep, we ran-

domly extract part of Shakespeare Complete Works [16] to

create lots of files with different sizes. For TeraSort, we use

TeraGen to randomly create the number of lines in the result.

After preparing the data, we divide the small files into 4 sets

for each benchmark. The total sizes of the sets are 10 GB, 20

GB, 40 GB, and 60 GB, respectively.

B. Memory Utilization

We compare the memory utilization of SFMapReduce with

original Hadoop, when we store the four data sets into them.

As shown in figure 5, SFMapReduce, by employing SFLayout,

reduces the memory usage on Namenode by 248x compared

with the original Hadoop. In the original Hadoop, one small

file consumes one file entry and one data block entry in the

Namenode’s memory. However, no matter how many small files

we store in SFMapReduce, it only stores two files: the index

file and the data file. So SFMapReduce only occupies two file

entries and related data block entries. The number of data block

entries is equal to the total size of files divided by HDFS data

block size.

C. Data Loading and Retrieving

For processing small files, data loading and retrieving are

very common and important operations. Loading time and re-

trieving time are very significant performance indices, because

users need to load data for processing (from disk to HDFS)

and to retrieve data back for observing results. We conduct

experiments to test the throughput of loading and retrieving

data in SFMapReduce, compared with the original Hadoop and

HAR. For these tests, we use the Hadoop cluster prepared, and

the scales of dataset are 10 GB, 20 GB, 40 GB, and 60 GB as

introduced the in the Data Preparation section above. In order

to make the results more reliable, we calculate the average

throughput based on 5 experiments. The final results can be

seen in Figure 6.

On average, the loading throughput of SFMapReduce is

faster than the original Hadoop by 2.78x and HAR by 2.99x;

the retrieving throughput is better than the original Hadoop by

 0

 20

 40

 60

 80

 100

Load Retrieve

T
h

ro
u

g
h

p
u

t
(M

B
/S

e
c

)

Original Hadoop

HAR

SFMapReduce

Fig. 6: Loading and Retriving Throughput

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Wordcount Grep Sort

R
u

n
n

in
g

 T
im

e
 (

S
e

c
)

Benchmark

Map-Only

MapReduce

Fig. 7: Performance of Map-Only and MapReduce jobs

1.64x and HAR by 1.13x. In term of loading, when a file is

added into HDFS, the original Hadoop creates and then closes

a data inputstream for the file. If a large number of files needs

to be loaded into HDFS, repeating of creating and closing

streams brings a lot of overhead. In addition, Namenode needs

to allocate the nodes storing replicas for each file, which leads

to additional overhead when there are a lot of small files.

In the case of HAR, creating an HAR file is actually a

MapReduce job. This means, before we start creating it, we

should first load the files into HDFS. In fact, the total loading

time of HAR layout is equal to the loading time of original

Hadoop plus the job time of creating HAR file.

In our new approach, SFMapReduce starts an inputstream

to HDFS for the index file and data file at first. Then the

inputstream continues to be used until all the files have been

inserted into HDFS. In the process, we avoid the repetition

of creating and closing the inputstream, hence yielding a very

good performance. For retrieving data, Hadoop does it a similar

way to loading data. HAR has a good retrieving throughput

because Hadoop can sequentially retrieve data from a large

HAR file instead of reading each file continuously. Last, our

SFMapReduce still outperforms the others by eliminating the

repetition of creating and closing the streams as in loading

operation. To sum up, these experiments show the advantages

of the loading and retrieving operations in the SFMapReduce.

29

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 20 30 40 50 60

R
u

n
n

in
g

 T
im

e
 (

S
e
c
)

Data Size (GB)

Map-Only Hadoop
HAR Hadoop
SFMapReduce

(a) Wordcount benchmark

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 20 30 40 50 60

R
u

n
n

in
g

 T
im

e
 (

S
e
c
)

Data Size (GB)

Map-Only Hadoop
HAR Hadoop
SFMapReduce

(b) Sort benchmark

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50 60

R
u

n
n

in
g

 T
im

e
 (

S
e
c
)

Data Size (GB)

Map-Only Hadoop
HAR Hadoop
SFMapReduce

(c) Grep benchmark

Fig. 8: Job Running Time

D. Map-Only Application Performance

We start our experiments to prove the Map-Only application

can provide better performance than the original MapReduce

application, as discussed in Section III-C. For comprehensive-

ness, we use the three benchmarks for testing and change

slightly MapReduce programs to Map-Only ones for these

benchmarks. The input size of these experiments are all 60 GB.

For stability, we run each test 5 times and collect the average

running time. As shown in Figure 7, the average running time of

Map-Only jobs is less than original MapReduce jobs by 3.52x.

Specifically, Map-Only jobs have 1.81x, 1.05x, 7.68x better

performance than the original MapReduce jobs, for Wordcount,

Grep, and Sort. From the results, we can find that the more

network communication a MapReduce job makes, the worse

performance is. The reason is the benefit of Map-Only jobs

comes from avoiding the overhead from the intermediate data

and the Reduce phase. If the intermediate data of MapReduce

jobs is very small, like Grep job, the performance between these

two kinds of jobs is very similar. Based on these experiments,

we choose Map-Only jobs instead of traditional MapReduce

jobs in SFMapReduce. Although we choose Map-Only jobs in

SFMapReduce, it does not show the incapability of MapReduce

jobs in our framework. If users need to run MapReduce jobs

in some special condition, SFMapReduce can perform it very

well. In the rest of this paper, we use Map-Only jobs to replace

the original MapReduce jobs.

E. Tuning the Size of SFSplitSize

In this section, in order to get the best performance of the

SFMapReduce, we want to tune the size of the SFSplitSize,

which directly decides the size of an InputSplit. For split size,

we should make a balance between data access and parallelism.

We use Wordcount benchmark to test SFMapReduce perfor-

mance with different sizes of SFSplitSize from 32 MB to 512

MB. The results are shown in Figure 9. It is obvious that when

the value of SFSplitSize is equal to 128 MB, SFMapReduce

performs the best. In our framework, HDFS block size is 128

MB. This means when the SFSplitSize is near or equal to HDFS

block size, we can achieve the best performance. The reason is

that if the value of SFSplitSize is too small, then data access

overhead is increased; if it is too large, the task processing

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 240

 32 64 128 256 512
R

u
n

n
in

g
 T

im
e

 (
S

e
c

)

SFSplitSize (MB)

SFMapReduce

Fig. 9: The Impact of SFSplitSize

parallism is degraded. In the rest part of the evaluation, we

choose 128 MB as the value of SFSplitSize.

F. Overall Performance

In this section, we test the SFMapReduce’s processing per-

formance, compared with other frameworks. In SFMapReduce,

we set the SFSplitSize to 128 MB based on the tuning results

shown in the previous section. The scales of data set are 10

GB, 20 GB, 40 GB, and 60 GB, respectively. We conduct the

experiments 5 times and collect the average running times. The

test frameworks include original MapReduce Hadoop, HAR

Hadoop and SFMapReduce. In these frameworks, we all use

Map-Only Wordcount, Sort, and Grep benchmark. Map-Only

Hadoop means the original Hadoop with Map-Only jobs. HAR

Hadoop means the Hadoop processing with the HAR layout. As

shown in Figure 8, on average, the performance of SFMapRe-

duce overperforms the original Hadoop by 14.5x and HAR

Hadoop by 20.8x. For Wordcount benchmark, the performance

of SFMapReduce overperforms the Hadoop by 14.4x and HAR

Hadoop by 21.0x; for Sort, SFMapReduce is better than the

original Hadoop by 12.1x and HAR Hadoop by 16.1x; for Grep,

our framework runs faster than the original Hadoop by 17.1x

and HAR Hadoop by 25.2x; Moreover, Figure 10 shows the

efficiency of our framework from the perspective of processing

throughput on average. The original Hadoop and HAR Hadoop

do not do any optimization in the MapReduce processing. On

the contrary, SFMapReduce provides the best performance, be-

cause it avoids the unnecessary overhead and combine multiple

30

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

Framework

T
h

ro
u

g
h

p
u

t
(N

u
m

 o
f

F
il

e
s

/S
e

c
) Map-Only Hadoop

HAR Hadoop

SFMapReduce

Fig. 10: File Throughput

 0

 200

 400

 600

 800

 1000

 5 9 13 17

R
u

n
n

in
g

 T
im

e
 (

S
e
c
)

Number of Nodes

Wordcount
Grep
Sort

Fig. 11: SFMapReduce Scalability with Increasing Number of

Nodes

small files together into one InputSplit. Unlike the conventional

Hadoop, SFMapReduce decreases the number of Map tasks so

that reduces the extra repetitive overheads incurred by creating

and closing related containers. Likewise, the SFLayout and

related CMR work together very well. For the KV pairs, CMR

can efficiently get them from SFLayout; for the input splits,

SFMapReduce makes a balance between parallism and access

overhead. The whole processes are direct and highly efficient.

G. Scalability

After talking about the overall performance of SFMapRe-

duce, we continue to show the scalability of SFMapReduce.

We test scalability from two different perspectives. One is the

strong scaling which is the performance of a framework running

on an increasing number of computation resources, i.e. nodes.

If a framework has a good strong scaling, the performance

should become better with the increasing number of nodes

while the problem size stays the same. The other is the weak

scaling which is the efficiency of a framework when we add

more computing elements to solve the additional input, so

that each element of input is not so large to fit with each

computing element. If a framework has a good weak scaling,

the performance should stay similar when the number of nodes

increases along with the input size. In experiments, we first test

the strong scaling with the different benchmarks on the clusters

of 5 nodes, 9 nodes, 13 nodes, and 17 nodes, respectively.

Then we test the weak scaling of SFMapReduce on the similar

 0

 20

 40

 60

 80

 100

 5 9 13 17

R
u

n
n

in
g

 T
im

e
 (

S
e
c
)

Number of Nodes

Wordcount
Sort
Grep

Fig. 12: SFMapReduce Scalability with Increasing Data Size

clusters and benchmarks, but the input varies with number of

nodes so that each node deals with only 1 GB data. To get

each result, we collect the average time based on 5 different

runnings.

As shown in Figure 11, on average, SFMapReduce on the

cluster of 17 nodes can keep an improvement of 2.93x over the

cluster of 9 nodes and 1.76x over the cluster of 5 nodes. This

shows the strong scaling of SFMapReduce. In Figure 12, we

can see, the performances on different clusters keep unchanged.

This also proves that SFMapReduce has very good weak

scaling.

V. RELATED WORK

HAR, SequenceFile, and MapFile are the pre-built techniques

in HDFS. They have very similar ideas of combining the files

into one file. However, they focus on solving the problem in

HDFS while ignoring the optimization in MapReduce process-

ing. Our experiments also showed that their performances were

not as good as the original Hadoop.

Chen et al. [17] proposed two techniques to solve the

problem of small files in HDFS. The first one was very similar

to our SFLayout. They integrated the small files into a large

file and built an index for them. The second one was building

a cache level beetween HDFS and users. This cache could help

improve the performance of HDFS’s read and write operations.

However, this paper only focused on how to improve the I/O

performance of HDFS. They did not give a solution on how to

use it effectively in the MapReduce processing.

Zhang et al. [18] introduced a very similar research with [17].

The authors built a non-blocking I/O to merge small files into

a large file in HDFS. However, they did not consider how to

process the data stored in HDFS, either.

Mackey et al. [3] used the HAR file layout to solve the small

files problem. They focused on how to schedule jobs in Hadoop

cluster with quota policy. The HAR file layout is not a flexible

and powerful layout. They did not provide good solutions for

consecutive MapReduce processing.

Dong et al. [19] proposed a case study researching on small

files problem in HDFS. This paper has provided a review on

many techniques and related discussions. In this paper, the

authors provided a technique to integrate small files into a

31

large file in HDFS. It was very similar to the other papers.

In addition, the authors provided a prefetching technique to

support the functions needed in their real education system.

[20] was the authors’ subsequent research. In this paper, the au-

thors divided the files into three categories: structurally-related

files, logically-related files, and independent files. For the first

two types, they designed the special storing solutions. They

also introduced three-level prefetching and caching strategies.

However, both of the papers lost the consideration about how

to run MapReduce jobs in the new Layout. They only focused

on how to meet with the demands of a concrete system.

Yin et al. [21] proposed OPASS - a useful method for dealing

with data read operations in HDFS which is relevant to our

framework’s technique of I/O optimization. However, there are

two big differences between OPASS and SFMapReduce. First,

OPASS did not take any small files into account like ours.

Second, OPASS, unlike SFMapReduce which reorganizes the

small files in to big chunks for facilitating the tasks dealing

with huge number of them, just used HDFS directly.

Dittrich et al. [22] presented HAIL (Hadoop Aggressive

Indexing Library). HAIL optimized the loading operation and

MapReduce’s processing performance in Hadoop. However,

they did not focus on small files so that the related work cannot

solve any problems we mentioned in this paper.

Jindal et al. [23] proposed the Trojan Data Layout. The

authors designed this new data layout for each data block and

related replicas. It was powerful and efficient. However, the

objective of this layout was to increase the I/O speed in Hadoop.

This technique did not solve the problems for small files as

well.

VI. CONCLUSION AND FUTURE WORK

Hadoop is a powerful and widely used framework to handle

large scale of data. Users and developers can easily use Hadoop

to parallelize the processes of data in an available and scalable

cloud environment. The demands and requirements vary dra-

matically in the practical world. One of the most significant

demands is to add features to efficiently store and process small

files in Hadoop. As we discussed in background section, both

HDFS and MapReduce in the original Hadoop cannot support

small files well. In order to solve these problems, we propose

the SFMapReduce framework built on top of Hadoop. In our

framework, we propose two techniques, SFLayout and CMR,

which help provide better storage and processing services. We

also show that SFMapReduce solves the memory pressure on

the Namenode and has better performance than the original

Hadoop by 14.5x and HAR layout by 20.8x on average.

VII. ACKNOWLEDGMENT

This work is funded in part by an Alabama Innovation

Award, and by National Science Foundation awards 1059376

and 1432892. The authors are very thankful to anonymous

reviewers for their invaluable feedback.

REFERENCES

[1] B. Dong, Q. Zheng, M. Qiao, J. Shu, and J. Yang, “Bluesky cloud
framework: an e-learning framework embracing cloud computing,” in
Cloud Computing. Springer, 2009, pp. 577–582.

[2] A. Chervenak, J. M. Schopf, L. Pearlman, M.-H. Su, S. Bharathi,
L. Cinquini, M. D’Arcy, N. Miller, and D. Bernholdt, “Monitoring the
earth system grid with mds4,” in e-Science and Grid Computing, 2006.
e-Science’06. Second IEEE International Conference on. IEEE, 2006,
pp. 69–69.

[3] G. Mackey, S. Sehrish, and J. Wang, “Improving metadata management
for small files in hdfs,” in Cluster Computing and Workshops, 2009.
CLUSTER’09. IEEE International Conference on. IEEE, 2009, pp. 1–4.

[4] E. H. Neilsen Jr, “The sloan digital sky survey data archive server,”
Computing in Science and Engineering, vol. 10, no. 1, pp. 13–17, 2008.

[5] M. H. Almeer, “Hadoop mapreduce for remote sensing image anal-
ysis,” International Journal of Emerging Technology and Advanced
Engineering, vol. 2, no. 4, pp. 443–451, 2012.

[6] B. White, T. Yeh, J. Lin, and L. Davis, “Web-scale computer vision using
mapreduce for multimedia data mining,” in Proceedings of the Tenth
International Workshop on Multimedia Data Mining. ACM, 2010, p. 9.

[7] F. Wang and M. Liao, “A map-reduce based fast speaker recognition,” in
Information, Communications and Signal Processing (ICICS) 2013 9th
International Conference on. IEEE, 2013, pp. 1–5.

[8] K. Wiley, A. Connolly, J. Gardner, S. Krughoff, M. Balazinska, B. Howe,
Y. Kwon, and Y. Bu, “Astronomy in the cloud: using mapreduce for image
co-addition,” Astronomy, vol. 123, no. 901, pp. 366–380, 2011.

[9] W. Fang, V. Sheng, X. Wen, and W. Pan, “Meteorological data analysis
using mapreduce,” The Scientific World Journal, vol. 2014, 2014.

[10] D. Q. Duffy, J. L. Schnase, J. H. Thompson, S. M. Freeman, and
T. L. Clune, “Preliminary evaluation of mapreduce for high-performance
climate data analysis,” 2012.

[11] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma,
R. Murthy, and H. Liu, “Data warehousing and analytics infrastructure
at facebook,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 2010, pp. 1013–1020.

[12] “Hadoop-1687,” http://issues.apache.org/jira/browse/HADOOP-1687.
[13] “Hadoop Wordcount WIKI,” http://wiki.apache.org/hadoop/WordCount.
[14] “Hadoop Grep Wiki,” http://wiki.apache.org/hadoop/Grep.
[15] T. White, Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.
[16] “Shakespeare Complete Works,” http://www.gutenberg.org/ebooks/100.
[17] J. Chen, D. Wang, L. Fu, and W. Zhao, “An improved small file processing

method for hdfs,” International Journal of Digital Content Technology and
its Applications, vol. 6, no. 20, pp. 296–304, 2012.

[18] Y. Zhang and D. Liu, “Improving the efficiency of storing for small files in
hdfs,” in Computer Science & Service System (CSSS), 2012 International
Conference on. IEEE, 2012, pp. 2239–2242.

[19] B. Dong, J. Qiu, Q. Zheng, X. Zhong, J. Li, and Y. Li, “A novel approach
to improving the efficiency of storing and accessing small files on hadoop:
a case study by powerpoint files,” in Services Computing (SCC), 2010
IEEE International Conference on. IEEE, 2010, pp. 65–72.

[20] B. Dong, Q. Zheng, F. Tian, K.-M. Chao, R. Ma, and R. Anane,
“An optimized approach for storing and accessing small files on cloud
storage,” Journal of Network and Computer Applications, vol. 35, no. 6,
pp. 1847–1862, 2012.

[21] J. W. Jiangling Yin, D. H. Jian Zhou, Tyler Lukasiewicz, and J. Zhang,
“Opass: Analysis and optimization of parallel data access on distributed
file systems,” in IEEE International Parallel & Distributed Processing
Symposium (IPDPS), 2015 IEEE. IEEE, 2015.

[22] J. Dittrich, J.-A. Quiané-Ruiz, S. Richter, S. Schuh, A. Jindal, and
J. Schad, “Only aggressive elephants are fast elephants,” Proceedings of
the VLDB Endowment, vol. 5, no. 11, pp. 1591–1602, 2012.

[23] A. Jindal, J.-A. Quiané-Ruiz, and J. Dittrich, “Trojan data layouts:
right shoes for a running elephant,” in Proceedings of the 2nd ACM
Symposium on Cloud Computing. ACM, 2011, p. 21.

32

