
Cracking Down MapReduce Failure Amplification
through Analytics Logging and Migration

Yandong Wang Huansong Fu Weikuan Yu

Dept. of Computer Science and Software Engineering

Auburn University, Auburn, AL 36849, USA

{wangyd,hsfu,wkyu}@auburn.edu

Abstract—MapReduce is popular for big data analytics because
it offers easy-to-use map and reduce user interfaces while hiding
the complexity of system scalability and fault resiliency issues.
While a large body of literature has focused on improving the
performance and scalability of MapReduce, the issue of fault
resiliency has thus far received little attention. In this paper, we
take on an effort to investigate the fault resiliency of MapReduce
using YARN (the next-generation Hadoop) as a case study. We
reveal that the failures of a MapTask, a ReduceTask or a compute
node can cause distinctly different impact to MapReduce pro-
grams. Particularly, YARN MapReduce is not able to gracefully
handle failures that involve ReduceTasks, causing prolonged
task execution, delayed job completion, and, more severely,
failure amplifications due to the cascading effects to other
tasks. These problems together cause the performance collapse
of MapReduce jobs. In this paper, we introduce a new fault-
tolerant framework that can crack down failure amplification and
gracefully handle failure scenarios. It is designed with two key
fault handling techniques: analytics logging and speculative fast
migration. Analytics logging is a light-weight mechanism that logs
the key progress information of MapReduce tasks; speculative
fast migration handles node failures by proactively re-executing
MapTasks, migrating ReduceTasks, and collective merging with
a pipeline of shuffle/merge and reduce stages. Our performance
evaluation demonstrates that these techniques can eliminate
failure amplification and deliver fast job execution compared
to the existing task re-execution mechanism in MapReduce.

I. INTRODUCTION

MapReduce [7] is a popular model for numerous organiza-

tions to process enormous amounts of data, perform massive

computation, and extract critical knowledge for business in-

telligence. MapReduce provides easy-to-use map and reduce

interfaces and hides the complexity of system scalability and

fault resiliency issues from the users. Hadoop [2] is an open-

source implementation of MapReduce. It has evolved into its

next generation called YARN [1].

The capability of MapReduce in handling large amounts

of data and critical tasks has also made it a research target

for governmental, academic and industrial organizations. For

example, many previous works have focused on improving the

performance and scalability of MapReduce [7], [20], [6], [13],

the scheduling of task and jobs for fairness and fast response

time [23], [18], [22], and the redundancy and availability of

data [15], [14].

Compared to the paramount interest on these topics, perfor-

mance improvement, scheduling optimization, and data avail-

ability, the fault resiliency of MapReduce tasks has received

much less attention. For nearly a decade, MapReduce imple-

mentations have been relying on the same fault handling mech-

anisms: speculative execution and task re-execution. However,

the execution of MapReduce programs consists of two stages

(map and reduce), each with a different type of tasks and

distinct execution behaviors. We have examined the existing

task re-execution mechanism in MapReduce and revealed that

it does not work effectively for different task failures. In

our experiment, we inject errors to fail a varying number of

Map- or ReduceTasks and then measure the job’s recovery

time. Fig. 1 shows the impact of different task failures.

YARN can quickly recover from a large number of MapTask

failures, but it takes an order of magnitude longer time to

recover from the failure of a single ReduceTask than the

same from 200 MapTasks. To make things worse, from the

trace reported by Kavulya et al. in [10], the average number

of ReduceTasks per job is 19, with many containing more

than 145. Along with the MapTask failures, TaskTimeout and

other exceptions, they result in 3% of the total jobs ended

as failed or cancelled, and many other jobs delayed. These

facts suggest that it is necessary to revisit the fault handling

mechanism in MapReduce. With so many concurrent inter-

dependent activities happening in a large-scale MapReduce

program, such a long-lasting effect of a ReduceTask failure

may have inflicted other system components and caused other

side-effects that need to be identified.

��

���

����

�����

����	
��� �
�
�
���� ���
�
���	
���

��
��
��
��
	

��

�	

�
��
�	 ����������	�	����
�����

����
������	�����
�����

Fig. 1: The recovery time for a single ReduceTask failure and

the failure of many MapTasks.

2015 IEEE 29th International Parallel and Distributed Processing Symposium

1530-2075/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPS.2015.111

261

In view of this phenomenon, we take on an effort to

investigate the fault resiliency of MapReduce using YARN as a

case study. While an efficient resiliency mechanism is critical,

YARN as an implementation of MapReduce relies on the con-

ventional task re-execution to recover from various failure sce-

narios, with little regard to the need of differentiated recovery

for distinct types of task failures. The failures of a MapTask, a

ReduceTask or a compute node can cause distinctly different

impact to a MapReduce program. More severely, because of

the dependencies of ReduceTasks on the intermediate data

from MapTasks, the failure of one ReduceTask can cascade

into a series of failures of other ReduceTasks, a phenomenon

we refer to as failure amplification. These problems together

cause the performance collapse of MapReduce jobs.
To address these issues, we introduce a new fault resiliency

framework that can crack down failure amplification and

gracefully handle all failure scenarios. This framework is

designed with two novel fault handling techniques: analytics
logging and speculative fast migration. We have conducted

an extensive set of tests to evaluate the effectiveness of our

framework compared to the existing task re-execution mecha-

nism in the original YARN. Our results demonstrates that the

framework accomplishes efficient recovery performance under

various failure scenarios. In summary, we make the following

contributions on improving the fault resiliency of MapReduce

for big data analytics.

• We examine the execution behaviors of MapReduce jobs

under a variety of failure scenarios, and reveal several key

shortcomings of the existing recovery mechanism such

as prolonged task execution, delayed job execution and

failure amplification.

• We have designed and implemented analytics logging as

a viable lightweight approach for periodic preservation of

data analytics of long-running ReduceTasks, and specula-

tive fast migration as a proactive approach to re-executing

MapTasks, migrating ReduceTasks, and pipelining the

shuffle/merge and reduce stages.

• We have integrated analytics logging and speculative

fast migration into one framework to crack down failure

amplifications and ensure efficient failure recovery. Our

evaluation demonstrates that these techniques can elim-

inate failure amplification and deliver fast job execution

compared to the existing task re-execution mechanism in

MapReduce.

The rest of the paper is organized as follows. Section II

provides the background and motivation. We then describe

analytics logging in Section III, followed by Section IV

that details speculative fast migration. Section V provides

experimental results. Section VI reviews related work. Finally,

we conclude the paper in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we start with a brief description of YARN

and its MapReduce frameworks. Then we detail two issues

that lead to poor failure recovery performance, including (1)

delayed job execution, and (2) failure amplification.

A. Overview of YARN MapReduce Architecture

Designed as a resource management infrastructure, YARN

aims to simultaneously support various programming models,

such as MapReduce and MPI. It consists of two categories

of components, including one ResourceManager and many

NodeManagers. Each NodeManager abstracts the resources

on the node as many containers that can serve the purposes

of different applications. The ResourceManager manages all

resources and allocates containers to running applications.

In Hadoop YARN, each job is comprised of one Appli-

cationMaster, a.k.a MRAppMaster, and many Map- and Re-

duceTasks. Its execution includes two major phases: map and

reduce. The MRAppMaster negotiates with the ResourceMan-

ager for containers. When granted, it launches MapTasks. Each

MapTask reads one input split that contains many <k,v> pairs

from the HDFS and converts those records into intermediate

data in the form of <k’,v’> pairs. That intermediate data is

organized into a Map Output File (MOF) and stored to the

local file system. A MOF contains multiple partitions, one per

ReduceTask.

After one wave of MapTasks, MRAppMaster launches Re-

duceTasks, overlapping the reduce phase with the map phase

of remaining MapTasks. A ReduceTask is a combination of

two stages: shuffle/merge and reduce. Once launched, a Re-

duceTask fetches its partitions from all MOFs. A ReduceTask

merges incoming partitions and reduce the number down to a

threshold (mapreduce.task.io.sort.factor), and then enters into

the reduce stage with all partitions organized into a Minimum

Priority Queue (MPQ). After that, the ReduceTask traverses

all the sorted <k’,v’> pairs from the MPQ and applies reduce

function on them. The final results are stored into the HDFS.

Fault resiliency: during the execution of a MapReduce

program, current design relies on failover to provide fault

tolerance. When the MRAppMaster detects the failure of

running tasks, it re-launches those tasks on healthy nodes

without distinguishing recovery tasks from normal tasks. The

failed MapTasks can be successfully recovered as long as

the input data is still available from HDFS. The successful

recovery of ReduceTasks requires the presence or regeneration

of MOFs produced by MapTasks.

B. The Issue of Delayed Job Execution

 0

 200

 400

 600

 800

 1000

10% 20% 30% 40% 50% 60% 70% 80% 90%

Jo
b

 E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Percentage of Completed Workload

A Map Task Failure
A Reduce Task Failure
No Failure

(a) Terasort

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

10% 20% 30% 40% 50% 60% 70% 80% 90%

Jo
b

 E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Percentage of Completed Workload

A Map Task Failure
A Reduce Task Failure
No Failure

(b) Wordcount

Fig. 2: Delayed execution of MapReduce programs.

MapReduce adopts a strategy via data regeneration to

guard against transient faults such as out-of-memory, network

congestion etc. Once a task is detected as failed, its running

262

status and past progress are discarded. The scheduler simply

re-launches another attempt of the same task, repeating the

work achieved previously. This works very well for short-

lived MapTasks whose amount of work are generally much

smaller compared to the ReduceTasks, but it is not as effective

for ReduceTasks because of their long-running behaviors as

documented by many MapReduce workload studies [23], [18].

We have conducted a set of experiments via running three

representative MapReduce benchmarks, including Terasort,
and Wordcount on a cluster of 21 nodes with SSDs as the

storage. (Details about the testbed and system configuration

are in section V-A). Fig. 2 shows the performance impact from

a single task. We inject failures when a job reaches a varying

percentage of progress, and compare its performance with that

under failure-free scenarios. As shown in the figure, the failure

of a MapTask has negligible impact on job completion, but a

ReduceTask failure can degrade the execution time of Terasort

and Wordcount by more than 43.2% and 50.3%, respectively.

When more progresses have been made, a ReduceTask failure

will cause even longer delays.

C. The Issue of Failure Amplification

YARN relies on running ReduceTasks to detect the lost

MOFs from a crashed node. When a ReduceTask fails many

times to fetch any MOF, the scheduler will take it as faulty

and preempt it. Unfortunately, such design can cause many

undesirable issues, amplifying the adverse impact of a single

ReduceTask failure.

 0

 25

 50

 75

 100

 0 50 100 150 200 250 300R
ed

u
ce

 P
ro

g
re

ss
 (

%
)

Time (sec)

Fig. 3: The temporal repetition of a ReduceTask failure.

Temporal Failure Amplification: The simple task re-

execution mechanism can lead to penalty amplifications upon

the failure of a long-running ReduceTask. Fig. 3 illustrates the

temporal amplification of such failures. We profile the progress

of reduce phase of a Wordcount job (for illustration purpose,

this job is configured with 1 ReduceTask). At 48th second, a

node crashes and the progress stalls. Then, it takes a timeout

(about 70 seconds) for the scheduler to detect the crashed

node and start the recovering process at the 129th second.

Unfortunately, the recovered ReduceTask tries to retrieve lost

MOFs from the crashed node, encountering many data fetching

failures and causing YARN to declare a second failure at the

180th second.

Spatial Failure Amplification: Also due to aforementioned

connection issue, the failure of a single node that contains

MOFs desired by running ReduceTasks can trigger cascading

failures of healthy ReduceTasks. Fig. 4 shows the existence

of such scenarios. We profile the reduce progress along with

 0

 25

 50

 75

 100

 0 50 100 150 200 250 300 350 400
 0

 2

 4

 6

 8

R
ed

u
ce

 P
ro

g
re

ss
 (

%
)

N
o

. o
f

R
ed

u
ce

 T
as

k
F

ai
lu

re

Time (sec)

Progress
No. of Failures

Fig. 4: A single node failure can infect healthy ReduceTasks.

the number of failed ReduceTasks during the execution of a

Terasort job that has 20 ReduceTasks. A single node crash

at the 176th second results in failures of six more healthy

ReduceTasks running on other nodes, even though the crashed

node does not host any ReduceTasks.

D. Proposed Solutions

In view of the aforementioned issues and our findings of

distinct recovery behaviors of ReduceTasks, we plan to inves-

tigate the feasibility of logging the progress of MapReduce

analytics for fast migration and recovery of ReduceTasks.

Accordingly, we propose to design an Analytics Logging

and Migration (ALM) framework to address the delayed job

execution and failure amplification in MapReduce.

As shown in Fig. 5, our ALM framework is designed

with two component techniques Analytics LoGging (ALG) and

Speculative Fast Migration (SFM) for effective job recovery

under various failure scenarios. ALG aims to conserve the

progress of MapReduce tasks. It strives to do so in a non-

intrusive, light-weight manner with minimized interruption

or interference to the normal task execution. As shown in

the figure, we focus on ReduceTasks (both shuffle/merge and

reduce phases) for ALG in this paper. It will leverage both

local file systems and HDFS for logging the progress of

analytics work.

�
��

��
��
�

�
��

��
��
�

�
��

��
��
	

	
����
�����������
����
�� �����������

��
��

��
�
�

�
��
��

�

��
��

�������

����������	

	
����
����
�������

� �����
	�������		
������	

���������	
����������	

����

��
��

�
�
�

��
���

�
��

��
���
��
��	

���
�	�

���
��
��
	

Fig. 5: Diagram of Analytics Logging and Migration.

In parallel with ALG, SFM leverages analytics logs gen-

erated by ALG and other resources (such as healthy con-

tainers) in the YARN cluster to orchestrate migration and

collective recovery of failed ReduceTasks. It can help MapRe-

duce programs to tolerate any failure and also crack down

263

its temporal and spatial amplifications. Furthermore, to fully

exploit the capability of SFM, we have further enhanced

the recovery scheduling policy in MRAppMaster based on a

speculative mechanism. It speculatively re-executes MapTasks

and generates map output files in advance, thereby preventing

a ReduceTask from becoming a straggler when it is recovering

from a previously failed ReduceTask.

In the next two sections, we will describe the ALG and

SFM techniques in detail.

III. ANALYTICS LOGGING

Though logging has been extensively studied for file sys-

tems [5], little research has been carried out to explore its

feasibility for MapReduce tasks. Meanwhile, many system-

level heavy-weight checkpointing mechanisms [9] that inter-

rupt the execution of processes and take snapshots of the entire

memory image can incur substantial overhead for tasks with

several GBs of heap memory.

We introduce Analytics LogGing (ALG), which is a non-
intrusive and task-level light-weight logging mechanism, run-

ning asynchronously alongside the execution of ReduceTasks.

It aims to log only the key information that can help a

recovering ReduceTask avoid conducting unnecessary reduce

computation and data deserialization, and meanwhile minimize

the interruption and interference to task execution. In addition,

due to the independent characteristic of MapReduce tasks,

ALG does not require any global coordination to maintain

job-level consistency before logging. The analytics logs are

completely managed within a task.

Due to distinct behaviors of different stages of Reduc-

eTask, we need to have appropriate logging strategies for

shuffle/merge and reduce stages within a ReduceTask.

A. Logging in the Shuffle/Merge Stage

�������	�
���
���

��������	
���

����
��
��
����	
�������
�
�����
����	���������
�

�������������
��������	
��
���
���
��
!���������
��

�������������

����
��
��
���������"� ���

�
�����

�������������
��������	
��
���
���
��
!��������#��
��
$��������#!�
��

�������%��
���

����
��
��
���& �� '��� ��

���
%�� ��
��

�������������
��������	
�����

(������������	
��
���	�'
�))*��#��
!�����

Fig. 6: Format of progress logs at different stages.

A ReduceTask periodically fetches segments from MOFs on

remote nodes. Depending on the segment size and remaining

available memory, it determines whether to store it in memory

or spill to disks. Meanwhile, a couple of merging threads

are running in the background to carry out in-memory and

on-disk merging. Accordingly, to preserve the running status

of this stage, the key analytics progress that needs to be

logged includes the IDs of remote MOFs, and the paths of

local intermediate files, such as on-disk segment files and

intermediate merged outputs. Other statistics are also included

to form an indistinguishable record for the resumed execution

of a recovering ReduceTask. The format of a log record at the

shuffle stage is shown by the left column in Fig. 6.

Once triggered, ALG invokes a temporary in-memory merg-

ing thread to merge all in-memory segments and flush merged

results to local disks. Such merging is necessary to control

the number of temporary files and amortize the merging

overhead in the later execution of ReduceTasks. In addition,

by launching a temporary thread instead of forcing the original

in-memory merger to conduct above merge/flush, ALG mini-

mizes the interruption to the on-going data shuffling that could

be waiting for the completion of in-memory merging. More-

over, in order to accomplish the status logging, ALG needs

to record the paths of persistent intermediate files processed

by the on-disk merger. Waiting for the completion of on-disk

merging can be very time-consuming and delay the logging

process. Therefore, ALG pauses the on-disk merging to record

such file paths. On-disk merging is resumed thereafter.

When a ReduceTask proceeds into the merge stage, all the

segments have been successfully shuffled to the ReduceTask

side. Thus, it is no longer necessary to maintain the IDs

of MOFs. Therefore, the paths of intermediate files are the

only critical information to keep. The updated format of

a log record at the merge stage is shown by the middle

column in Figure 6. When a large number of in-memory

segments exist in the merge queue, it can incur a noticeable

overhead to merge them. We have found that if we increase

the logging frequency during the shuffle stage, very few in-

memory segments will be maintained in the final merge queue,

thus very little performance penalty for the creation of logs.

B. Logging in the Reduce Stage

In the reduce stage, all intermediate files are organized

in a Minimum Priority Queue (MPQ). The file with the

minimum <k’,v’> pair is positioned at the root (head). Then

ReduceTask sequentially extracts the <k’,v’> pairs out of the

queue, applies user-defined reduce function on it, and then

writes the output into an HDFS file. Analytics logging in this

stage requires ALG to record two things: the structure of MPQ

and the positions of all intermediate files in the MPQ. This

way, ALG can preserve the progress in the reduce stage.

To preserve the structure of MPQ, for every intermediate

file, ALG logs the file path and the offset of the file for the

next <k’,v’> pair. The format of the log is shown by the right

column in Fig. 6. Such information is adequate to recover

the MPQ later. More importantly, we need to safely store the

completed output from the reduce function. To this end, ALG

flushes the HDFS result file asynchronously without stalling

the execution of the ReduceTask. To curb the performance

overhead and execution interference, the HDFS result file

is generated with local and rack replicas. Furthermore, a

ReduceTask in the reduce stage has completed a major portion

of its work. Different from previous shuffle/merge stage, the

264

log record in the reduce stage is also stored into HDFS. This

ensures the availability of the log from HDFS so that the

recovered ReduceTask can avoid repeating data deserialization

and the accomplished reduce analytics.

IV. SPECULATIVE FAST MIGRATION

Fig. 7 provides an overview of speculative fast migration.

For illustration purpose, we use an example of four compute

nodes, each with one MapTask and one ReduceTask. During

the job execution, ALG enables a ReduceTask to log the

analytics progress, with the logs for the reduce stage stored

onto HDFS. This is shown as Step 1 for the ReduceTask (R3)

on the third compute node. When the tasks on the third com-

pute node are not responsive, the YARN ApplicationMaster

signifies a node failure (Step 2). The ApplicationMaster then

speculatively prioritizes the migration of tasks from that node

(Step 3), and recover them as M3’ and R3’ on other nodes.

When the migrated ReduceTask (R3’) is launched, it then

leverages the logged records on HDFS to resume the previous

progress of R3 (Step 4).

��	��	

��	

��	

��	

��	

���	���	

���	

�����
��������	�

���

��

��� 	

��	��	
��
��		
����
���	

��	���		
�
����		

��	�������	

��	�	
��	�	

��
��

����	�	
�	
����	

��� �������

��	�	
�	
���

Fig. 7: The flow of Speculative Fast Migration

Leveraging the analytics logs: Since the progress of

ReduceTasks has been logged periodically before a failure,

we design SFM to take advantage of logged records. This

avoids repeating redundant deserialization and the analytics

work that has been logged. A recovering ReduceTask looks

up the previously generated log files for one that records the

progress in the reduce stage. If there is one, it then restores

the MPQ and resumes the processing of remaining <k’,v’>
pairs in the MPQ. Our performance evaluation demonstrates

that leveraging logs inside SFM can accelerate the recovery

by up to 28.3% (see Fig. 15).

As discussed in Section II, the recovery of ReduceTasks

may significantly delay the job execution. if not handled effi-

ciently. We have designed Speculative Fast Migration (SFM)

to accelerate the recovery of migrated ReduceTasks. It includes

a Fast Collective Merging mechanism and a Speculative Re-
covery Scheduling policy.

A. Fast Collective Merging

Intermediate data merging has been widely recognized as a

major bottleneck in the ReduceTask execution [17], [13], [12].

The conventional wisdom has focused on providing merging

algorithms inside the final ReduceTask. Such design can be

insufficient because the recovering ReduceTask, while late by

nature, still needs to go through the heavy merging process.

We introduce Fast Collective Merging (FCM) to leverage

all participating nodes in the job and have them work together

to rapidly rescue the migrated ReduceTask. The key idea of

FCM is to ask each node to merge local intermediate data

before supplying them to the recovering ReduceTask. FCM

distributes the merging process to all participating nodes and

reduces the size of MPQ at the recovering ReduceTask.

When starting the recovery, FCM is designed to notify each

participant node to organize its local segments into a local

merge queue (named as Local-MPQ) and pre-merges these

segments. Meanwhile, the recovering ReduceTask constructs

another MPQ for global merging (Global-MPQ). Each seg-

ment in the Global-MPQ represents the output from a remote

participating node. When all the required Local-MPQs and

the Global-MPQ are established, FCM starts a pipeline of

merging process from the Global-MPQ to all the Local-MPQs.

In the pipeline, the recovering ReduceTask continuously draws

the <k’,v’> pairs from the Global-MPQ and reduce them.

Meanwhile, all the participating nodes provide (or shuffle)

their merged output to the ReduceTask, filling up the segments

in the Global-MPQ. Throughout the FCM process, we ensure

that all data be maintained in memory thereby overlapping the

shuffling, merging, and reducing from all participating nodes

to the recovering ReduceTask.

1) Failure Handling during Recovery: Failures can also

occur during the recovery process. When a recovery Reduc-

eTask fails again, we launch another attempt on a healthy

node. FCM does not maintain any local intermediate data. It

does not impose any constraint on the choice of the node for

recovering a ReduceTask. However, we do need to tear down

the structures organized for the previous recovery attempt.

When the participant nodes in FCM receive no request from

a recovering ReduceTask after a timeout period, they then

dismantle their Local-MPQs.

B. Speculative Recovery Scheduling

To take advantage of FCM, we have enhanced the recovery

scheduling policy inside MRAppMaster. We aim to achieve

two objectives. First, we need to prevent a recovering Re-

duceTask from becoming a straggler and causing serious job

delays. Second, we need to relieve a recovering ReduceTask

of the burden of locating its dependent MOFs so that there

are no stalls for such ReduceTask in waiting for MOFs, thus

no cascading events and no failure amplification, as shown in

Section II-C.

Our speculative recovery schedule algorithm is detailed in

Algorithm 1. Upon detecting a ReduceTask failure, it deter-

mines the recovery mode based on the liveness of the node

that hosted the failed ReduceTask (Lines 9 – 13). If the node

is still operating, the analytics logs are then available on that

node. Our scheduler then re-launches the same ReduceTask on

the original node to resume from the logs and recover from

the transient ReduceTask failure.

265

However, the cause of the ReduceTask failure may vary. It

could be due to a faulty node or a failed node. In the former

case, the node may still be responsive but very slow in I/O or

computation. Task re-execution may end up with a straggler

because of the slow recovery of ReduceTask. Thus it may not

be effective to launch a ReduceTask on the original node.

Algorithm 1 Enhanced Failure Recovery Scheduling Policy

1: R ← {A failure report}
2: Treduces ← {Failed ReduceTasks in R}
3: Tmaps ← {Failed MapTasks in R and lost MOFs involved in R}
4: N ← {The source node of R}
5: for all m ∈ Tmaps do
6: schedule another attempt of m on a healthy node with higher

priority.
7: end for
8: for all r ∈ Treduces do
9: if N is still alive then

10: if no. of attempts on N of r is < limitlocal then
11: schedule another attempt of r on N.
12: end if
13: end if
14: if no. of running attempts of r is ≤ 2 then
15: t ← {a speculative task of r}
16: if no. of FCM tasks in the job is ≤ FCMcap then
17: schedule t with FCM mode.
18: else
19: schedule t with regular mode.
20: end if
21: end if
22: end for

Therefore, regardless whether a node fails or not, we spawn

a speculative ReduceTask [24] on a healthy node (Lines 14 –

21) when there is a ReduceTask failure. This speculative task

needs to be executed in the FCM mode (Lines 15 – 17) for

fast recovery. To limit the resource demand and reduce the

synchronization frequency caused by FCM, we cap the number

of ReduceTasks in the FCM mode in each job (Line 16, the

threshold is set as 10 by default). When a node has actually

failed, the checking condition at Line 9 fails. We migrate the

failed ReduceTasks to a healthy node (Lines 14 – 20).
Our speculative scheduler proactively re-launches MapTasks

from a failed node such that these MapTasks can regenerate

their MOFs (Lines 5 – 7). This avoids long stalls to other

running ReduceTasks so that they are not detected as failed

because of the lack of progresses. In so doing, spatial am-

plification of ReduceTask failures is prevented. By the same

token, with the MOFs regenerated proactively, a recovering

ReduceTask does not have to locate missing MOFs, thus no

risk of being stalled again and marked as another failure.

Therefore the temporal amplification is eliminated. Note that,

proactively re-executing MapTasks may lead to unnecessary

regeneration of MOFs. For example, all ReduceTasks may

have progressed beyond the shuffle/merge stage or the failed

ReduceTask can leverage the analytics logs stored on HDFS.

MapTasks are generally short-living and their re-execution is

typically light weight, as shown in Fig. 1. Therefore, because

of the criticality in cracking down failure amplification, it is a

small cost well paid to speculative re-execution of MapTasks

on the failed node to ensure the availability of MOFs.

V. EXPERIMENTAL EVALUATION

We have thoroughly evaluated the effectiveness of our ALM

framework for failure resiliency and its performance overhead.

A. Experimental Environment

TABLE I: List of key YARN configuration parameters.

Parameter Name Value
mapreduce.map.java.opts 1536 MB
mapreduce.reduce.java.opts 4096 MB
mapreduce.task.io.sort.factor 100
dfs.replication 2
dfs.block.size 128 MB
io.file.buffer.size 8 MB
yarn.nodemanager.vmem-pmem-ratio 2.1
yarn.scheduler.minimum-allocation-mb 1024 MB
yarn.scheduler.maximum-allocation-mb 6144 MB

Cluster Setup: all the experiments are conducted on a

cluster featuring 21 machines that are connected through 10

Gigabit Ethernet. Each machine is equipped with four 2.67

GHz hex-core Intel Xeon X5650 CPUs, 24 GB memory and

1 SATA-based SSD.

Configuration: we use YARN-v2.2.0 as the code base with

JDK 1.7. One node is dedicated as the ResourceManager and

the NameNode of YARN and HDFS. Table I lists the key

parameters that are relevant to the performance of YARN

programs, along with their tuned values.

Benchmarks: we have selected three representative MapRe-

duce programs, including Terasort, Wordcount, and Sec-

ondarysort. Detailed characteristics of above three benchmarks

can be found in [17], [3], [21], [19].

B. Throttling the Job Execution Delay

We start by analyzing the effectiveness of our ALM frame-

work on throttling the execution delay caused by task and

node failures as described in Section II-B. In this test, we

have used all three benchmarks. The input sizes for Terasort,

Wordcount, and Secondarysort are 100 GB, 10 GB, and 10

GB, respectively. We inject out-of-memory exceptions to crash

a task to emulate the transient task failures and stop the

network services on a node for node failures. Each of the

results is the average of three test runs.

Fig. 8 shows that, in the event of a single ReduceTask

failure, our ALG technique can effectively speed up the

process of failure recovery. This is because ALG can avoid

repeating the accomplished analytics progresses such as the

shuffle, merge or reduce work in the ReduceTask. At the

job execution level, on average, ALG efficiently outperforms

YARN by 15.4%, 20.1% and 15.9% for Terasort, Wordcount,

and Secondarysort, respectively, for 9 different failure points.

In particular, when failures are induced at the 90% progress of

ReduceTasks, ALG provides up to 28.9%, 40.8% and 31.3%

improvement. Meanwhile, its performance is comparable to

the failure-free case, indicating that ALG can achieve failure

recovery at little overhead.

266

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

10% 20% 30% 40% 50% 60% 70% 80% 90%

Jo
b

 E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Percentage of Reduce Phase

ALG
YARN
No Failure

(a) Terasort

 0

 200

 400

 600

 800

 1000

 1200

 1400

10% 20% 30% 40% 50% 60% 70% 80% 90%

Jo
b

 E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Percentage of Reduce Phase

ALG
YARN
No Failure

(b) Wordcount

 0

 500

 1000

 1500

 2000

10% 20% 30% 40% 50% 60% 70% 80% 90%

Jo
b

 E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Percentage of Reduce Phase

ALG
YARN
No Failure

(c) Secondarysort

Fig. 8: Effective failure recovery with ALG at little overhead.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

10% 20% 30% 40% 50% 60% 70% 80% 90%

Jo
b

 E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Percentage of Reduce Phase

SFM
YARN
No Failure

(a) Terasort

 0

 200

 400

 600

 800

 1000

10% 20% 30% 40% 50% 60% 70% 80% 90%

Jo
b

 E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Percentage of Reduce Phase

SFM
YARN
No Failure

(b) Wordcount

 0

 500

 1000

 1500

 2000

10% 20% 30% 40% 50% 60% 70% 80% 90%

Jo
b

 E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Percentage of Reduce Phase

SFM
YARN
No Failure

(c) Secondarysort

Fig. 9: SFM substantially shortens migration and recovery of ReduceTasks without much performance impact.

As also shown in Fig. 8, ALG mitigates the performance

variation that exists in YARN when transient failures occurs at

different time points. This is a very desirable feature because

it can help MapReduce jobs to achieve predictable turnaround

time. Across three benchmarks, compared to the cases that

failures occur at 10% of Reduce phase, comparing failures at

different progress points, the job execution time does increase

noticeably. Failures at 90% progress can increase the execution

time by 11.3%, 3.1%, and 18.3% for Terasort, Wordcount,

and Secondarysort, respectively, compared to failures at 10%

progress. The difference is significantly better with ALG

compared to YARN. With the original YARN, failures at

90% progress can increase the job execution time by as

much as 55.2%, 73.6%, 68.9%, for Terasort, Wordcount,

and Secondarysort, respectively, compared to failures at 10%

progress. Such significant delays of job execution time due to

failures can lead to less predictability of job completion.

Complementary to ALG, SFM aims to rapidly recover

from node failures to prevent migrated ReduceTasks from

becoming stragglers. Fig. 9 illustrates the migration and re-

covery performance of SFM when a node failure occurs at

different points of the reduce phase. At the job execution

level, compared to YARN, SFM shortens the migration and

recovery process by 10.9%, 39.4%, and 18.8% on average

for Terasort, Wordcount, and Secondarysort, respectively. In

particular, when failures occur at the 90% progress, SFM

achieves an improvement by up to 15.4%, 36.7% and 29.5%,

respectively, for the three benchmarks, This is because, with

SFM, the migration and recovery of ReduceTasks is facilitated

by speculative scheduling of MapTasks and ReduceTasks and

by the availability of previously logged analytics records and

enhanced migration execution mechanism.

Interestingly, for Wordcount that only contains a single Re-

duceTask, when failures happen at early phase (before 50%),

SFM with a failure can even outperform the failure-free case.

This is due to acceleration obtained from collective merging

and pipelined internal execution, which together eliminate the

reliance on disks for intermediate data merging. However,

SFM requires the synchronization of all participant nodes for

emergency handling and bookkeeping of intermediate data

merging progress. This can affect the scalability of the system

and consume higher resources compared to the execution

of a plain ReduceTask. Thus, we only advocate SFM as a

task migration and recovery mechanism upon failures, not an

alternative implementation of regular ReduceTasks.

C. Cracking Down Failure Amplification

As discussed in Section II-C, the failure recovery mech-

anism in YARN can lead to temporal and spatial failure

amplification due to the reliance on newly recovered Reduc-

eTasks to detect lost map output files. Our ALM framework

provides a speculative scheduling mechanism for the recovery,

which removes such dependency and actively regenerates lost

intermediate data when node failures are detected.

In this section, we use Wordcount to evaluate the issue

of temporal failure amplification because of its simplistic

composition of a single ReduceTask. The profiling result of

the reduce phase is shown in Fig. 10. We use Terasort to

evaluate the impact of ALM on spatial failure amplification.

Table II illustrates the profiling results of spatial amplification.

As shown in Fig. 10, upon detecting the failure at around

116 seconds, instead of immediately relaunching a Reduc-

eTask, SFM firstly prioritizes the regeneration of lost map

output files by launching MapTasks. Though such decision

267

 0

 25

 50

 75

 100

 125

 0 50 100 150 200 250R
ed

u
ce

 P
ro

g
re

ss
 (

%
)

Time (sec)

YARN

SFM

Fig. 10: SFM eliminates temporal amplification and efficiently

improves the failure recovery.

can delay the launch time of a recovery task by 18 seconds,

the newly-launched ReduceTask does not suffer from repeated

timeouts when trying to retrieve the map output files from the

failed node, thereby avoiding any preemption by the YARN

scheduler. With such speculative migration and recovery of

tasks and data, SFM eliminates temporal failure amplification.

TABLE II: Speculative Recovery Scheduling curbs the infec-

tious impact of node failures.

Type Point of Number of Execution
First Failure Additional Time

Failures
YARN 10% 2 429 seconds
SFM 10% 0 435 seconds
YARN 20% 5 533 seconds
SFM 20% 0 449 seconds
YARN 30% 3 516 seconds
SFM 30% 0 445 seconds

Furthermore, SFM prevents task failures on one failed node

from inflicting failures of other healthy ReduceTasks as shown

in Table II. In the original YARN, even if a failed node does

not contain any running ReduceTask, the lost map output files

can cause more ReduceTasks to fail as shown in Table II,

resulting in spatial failure amplification and delayed job exe-

cution. In contrast, SFM cracks down such amplification and

prevents additional ReduceTasks from being affected. By the

time a healthy ReduceTask reports connection failures, SFM

is aware of the cause and requests ReduceTask to wait until

the lost map output files are regenerated.

Taken together, our detailed profiling adequately corrob-

orates that SFM can crack down both temporal and spatial

failure amplifications and exhibit better failure resilience.

D. Performance Characteristics of ALG

Performance Penalty on Normal Job Execution: Fig. 11

compares the performance between YARN and ALG in the

failure-free environments using Terasort with different input

sizes, ranging from 10 GB to 320 GB. The results show

that ALG incurs negligible penalty to ReduceTasks, with little

degradation on the job execution under failure-free scenario.

Performance at Different Logging Frequencies: ALG

is insensitive to the logging frequency. Fig. 12 shows the

performance of Terasort under different frequencies. As shown

in the figure, ALG exhibits fairly stable performance. More

importantly, we have observed that the more frequently ALG is

invoked, the lower interference it causes to the task execution

 0

 200

 400

 600

 800

 1000

 1200

 10 20 40 80 160 320

T
im

e
(s

ec
)

Input Size (GB)

Job Execution Time (YARN)
Job Execution Time (ALG)
Average ReduceTask Time (YARN)
Average ReduceTask Time (ALG)

Fig. 11: Negligible overhead of ALG in failure-free scenarios.

due to the smaller amount of analytics progress in each period.

Such characteristic allows us to frequently log the analytics

work of MapReduce programs and minimize the time for

recovering analytics progress after failures.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 40 80 160 320

Jo
b

 E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Input Size (GB)

5%
10%
15%
20%

Fig. 12: ALG performance at different logging frequencies.

Performance with Different Replication Levels: Another

factor that helps reduce overhead is that ALG constrains the

replication level within a single rack rather than replicat-

ing across an HDFS cluster. It only replicates entire blocks

when committing tasks. As shown in Fig. 13, increasing

the replication level to the cluster level incurs significant

overhead on the reduce phase. Compared to the node-level

replication, constraining the replication within a rack imposes

small overhead for small datasets. When the data size increases

to 320 GB, replication at the rack level delays the reduce

progress by about 18.4%. However, the progress degradation

significantly rises to 55.7% for the cluster-level replication.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 20 40 80 160 320

T
im

e
(s

ec
)

Input Size (GB)

Node-Level

Rack-Level

Cluster-Level

Fig. 13: Impact of different replication levels on reduce stage.

268

E. Performance Characteristics of SFM

Performance under Concurrent Failures: We measure the

performance of MapReduce programs under multiple concur-

rent failures. As shown in Fig. 14, SFM achieves substantial

performance improvement compared to YARN when multiple

concurrent failures occur to the ReduceTasks. Recovery per-

formance between YARN and SFM when each ReduceTask

needs to process different data sizes, ranging from 1 GB to

32 GB.

On average, SFM cuts down on the recovery time by up to

40.7%, 44.3%, 49.5% for 1, 5 and 10 concurrent failures cases,

respectively. In addition, the improvement ratio increases

linearly with the data sizes, rising from 37.2% for recovering

1 GB to 62.1% for recovering 32 GB under 5 concurrent

failures case. With more intermediate data, the performance

of original ReduceTask is heavily subject to the intermediate

data merging, which leads to drastic performance degradation

when disks are under heavy workload. On the contrary, SFM

eliminates such bottleneck, and its performance is determined

by the network bandwidth and aggregated disk bandwidth from

servers that supply intermediate data.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 4 8 16 32

R
ed

u
ce

T
as

k
R

ec
o

ve
ry

 T
im

e
(s

ec
)

Intermediate Data Size for a ReduceTask (GB)

1 Reduces (YARN)
1 Reduces (SFM)
5 Reduces (YARN)
5 Reduces (SFM)
10 Reduces (YARN)
10 Reduces (SFM)

Fig. 14: SFM for the recovery of multiple concurrent failures.

Effectiveness of Leveraging Logged Analytics: SFM is

designed to leverage the logged analytics work by ALG to

avoid unnecessary data deserialization and reduce computa-

tion. As shown in Fig. 15, ALM with integrated SFM and

ALG (SFM+ALG) can further accelerate the recovery process

of Terasort, Wordcount, and Secondarysort by 11.4%, 16.1%

and 25.8%, respectively, compared to the SFM-only case. For

Terasort, its reduce function outputs the <k,v> pairs. The

improvement comes from the avoidance of deserializing the

intermediate data. For Secondarysort, the improvement comes

from the resurrection of logged progress on reduce computa-

tion. This substantially helps improve the recovery process of

Secondarysort. Therefore a more profound improvement ratio

is observed for Secondarysort than the other two benchmarks.

Note that such improvement requires ALG to replicate the

reduce results during the reduce phase, which can slow down

the normal progress of ReduceTasks with large datasets as

shown in Section V-D. Therefore, our ALM framework can be

executed with both ALG and SFM enabled, but users need to

be aware of the potential overhead when ALM has to replicate

large output of ReduceTasks.

0

500

1000

1500

2000

2500

3000

Terasort Wordcount Secondarysort

Jo
b

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

11.4%

16.1%
25.8%

SFM+ALG
SFM-only
SFM+ALG
SFM-only

Fig. 15: Benefits of enabling both ALG and SFM.

VI. RELATED WORK

Although there is a large body of research related to

improving the performance of MapReduce, little research has

been conducted to investigate its failure resiliency issue. In

this section, we provide a review of several closely related

works on failure characteristics, failure detection, and recovery

algorithms.

Ko et al. designed an Intermediate Storage System (ISS)

[11], an extension of HDFS, to enable highly available in-

termediate data, so that MapReduce jobs can avoid repeating

the same MapTasks after node failures. However, to ensure

such availability, ISS needs to replicate intermediate data on

HDFS at the cost of imposing heavy overhead on the file

system and network. This issue has also been discussed in [8],

[14]. Relying on the original ReduceTask to recover from task

or node failures, ISS suffered from the same performance

collapse as the existing YARN. ISS was an early work on

improving the failure recovery of MapReduce frameworks.

It failed to recognize the severe issues associated with Re-

duceTask failures. Our work examines these open issues and

provides a set of techniques to address them.

Quiané-Ruiz et al. introduced RAFTing MapReduce [14] to

preserve the computation status of MapTasks while replicating

the intermediate map output to remote servers and avoiding the

need of recomputing the MapTasks on the crashed node. It was

similar to [11] in spirit. Although such design could efficiently

recover failed MapTasks, it did not address the slow recovery

issue of ReduceTasks either. In addition, two factors can limit

its applicability. Firstly, RAFTing MapReduce requires the

pre-assignment of ReduceTasks such that MapTasks can push

the intermediate data to the ReduceTask during task execution.

However, such pre-assignment is hard, if not infeasible, to

achieve in a shared MapReduce cluster, especially when it

is heavily loaded as discussed in [6], [16], [18]. Secondly,

replicating map output files can incur a significant performance

overhead when the intermediate data size is large [11]. In

contrast, our work is not constrained by the above factors and

applicable to general MapReduce clusters.

Dinu et.al. [8] systematically analyzed the impact of node

failures on MapReduce programs. In particular, they studied

how the failures of TaskTrackers and DataNodes in Hadoop

269

1.x affect the performance. They revealed several insight-

ful observations: (1) a single failure can have significant

performance impact on MapReduce applications; (2) failure

information is not shared among running tasks, causing local

failures to propagate to healthy tasks, which is similar to the

cascading infection introduced in this paper; and (3) existing

straggler detection algorithms [24], [4] make unrealistic as-

sumptions on the task progress. As a result, DataNode failures

can render those algorithms ineffective, causing an issue of

delayed speculative execution which can severely slow down

the progress of the reduce phase. Our work is inspired by

this analysis but provides a thorough quantification of job

execution delays and failure amplifications. Furthermore, we

have developed techniques to solve these problems.

VII. CONCLUSION

We have examined the resiliency of MapReduce to task and

node failures using the next-generation Hadoop framework,

i.e., YARN. This is an issue that has received little atten-

tion, but revealed as serious in our experimental analysis. In

particular, we have observed drastic performance degradation

due to ReduceTask failures and cascading task failures due to

node failures, which we refer to as failure amplification. In

this paper, we have designed and implemented a fault-tolerant

MapReduce framework that overcomes the performance degra-

dation and failure amplification issues. Specifically, we intro-

duce two techniques called analytics logging and speculative

fast migration to alleviate the impacts of task and node failures.

We have thoroughly evaluated the benefits of these techniques

to a variety of failure scenarios. Our experimental results

demonstrate that that our techniques can crack down failure

amplification and deliver fast job execution compared to the

existing task re-execution mechanism in MapReduce.

Acknowledgment

This work is funded in part by an Alabama Innovation

Award, and by National Science Foundation awards 1059376,

1320016, 1340947, and 1432892. Yandong Wang contributed

to the research as a graduate student at Auburn. He is currently

affiliated with IBM Watson.

REFERENCES

[1] Apache hadoop nextgen mapreduce (yarn). http://hadoop.apache.org/
docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/YARN.html.

[2] Apache hadoop project. http://hadoop.apache.org/.
[3] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar.

Tarazu: Optimizing mapreduce on heterogeneous clusters. In Pro-
ceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
XVII, pages 61–74, New York, NY, USA, 2012. ACM.

[4] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris. Reining in the outliers in map-reduce clusters
using mantri. In Proceedings of the 9th USENIX conference on
Operating systems design and implementation, OSDI’10, pages 1–16,
Berkeley, CA, USA, 2010. USENIX Association.

[5] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Operating Systems:
Three Easy Pieces, chapter 42. Crash Consistency: FSCK and Journal-
ing. Arpaci-Dusseau Books, 2012.

[6] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears. Mapreduce online. In Proceedings of the 7th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI’10,
pages 21–21, Berkeley, CA, USA, 2010. USENIX Association.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Proceedings of the 6th Symposium on Operating System
Design and Implementation, OSDI ’04, pages 137–150, San Francisco,
California, USA, 2004. USENIX Association.

[8] F. Dinu and T. E. Ng. Understanding the effects and implications of
compute node related failures in hadoop. In Proceedings of the 21st
International Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’12, pages 187–198, New York, NY, USA, 2012.
ACM.

[9] Q. Gao, W. Yu, W. Huang, and D. K. Panda. Application-transparent
checkpoint/restart for mpi programs over infiniband. In ICPP, pages
471–478. IEEE Computer Society, 2006.

[10] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An analysis of
traces from a production mapreduce cluster. In Cluster, Cloud and Grid
Computing (CCGrid), 2010 10th IEEE/ACM International Conference
on, pages 94–103. IEEE, 2010.

[11] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. Making cloud intermediate
data fault-tolerant. In Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC ’10, pages 181–192, New York, NY, USA, 2010.
ACM.

[12] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy. A platform
for scalable one-pass analytics using mapreduce. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’11, pages 985–996, New York, NY, USA, 2011. ACM.

[13] X. Li, Y. Wang, Y. Jiao, C. Xu, and W. Yu. Coomr: Cross-task
coordination for efficient data management in mapreduce programs.
In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’13, pages 42:1–
42:11, New York, NY, USA, 2013. ACM.

[14] J.-A. Quiane-Ruiz, C. Pinkel, J. Schad, and J. Dittrich. Rafting
mapreduce: Fast recovery on the raft. In Proceedings of the 2011 IEEE
27th International Conference on Data Engineering, ICDE ’11, pages
589–600, Washington, DC, USA, 2011. IEEE Computer Society.

[15] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

[16] J. Tan, X. Meng, and L. Zhang. Delay tails in mapreduce scheduling.
In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’12, pages 5–16, New York, NY, USA, 2012.
ACM.

[17] Y. Wang, X. Que, W. Yu, D. Goldenberg, and D. Sehgal. Hadoop
acceleration through network levitated merge. In Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pages 57:1–57:10, New York, NY, USA,
2011. ACM.

[18] Y. Wang, J. Tan, W. Yu, X. Meng, and L. Zhang. Preemptive reducetask
scheduling for fair and fast job completion. In Proceedings of the
10th International Conference on Autonomic Computing, ICAC’13, June
2013.

[19] T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st
edition, 2009.

[20] Y. Xu, P. Kostamaa, and L. Gao. Integrating hadoop and parallel dbms.
In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, pages 969–974. ACM, 2010.

[21] Yandong Wang and Cong Xu and Xiaobing Li and Weikuan Yu. JVM-
Bypass shuffling for hadoop acceleration. In 27th IEEE International
Parallel & Distributed Processing Symposium (IEEE IPDPS 2013),
Boston, USA, May 2013.

[22] Yandong Wang and Robin Goldstone and Weikuan Yu and Teng Wang.
Characterization and Optimization of Memory-Resident MapReduce on
HPC Systems. In 28th IEEE International Parallel & Distributed
Processing Symposium (IEEE IPDPS 2014), Phoenix, USA, May 2014.

[23] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica. Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling. In Proceedings of the 5th European
Conference on Computer Systems, EuroSys ’10, pages 265–278, New
York, NY, USA, 2010. ACM.

[24] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving mapreduce performance in heterogeneous environments. In
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08, pages 29–42, Berkeley, CA,
USA, 2008. USENIX Association.

270

