
TRIO: Burst Buffer Based I/O Orchestration

Teng Wang∗ Sarp Oral† Michael Pritchard‡ Bin Wang‡ Weikuan Yu∗

Florida State University∗ Oak Ridge National Lab† Auburn University‡

{twang,yuw}@cs.fsu.edu {oralhs}@ornl.gov {mjp0009,bwang}@auburn.edu

Abstract—The growing computing power on leadership HPC
systems is often accompanied by ever-escalating failure rates.
Checkpointing is a common defensive mechanism used by scien-
tific applications for failure recovery. However, directly writing
the large and bursty checkpointing dataset to parallel file systems
can incur significant I/O contention on storage servers. Such
contention in turn degrades bandwidth utilization of storage
servers and prolongs the average job I/O time of concurrent
applications. Recently burst buffers have been proposed as an
intermediate layer to absorb the bursty I/O traffic from compute
nodes to storage backend. But an I/O orchestration mechanism
is still desirable to efficiently move checkpointing data from
burst buffers to storage backend. In this paper, we propose a
burst buffer based I/O orchestration framework, named TRIO,
to intercept and reshape the bursty writes for better sequential
write traffic to storage servers. Meanwhile, TRIO coordinates the
flushing orders among concurrent burst buffers to alleviate the
contention on storage server. Our experimental results demon-
strated that TRIO could efficiently utilize storage bandwidth and
reduce the average job I/O time by 37% on average for data-
intensive applications in typical checkpointing scenarios.

I. INTRODUCTION

More complex natural systems such as weather forecasting

and earthquake prediction are being simulated on large-scale

supercomputers with a colossal amount of hardware and soft-

ware components. The unprecedented growth of system com-

ponents results in an ever-escalating failure rate. According to

a survey conducted on the 100,000-node BlueGene/L system at

Lawrence Livermore National Laboratory (LLNL) in 2009, the

system experienced a hardware failure every 7-10 days [18].

As a common defensive mechanism for failure recovery,

checkpointing dominates 75%-80% of the I/O traffic on current

High Performance Computing (HPC) systems [34, 7].

Though checkpointing is necessary for fault tolerance, it

can introduce significant overhead. For instance, a study from

Sandia National Laboratory predicts that a 168-hour job on

100,000 nodes with Mean Times Between Failures (MTBF)

of 5 years will spend 65% of its time in checkpointing [17].

A major reason is that during checkpointing applications

usually issue tens of thousands of concurrent write requests

to the underlying parallel filesystem (PFS). Since the number

of compute nodes is typically 10x∼100x more than those

on storage systems [32, 29], the excessive write requests to

each server incur heavy contention, which raises two per-

formance issues. First, when competing I/O requests exceed

the capabilities of each storage server, its bandwidth will

degrade [19]. Second, when multiple jobs compete to use the

storage server, checkpointing for mission-critical jobs can be

frequently interrupted by low-priority jobs. I/O requests from

small jobs may also be delayed due to concurrent accesses

from large jobs, prolonging the average I/O time [16].
Previous efforts to mitigate I/O contention generally fall

into two categories: client-side and server-side optimizations.

Client-side optimizations mostly resolve I/O contention in a

single application, by buffering the dataset in staging area [10,

30] or optimizing application’s I/O pattern [13]. Server-side

optimizations generally embed their solutions inside the stor-

age server, overcoming issues of contention by dynamically

coordinating data movement among servers [37, 14, 43].
Recently, the idea of Burst Buffers (BB) was proposed as an

additional layer with fast memory devices such as DRAM and

SSDs to absorb bursty I/O from scientific applications [22].

Many consider it as a promising solution of I/O contention

for next-generation computing platforms. With the mediation

of BBs, applications can directly dump their large checkpoint

datasets to BBs and minimize their direct interactions with

PFS. BBs can flush the data to PFS at a later point of time.

However, as existing solutions generally consider BBs as a

reactive intermediate layer to avoid applications’ direct inter-

actions with PFS, the issues of contention still remain when

checkpointing dataset is flushed from BBs to PFS. Therefore,

a proactive BB orchestration framework that mitigates the

contention on PFS carries great significance. Compared with

the client-side optimization, an orchestration framework on

BBs is able to coordinate I/O traffic between different jobs,

mitigating I/O contention at a larger scope. Compared with

the server-side optimization, an orchestration framework on

BBs can free storage servers from the extra responsibility of

handling I/O contention, making it portable to other PFSs.
In this work, we propose TRIO, a burst buffer orchestration

framework, to efficiently move large checkpointing dataset

to PFS. It is accomplished by two component techniques:

Stacked AVL Tree based Indexing (STI) and Contention-

Aware Scheduling (CAS). STI organizes the checkpointing

write requests inside each BB according to their physical

layout among storage servers and assists data flush operation

with enhanced sequentiality. CAS orchestrates all BB’s flush

operations to mitigate I/O contention. Taken together, our

contributions are three-fold.

• We have conducted a comprehensive analysis on two

issues that are associated with checkpointing operations

in HPC systems, i.e., degraded bandwidth utilization of

storage servers and prolonged average job I/O time.

• Based on our analysis, we propose TRIO to orchestrate

applications’ write requests that are buffered in BB for

enhanced I/O sequentiality and alleviated I/O contention.

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.38

194

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.38

194

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.38

194

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.38

194

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.38

194

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.38

194

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.38

194

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.38

194

2015 IEEE International Conference on Cluster Computing

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.38

194

Time(s) BTIO MPI-TILE-IO IOR AVG TOT
MultiWL 41 121.83 179.75 114.19 179.75
SigWL 9.79 72.28 161 81.02 161

TABLE I: The I/O Time of individual benchmarks when they

are launched concurrently (MultiWL) and serially (SigWL).

• We have evaluated the performance of TRIO using rep-

resentative checkpointing patterns. Our results demon-

strated that TRIO efficiently utilized storage bandwidth

and reduced average job I/O time by 37%.

The rest of this paper is organized as follows. Section II

analyzes the major issues restricting applications’ I/O perfor-

mance. Section III and IV present the design and implemen-

tation of TRIO. Section V evaluates the benefits of TRIO.

Related work and conclusions are discussed in Section VI and

Section VII.

II. MOTIVATION

In this section, we experimentally study two issues resulting

from I/O contention, namely, prolonged average job I/O time

and degraded storage server bandwidth utilization.

A. Experimental Environment

Testbed: Our study was conducted on the Titan supercom-

puter [4] at Oak Ridge National Laboratory (ORNL). Each

compute node contains a 16-core 2.2GHZ AMD Opteron 6274

(Interlagos) processor and 32 GB of RAM. These nodes are

connected to each other via Gemini high-speed interconnect.

The Spider II filesystem [33] serves as the backend storage

system for Titan. It is composed of two Lustre-based filesys-

tems [12]: Atlas1 and Atlas2, which provide 30 PB of storage

space and 1 TB/s of aggregated bandwidth. Files are striped

across multiple object storage targets (OSTs) using the default

stripe size of 1 MB and stripe count of four.

Benchmarks: We used multi-job workloads composed of

IOR [26], MPI-Tile-IO [5], and BTIO [42]. IOR is a flex-

ible benchmarking tool capable of emulating diverse I/O

access patterns. It was initially designed for measuring the

I/O performance of PFSs. MPI-Tile-IO utilizes a common

workload wherein multiple processes concurrently access a

dense two-dimensional dataset using MPI-IO. BTIO is derived

from computational fluid dynamics applications. It produces a

block-tridiagonal partitioning pattern on a three-dimensional

array across a square number of processes. Each process

dumps multiple Cartesian subsets of the entire data set during

its I/O phase. IOR and MPI-Tile-IO were configured to use N-

1 checkpointing pattern in which each process writes to a non-

overlapping, contiguous extent of a shared file, while BTIO

was configured to follow the N-N checkpointing pattern that

each process writes to a separate files. We dedicated 4, 8, and

16 nodes to run BTIO, MPI-Tile-IO and IOR, respectively.

In accordance with their requirements on minimum process

counts, 16 processes were launched on each node for both

BTIO and MPI-Tile-IO, while one process per node was

launched for IOR. We ran each test 15 times and the median

result was presented.

 0

 200

 400

 600

 800

 1000

 1 2 4 8 16 32

B
an

d
w

id
th

 (
M

B
/s

)

Number of Processes

Bandwidth

Fig. 1: The impact of increasing number of concurrent pro-

cesses to the bandwidth of a single OST.

B. Prolonged I/O Time under Contention

In general, PFS services I/O requests in a timely manner,

i.e., in a First-Come-First-Serve (FCFS) order, which results in

undifferentiated I/O service to concurrent jobs. This undiffer-

entiated I/O service can lead to prolonged I/O time. To emulate

its impact in multi-job environment, we ran BTIO, MPI-

Tile-IO and IOR concurrently but differentiated their output

data sizes as 13.27GB, 64GB and 128GB respectively. This

launch configuration is referred to as MultiWL. Competition

for storage was assured by striping all benchmark output files

across the same four OSTs. We compared their job I/O time

with that when these benchmarks were launched in a serial

order, which is referred to as SigWL.

The I/O time of the individual benchmarks are shown in

Table I as three columns, BTIO, MPI-TILE-IO and IOR,

respectively. The average and total I/O time of the three

benchmarks are shown in columns AVG and TOT. As we can

see, the average I/O time of MultiWL is 1.41× longer than

SigWL. This is because a job’s storage service was affected by

the contention from other concurrent jobs. And the contention

from large jobs can significantly delay the I/O of small jobs.

In our tests, the most affected benchmark was BTIO, which

generated the smallest workload, its I/O time in MultiWL was

4.18× longer than SigWL.

C. Degraded Bandwidth Utilization Due to Contention

On the storage server side, the aforementioned I/O con-

tention can degrade the effective bandwidth utilized by ap-

plications. A key reason for contention is that each process

can access multiple OSTs, and each OST is accessible from

multiple processes. Such N-N mapping poses two challenges:

first, each OST suffers from the competing accesses from

multiple processes; second, since the requests of each process

are distributed to multiple OSTs, each process is involved in

the competition for multiple OSTs. We used IOR benchmark

to analyze the impacts of both challenges. Similar to previous

experiment, one IOR process ran on each compute node.

To investigate the first challenge, we used an increasing

number of processes to concurrently write in total 32GB

data to a single OST. Each process wrote a contiguous,

nonoverlapping file segment. The result is exhibited in Fig. 1.

195195195195195195195195195

OST3 OS
OST1

OST4 OSS
OST2

OST3 OS
OST1

OST4 OST
OST2

OST3

OST1

OST4 OST

OST2

 (a): 1 OST (b): 2 OSTs (c): 4 OSTs

P1
P3 P4

P2 P1 P2
P3 P4

P1 P2
P3 P4

Fig. 2: Scenarios when individual writes are distributed to

different number of OSTs. “N OST” means that each process’s

writes are distributed to N OSTs.

The bandwidth first increased from 356MB/s with 1 process

to 574MB/s with 2 processes, then decreased constantly to

401MB/s with 32 processes, resulting in 30.1% bandwidth

degradation from 2 to 32 processes. The improvement from 1

to 2 processes was because the single-process I/O stream was

not able to saturate OST bandwidth. Specifically, each OST

was organized as RAID-6 arrays, yielding a raw bandwidth of

750MB/s [33]. When an I/O request was issued, it was relayed

multiple hops from peer compute nodes to I/O router, then

went through SION network, Object Storage Server (OSS)

and eventually arrived at OST. Despite of the high network

bandwidth along the critical path, the extra data copy and data

processing overhead at each hop caused additional delays [15].

Overall, the bandwidth utilization of one OST was 75.6%

when there were only two concurrent processes, but dropped

to 53.5% when there were 32 processes.

Our intuition suggested that contention from 2 to 32 pro-

cesses can incur heavy disk seeks; however, our lack of

privilege to gather I/O traces at the kernel level on ORNL’s

Spider filesystem prevented us from directly proving our

intuition. We repeated our experiments on our in-house Lustre

filesystem (running the same version as that on Spider) and

observed that up to 32% bandwidth degradation were caused

by I/O contention. By analyzing I/O traces using blktrace [1],

we found that disk access time accounted for 97.1% of the

total I/O time on average, indicating that excessive concurrent

accesses to OSTs can degrade the bandwidth utilization.

To emulate the second challenge, we distributed each IOR

process’s write requests to multiple OSTs. In our experiment,

we spread the write requests from each process to 1, 2, 4

OSTs, which are presented in Fig. 2 as 1 OST, 2 OSTs, 4

OSTs, respectively. We fixed the total data size as 128GB, the

number of utilized OSTs as 4, and measured the bandwidth

under the three scenarios using a varying number of processes.

The result is demonstrated in Fig. 3. The scenario of 1 OST

consistently delivered the highest bandwidth with the same

number of processes, outperforming 2 OSTs and 4 OSTs by

16% and 26% on average, respectively. This was because, by

��

����

�����

�����

�����

�����

�� �� �	�
�� 	�� ����

��
��

�
��
�	

��

�
��

������
��
���������

����� ������ ������

Fig. 3: Bandwidth when individual writes are distributed to

different number of OSTs.

localizing each process’s writes on 1 OST, each OST was

competed by fewer processes. Another interesting observation

is that the bandwidth under the same scenario (e.g. 1 OST)

degrades with more processes involved. This trend can be

explained by the impact of first issue as we measured in Fig. 1.

Based on our characterization, under a contentious environ-

ment where numerous processes concurrently access a smaller

number of OSTs, bandwidth can be more efficiently utilized by

localizing each process’s access on one OST (e.g. Fig. 2(a)),

and scheduling a proper number of processes to access each

OST (e.g. 2 in Fig. 1).

III. TRIO: A BURST BUFFER BASED ORCHESTRATION

The aforementioned two I/O performance issues result from

direct and eager interactions between applications and storage

servers. Many computing platforms, such as the supercomputer

Tianhe-2 [8] and the two future generation supercomputers

Coral [2] and Trinity [9], have introduced Burst Buffer (BB)

as an intermediate layer to mitigate these issues. Buffering

large checkpoint dataset in BB gives more visibility to the

I/O traffic, which provides a chance to intercept and reshape

the pattern of I/O operations on PFS. However, existing works

generally use BB as a middle layer to avoid applications’ direct

interaction with PFS [22], few works [40] have discussed

the interaction between BB and PFS, i.e. how to orchestrate

I/O so that large datasets can be efficiently flushed from

BB to PFS. To this end, we propose TRIO, a burst buffer-

based orchestration framework, to coordinate the I/O traffic

from compute nodes to BB and to storage servers. In the

rest of the section, we first highlight the main idea of TRIO

through a comparison with a reactive data flush approach

for BB management; then we detail two key techniques in

Section III-B and Section III-C.

A. Main Idea of TRIO

Fig. 4(a) illustrates a general framework of how BBs interact

with PFS. On each Compute Node (CN), 2 processes are

checkpointing to a shared file that is striped over 2 storage

servers. A1, A2, A3, A4, B5, B6, B7 and B8 are contiguous

file segments. These segments are first buffered on the BB

196196196196196196196196196

A1 A3 B5 B� A2 A4 B6 B8

Legend

A1 File Segment

A2
A1

A4
A3

��������	 �������
	

Compute Node-A

B6
B5

B8
B7

��������	 �������
	

Compute Node-B

Data Flush

Time Time

(a) Burst buffer framework with data
flush.

B5

(b) Reactive data flush.

A1 A3 A2 A4 B7 B8 B5 B6

A2 A3 A4 A1

Burst Buffer-A

B5 B8 B6 B7

Burst Buffer-B

B7
A3
A1

B6
A4
B8
A2

Storage Server1 Storage Server2

Burst Buffer-A

interleaved
unordered

Burst Buffer-B

B7
B5
A3
A1

A4
A2
B8
B6

Storage Server1 Storage Server2

t1

t2 t2

sequential

(c) Proactive data flush with TRIO.

Storage Server1 Storage Server2
1

Flush Order
Server-Oriented Data

Organization using STI Flush Order

2

A3
A1

A4
A2

Server1 Server2

1 1

B7
B5

B8

Server1

2

2

Inter-BB Flush Order in TRIO

Flush first
 Flush second

B6

t1

Burst Buffer-A

Inter-BB Flush
 Ordering using CAS

Server2

Server-Oriented Data
Organization using STI

Burst Buffer-A Burst Buffer-B

Fig. 4: A conceptual example comparing TRIO with reactive data flush approach. In (b), Reactive data flush incurs unordered

arrival (e.g. B7 arrives earlier than B5 to Server1) and interleaved requests of BB-A and BB-B. In (c), Server-Oriented Data
Organization increases sequentiality while Inter-BB Flush Ordering mitigates I/O contention.

located on each CN during checkpointing, then flushed from

BB to two storage servers on PFS.

An intuitive strategy is to reactively flush the datasets to the

PFS as they arrive at the BB. Fig. 4(b) shows the basic idea of

such a reactive approach. This approach has two drawbacks.

First, directly flushing the unordered segments from each BB

can degrade the chance of sequential writes (We refer to this

chance as sequentiality). In Fig. 4(a), segments B5 and B7

are contiguously laid out on Storage Server 1, but they arrive

at BB-B out of order in Fig. 4(b). Due to reactive flushing,

B7 will be flushed earlier than B5, losing the opportunity to

retain sequentiality. Second, it suffers from the same server-

side contention resulting from N-N mapping in Section II-C.

As indicated by this figure, BB-A and BB-B concurrently flush

A4 and B8 to Server 2, so the two segments are interleaved,

their arrival order is against their physical layout on Server 2

(see Fig.4 (a)). This will degrade the bandwidth with frequent

disk seeks. In a multi-job environment, segments to a storage

server come from files of different jobs. Interleaved accesses

from different applications to the shared storage servers can

prolong the average job I/O time and delay the timely service

for mission-critical and small jobs as described in Section II-B.

In contrast to our analysis, we propose a proactive data flush

framework, named TRIO, to address these two drawbacks.

Fig. 4(c) gives an illustrative example of how it enhances the

sequentiality in flushed data stream and mitigates contention

on storage server side. Before flushing data, TRIO follows a

server-oriented data organization to group together segments to

each storage server and establishes an intra-BB flushing order

based on their offsets in the file. This is realized through a

server-oriented and stacked AVL Tree based Indexing (STI)

technique, which is elaborated in Section III-B. In this figure,

B5 and B7 in BB-B are organized together and flushed sequen-

tially, which enhances sequentiality on Server 1. Meanwhile,

localizing BB-B’s writes on Server 1 minimizes its interfer-

ence on Server 2 during this interval, which mitigates the

impact of N-N mapping as discussed in Section II-C. Similarly,

BB-A organizes A2, A4 together and flush them sequentially

to Server 2, minimizing its interference on Server 1. However,

contention can arise if both BB-A and BB-B flush to the

same servers. TRIO addresses this problem using a second

technique, Contention-Aware Scheduling (CAS), as discussed

in Section III-C. CAS establishes an inter-BB flushing order

that specifies which BB should flush to which server each time.

In this simplified example, BB-A flushes its segments to Server

1 and Server 2 in sequence, while BB-B flushes to Server 2

and Server 1 in sequence. In this way, during the time periods

t1 and t2, each server is accessed by a different BB, avoiding

contention. More details about these two optimizations are

discussed in the rest of this section.

B. Server-Oriented Data Organization via Stacked AVL-Tree
Based Indexing

As mentioned earlier, directly flushing unordered segments

to PFS can degrade I/O sequentiality on servers. Many state-

of-the-art storage systems apply tree-based indexing [35, 36]

to increase sequentiality. These storage systems leverage con-

ventional tree structures (e.g. B-Tree) to organize file segments

based on their locations on the disk. Sequential writes can be

enabled by in-order traversal of the tree.
Although it is possible to organize all segments in BB using

a conventional tree structure (e.g. indexing only by offset), it

will result in a flat metadata namespace. This cannot satisfy

the complex semantic requirements in TRIO. For instance, as

mentioned in Section III-A, sequentially flushing all the file

segments under a given storage server together is beneficial. To

accomplish this I/O pattern, BB needs to group all segments

197197197197197197197197197

��������

������
����������������� ������

������

������ ����
������� ����

����

offset1

offset2

offset3 ffset1
Data Store

Metadata
Indexing

Raw Data1 Raw Data2 Raw Data3

offse

Data Store

Burst Buffer

Fig. 5: Server-Oriented Data Organization with Stacked AVL

Tree. Segments of each server can be sequentially flushed

following in-order traversal of the tree nodes under this server.

on the same storage server together. Meanwhile, since these

segments can come from different files (e.g. File1, File2, File3

on Server 1 in Fig. 5), sequential flush requires BB to group

together segments of the same file and then order these seg-

ments based on the offset. Accomplishing the aforementioned

purpose using conventional tree structure requires a full tree

traversal to retrieve all the segments belonging to a given

server and group these segments for different files.

We introduce a technique called Stacked Adelson-Velskii

and Landis (AVL) Tree based Indexing (STI) [40] to address

these requirements. Like many other conventional tree struc-

tures, AVL tree [20] is a self-balancing tree that supports

lookup, insertion and deletion in logarithmic complexity. It

can also deliver an ordered node sequence following an in-

order traversal of all tree nodes. STI differs in that all the tree

nodes are organized in a stacked manner. As shown in Fig. 5,

this example of stacked AVL tree enables two semantics:

sequentially flushing all segments of a given file (e.g., offset1,

offset2, and offset3 of File1), and sequentially flushing all files

in a given server (e.g., File1, File2, and File3 of Server1).

The semantic of server-based flushing is stacked on top of the

semantic of file-based flushing. STI is also extensible for new

semantics (e.g. flushing all segments under a given timestamp)

by inserting a new layer (e.g. timestamp) in the tree.

The stacked AVL tree of each BB is dynamically built

during runtime. When a file segment arrives at BB, three types

of metadata that uniquely identify this segment are extracted:

server ID, file name, and offset. BB first looks up the first layer

(e.g. the layer of server ID in Fig. 5) to check if the server ID

already exists (it may exist if another segment belonging to

the same server has already been inserted). If not, a new tree

node is created and inserted in the first layer. Similarly, its file

name and offset are inserted in the second and third layers.

Once the offset is inserted as a new tree node in the third

layer (there is no identical offset under the same file because

of the append-only nature of checkpointing), this tree node is

associated with a pointer (see Fig. 5) that points to the raw

data of this segment in data store.

With this data structure, each BB can sequentially issue

all segments belonging to a given storage server by in-order

traversal of the subtree rooted at the server node. For instance,

flushing all segments to Server 1 in Fig. 5 can be accomplished

by traversing the subtree of the node “Server 1”, sequentially

retrieving and writing the raw data of all segments (e.g. raw

data pointed by offset1, offset2, offset3) of all the files (e.g.

file1, file2, file3). Once all the data in a given server is flushed,

all the tree nodes belonging to this server are trimmed.

Our current design for data flush is based on a general BB

use case. That is, after an application finishes one or multiple

rounds of computation, it dumps the checkpointing dataset

to BB, and begins next round of computation. Though we

use a proactive approach in reshaping the I/O traffic inside

BB, flushing checkpointing data to PFS is still driven by the

demand from applications. After flushing, storage space on

BB will be reclaimed entirely. We leave it as our future work

to investigate a more aggressive and automatically triggering

mechanism for flushing inside the burst buffer.

C. Inter-BB Ordered Flush via Contention-Aware Scheduling

Server-oriented organization enhances sequentiality by al-

lowing each BB to sequentially flush all file segments be-

longing to one storage server each time. However, contention

can arise when multiple BBs flush to the same storage server.

For instance, in Fig. 4(c), contention on Storage Server 2 can

happen if BB-A and BB-B concurrently flush their segments

belonging to Storage Server 2 without any coordination, lead-

ing to multiple concurrent I/O operations at Storage Server 2

within a short period. We address this problem by introducing

a technique called Contention-Aware Scheduling (CAS). CAS

orders all BBs’ flush operations to minimize competitions for

each server. For instance, in Fig. 4(c), BB-A flushes to Server

1 and Server 2 in sequence, while BB-B flushes to Server 2

and Server 1 in sequence. This ordering ensures that, within

any given time period, each server is accessed only by one BB.

Although the flushing order can be decided statically before all

BBs starts flushing, this approach needs all BBs to synchronize

before flushing and the result is unpredictable under real-world

workloads. Instead, CAS follows a dynamic approach, which

adjusts the order during flush in a bandwidth-aware manner.

1) Bandwidth-Oriented Data Flushing: In general, each

storage server can only support a limited number of concurrent

BBs flushing before its bandwidth is saturated. In this paper,

we refer to this threshold as α, which can be measured via

offline characterization. For instance, our experiment in Fig. 1

of Section II reveals that each OST on Spider II is saturated

by the traffic from 2 compute nodes; thus, setting α to 2

can deliver maximized bandwidth utilization on each OST.

Based on this bandwidth constraint, we propose a Bandwidth-

aware Flush Ordering (BFO) to dynamically order the flush

operations of each BB so that each storage server is being used

by at most α BBs. For instance, in Fig. 4(c), BB-A buffers

segments of Server 1 and Server 2. Assuming α = 1, it needs

to select a server that has not been assigned to any BB. Since

BB-B is flushing to Server 2 at time t1, BB-A picks up Server

1 and flushes the corresponding segments (A1, A3) to this

server. By doing so, the contention on Server 1 and Server

198198198198198198198198198

2 are avoided and consequently the two servers’ bandwidth

utilization is maximized.

A key question is how to get the usage information of

each server. BFO maintains this information via an arbitrator

located on one of the compute nodes. When a BB wants to

flush to one of its targeted servers, it sends a flushing request to

arbitrator. This request contains several pieces of information

about this BB, such as its job ID, job priority, and utilization.

The arbitrator then selects one from the targeted servers being

used by fewer than α BBs, returns its ID to BB, and increases

the usage of this server by 1. The BB then starts flushing all

its data to this server, and requests to flush to other targeted

servers. Arbitrator then decreases the usage of the old server by

1 and assigns another qualified server to this BB. When there

is no qualified BB, it temporarily queues the BB’s request.

2) Job-Aware Scheduling: In general, compute nodes

greatly outnumber storage servers, so there may be multiple

BBs being queued for flushing to the same storage server.

When this storage server becomes available, the arbitrator

needs to assign this storage server to a proper BB. A naive

approach to select a BB would be to follow FCFS. Since

each BB is allocated to one job along with its compute node,

treating BBs equally can delay service of critical jobs, and

prolong job I/O time of small jobs, an issue analyzed in

Section II-B. Instead, the arbitrator categorizes BBs based on

their job priorities and job sizes. It prioritizes the service for

BBs of high-priority jobs, including those that are important at

the beginning, or the ones that have higher criticality (e.g. the

usages of some BB in this job reach their capacity). Among

BBs with equal priority, it selects the one belonging to the

smallest jobs (e.g. jobs with smallest checkpointing data size)

to reduce average job I/O time.

IV. IMPLEMENTATION AND COMPLEXITY ANALYSIS

We have built a proof-of-concept prototype of TRIO using

C with Message Passing Interface (MPI). To emulate I/O in

the multi-job environment, more than one communicators can

be created among all BBs, each corresponding to a disjoint

set of BBs involved in their mutual I/O tasks. The bursty

writes from all these sets are orchestrated by the arbitrator.

We also leverage STI (See Section III-B) to organize all the

data structures inside arbitrator for efficient and semantic-

based lookup and update. For instance, when a storage server

becomes available, the arbitrator needs to assign it to a waiting

BB that has data on it. This BB should belong to the job

with higher priority than other waiting BBs’ jobs. Under this

semantics, the profile of job, storage server, BB are stacked as

three layers on STI. Assuming a system with m BB-augmented

compute nodes and n storage servers, and each job uses k
compute nodes. At most this STI contains m/k+mn/k+mn
nodes, where m/k, mn/k, mn are respectively the number

of tree nodes in each layer. This means, for a system with

10000 compute nodes and 1000 storage servers, the number

of tree nodes is at most 20M, incurring less than 1GB storage

overhead. On the other hand, the time spent on arbitrator is

dominated by its communication with each BB. Existing high-

speed interconnects (e.g. QDR Infiniband) generally yield a

roundtrip latency lower than 10 μs for small messages (smaller

than 1KB) [28], this means a single arbitrator is able to handle

the requests from 105 BBs within 1 second. A a scalable

arbitration mechanism is presented in Section VII as one of

the future works.

V. EXPERIMENT EVALUATION

Our experiments were conducted on the Titan supercom-

puter [4], which uses Spider II as the backend Lustre filesys-

tem. More details on this platform can be found in Section II.

Of the 32GB memory on each compute node, we reserved

16GB as the burst buffer space. We evaluated TRIO against

the workload from IOR benchmark, which was presented in

Section II. Each test case was run 15 times for every data

point, the median result was presented.

As discussed in Section III-C, CAS mitigates contention

by restricting the number of concurrent BBs flushing to each

storage server to α. In all our tests, we set α to 2, thus limiting

the number of BBs on each OST to at most two. This was in

accordance with our characterization in Section II.

A. Overall Performance of TRIO

Fig. 6 demonstrates the overall benefit of TRIO under

competing workloads with an increasing number of IOR

processes. We compared the aggregated OST bandwidth of two

configurations. In the first configuration (shown in Fig. 6 as

NOTRIO), all the processes directly issued their write requests

to PFS. In the second configuration (shown in Fig. 6 as TRIO),

all processes’ write requests were buffered on the burst buffer

space and flushed to PFS using TRIO. N-1 and N-N patterns

(see Section II-A) were employed in both configurations. We

ran 16 processes on each compute node and stressed the

system by increasing the number of compute nodes involved

from 4 to 256. Each process wrote in total 1GB data. Both

request size and stripe size were configured as 1MB. I/O

competition of all processes was assured by striping each file

over the same four OSTs (default stripe count).

As we can see from Fig. 6, in both N-1 and N-N patterns,

bandwidth of NOTRIO dropped with increasing number of

processes involved. This was due to the exacerbated contention

from both intra-node and inter-node I/O traffic. By contrast,

TRIO demonstrated much more stable performance by opti-

mizing intra-node traffic using STI and inter-node I/O traffic

using CAS. The lower bandwidth observed with 4 nodes than

other node numbers in both TRIO-N-1 and TRIO-N-N cases

was due to OST bandwidth not being fully utilized (4 BBs

were used to flush to 4 OSTs in these cases). Overall, on

average TRIO improved I/O bandwidth by 77% for N-1 pattern

and 139% for N-N pattern.

B. Dissecting Performance of TRIO

To gain more insight into the contributions of each technique

of TRIO, we incrementally analyzed its performance based

on the five configurations shown in Fig. 7. In NAIVE, each

199199199199199199199199199

��

����

�����

�����

	����

	����

� �� ��� �	� �
� �	�� 	���

��
��

�
��
��

	�

�

��

�����
��
�����

����������� ��������� ����������� ���������

Fig. 6: The overall performance of TRIO under both inter-node

and intra-node I/O traffic.

��

����

�����

�����

�����

	��� 	�	�

��
��

�
��
��

��

�	

�

	����� �����	�
����
�����	���� �����	����
�����	��	���

Fig. 7: Performance dissection of TRIO.

process directly wrote its data to PFS. In BUFFER-NOOP, all

processes’ write requests were buffered in BB and flushed

without any optimization, this configuration corresponds to

the reactive approach discussed in Section III-A. In BUFFER-

SEQ, all the buffered write requests were reordered according

to their offsets and flushed sequentially. In BUFFER-STI, all

the write requests were organized using STI, each time a

random OST was selected under the AVL tree and all write

requests that belong to this OST were sequentially flushed.

In BUFFER-TRIO, CAS was enabled on top of STI, which

restricted the number of concurrent flushing BBs on each OST

to 2, this configuration corresponds to the proactive approach

discussed in Section III-A. We evaluated the five configu-

rations using the workload of 8-node case (128 processes

write to 4 OSTs) in Fig. 6. In this case, TRIO reaped its

most benefits since the number of flushing BBs was twice the

number of OSTs.

As we can see from Fig. 7, simply buffering the dataset

in BUFFER-NOOP was not able to improve the performance

over NAIVE due to issues discussed in Section III-A. In con-

trast, the sequential flush order in BUFFER-SEQ significantly

outperformed NAIVE for both N-1 and N-N patterns. Inter-

estingly, although STI sequentially flushed the write requests

to each OST, it demonstrated no benefit over BUFFER-SEQ.

This is because, without controlling the number of flushing

BBs on each OST, each OST was flushed by an unbalanced

number of BBs, the benefits of localization and sequential

flush using STI were offset by prolonged contention on the

�

�

�

�

�

��

�

�

�

��

�

� �� ��� ��� �� ���� ����

��
��

�
��
�

��

��
��

������
��
�����

��������� ������� ��������� �������

Fig. 8: The bandwidth of TRIO under I/O contention with

increasing number of processes.

overloaded OSTs. This issue was alleviated when CAS was

enabled in BUFFER-TRIO: by placing 2 BBs on each OST

and localizing their flush, the bandwidth of each OST was

more efficiently utilized than BUFFER-SEQ.

C. Alleviating Inter-Node Contention using CAS

To evaluate TRIO’s ability to sustain inter-node I/O con-

tention using CAS, we placed 1 IOR process on each node

and had each process dump a 16GB dataset to its local BB,

these datasets were flushed to the PFS using TRIO. Such

configurations for N-1 and N-N are referred to as TRIO-N-

1 and TRIO-N-N respectively. For comparison, we had each

IOR process dump its 16GB in-memory data directly to the

underlying PFS. Such configurations for the two patterns are

referred to as NOTRIO-N-1 and NOTRIO-N-N respectively.

Contention for both patterns was assured by striping all files

over the same 4 OSTs.

Fig. 8 reveals the bandwidth of both TRIO and NOTRIO

with an increasing number of IOR processes. In N-1 case,

the bandwidth of TRIO first grew from 1.4GB/s with 4

processes to 1.7GB/s with 8 processes, then stabilized around

1.8GB/s. The stable performance with more than 8 processes

occurred because TRIO scheduled 2 concurrent BBs on each

OST. Therefore, even under heavy contention, each OST was

being used by 2 BBs that consumed most OST bandwidth.

In contrast, the bandwidth of NOTRIO peaked at 1.4GB/s

with 8 processes, then dropped to 1.1GB/s with 256 processes.

This accounted for only 60% of the bandwidth delivered by

TRIO with 256 processes. This bandwidth degradation resulted

from the inter-node contention generated by larger numbers of

processes. Overall, by mitigating contention, TRIO delivered

a 35% bandwidth improvement over NOTRIO on average.

We also observed similar trends for TRIO and NOTRIO

in N-N case: the bandwidth of TRIO ascended from 1.5GB/s

with 4 processes to 2.1GB/s with 8 processes, then stabilized

from this point on. The bandwidth of NOTRIO kept dropping

as more processes were involved. These performance trend

resulted from the same reasons as discussed for N-1 case.

200200200200200200200200200

 0.5
 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

 2 4 8 16 32 64 128

I/O
 B

an
d

w
id

th
 (

G
B

/s
)

Stripe Count

NOTRIO_N_1
NOTRIO_N_N
TRIO_N_1
TRIO_N_N

Fig. 9: Bandwidth of TRIO with increasing stripe count.

D. Performance of CAS with More OSTs

Sometimes applications tend to stripe their files over a

large number of OSTs to utilize more resources. Though

utilizing more OSTs can deliver higher bandwidth, writing

in a conventional manner that issues write requests to servers

in a round-robin manner can distribute each write request to

more OSTs, incurring wider contention and preventing I/O

bandwidth from further scaling. We emulated this scenario

by striping each file over an increasing number of OSTs and

using double the number of IOR processes to write on these

OSTs. Contention for both N-1 and N-N patterns was assured

by striping each file over the same set of OSTs.

Fig. 9 compares the bandwidth of TRIO and NOTRIO

under this scenario. It can be observed that the bandwidth

of NOTRIO-N-1 increased sublinearly from 0.81GB/s with

a stripe count of 2 to 27GB/s with a stripe count of 128.

In contrast, the bandwidth of TRIO increased with a much

faster speed, resulting in on average a 38.6% improvement

over NOTRIO. A similar trend was observed with the N-N

checkpointing pattern. By localizing the writes of each BB on

one OST each time and assigning the same number of BBs to

each OST, CAS minimized the interference between different

processes, thereby better utilizing the bandwidth. Sometimes

localization may not help utilize more bandwidth. For instance,

when the number of available OSTs is greater than the number

of flushing BBs, localizing on one OST may underutilize the

supplied bandwidth. We believe a similar approach can also

work for these scenarios. For instance, we can assign multiple

OSTs to each BB, with each BB only distributing its writes

among the assigned OSTs to mitigate interference.

E. Minimizing Average Job I/O Time using CAS

As mentioned in Section III-C, TRIO reduces average job

I/O time by prioritizing small jobs. To evaluate this feature,

we grouped 128 processes into 8 jobs, each with 16 processes,

and place 1 process on each node. We had each process

dump its dataset to its local BB and coordinated the data

flush using TRIO. When multiple BBs requested the same

OST, TRIO selected a BB via the Shortest Job First (SJF)

algorithm, which first served a BB belonging to the smallest

job. This configuration is shown in Fig. 10 as TRIO SJF. For

comparison, we applied FCFS in TRIO to select a BB. This

configuration served the first BB requesting this OST first, and

��

���

���

���

���

����

����

���� ���� ���� ����

��
��
��
�

��
	

��

�

�
��
�

��������
���
	�

�	
��	�
��	�����
��	����

Fig. 10: Comparison of Average I/O Time.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200
C

D
F

 o
f

T
im

e
(%

)
Time (sec)

TRIO_FCFS
TRIO_SJF
NOTRIO

Fig. 11: The CDF of Job Response Time

we refer to it as TRIO FCFS. We also included the result of

having each process directly write its dataset to PFS, which

we refer to as NOTRIO. We varied the data size such that

each process in the next job wrote a separate file whose size

was twice that of the prior job. Following this approach, each

process in the smallest job wrote a 128MB file, and each

process in the largest job wrote a 16GB file. To enable resource

sharing, we striped the file so that each OST was shared by

all 8 jobs. We increased the ratio of the number of processes

over the number of OSTs to observe scheduling efficiency

under different workloads.

Fig. 10 reveals average job I/O time for all the three cases.

Workload 1 (WL1), WL2, WL3, and WL4 refer to scenarios

when the number of processes was 2, 4, 8, and 16 times

the number of OSTs, respectively. The average I/O time of

TRIO SJF was the shortest for all workloads, accounting

for on average 57% and 63% of TRIO FCFS and NOTRIO,

respectively. We also observed that the I/O time of TRIO SJF

increased with growing workloads at a much slower rate than

the other two. This was because, with the heavier workload,

each OST absorbed more data from each job. This gave SJF

more room for optimization. Another interesting phenomenon

was that TRIO FCFS demonstrated no benefit over NOTRIO

in terms of the average I/O time. This was because, using

TRIO FCFS, once each BB acquired an available OST from

the arbitrator, it drained all of its data on this OST. Since FCFS

is unaware of large and small jobs, it is likely that the requests

from the large job were scheduled first on a given OST. The

small job requesting the same OST could only start draining its

201201201201201201201201201

��

���

����

����

����

����

���� ���� ���� ����

��
��
�
�
��

�
	

�

�
��
�

��������
���
��

�	
��	�
��	�����
��	����

Fig. 12: Comparison of Total I/O Time

data after the large job finished. This monopolizing behavior

significantly delayed small jobs’ I/O time.

For a further analysis, we also plotted the cumulative

distribution functions (CDF) of job response time with WL4

as shown in Fig. 11, it is defined as the interval between the

arrival time of first request of the job at the arbitrator and the

time when the job completes its I/O task. By scheduling small

jobs first, 7 out of 8 jobs in TRIO-SJF were able to complete

their work within 80 seconds. By contrast, jobs in TRIO-FCFS

and NOTRIO completed at much slower rates.

Fig. 12 shows the total I/O time of draining all the jobs’

datasets. There was no significant distinction between TRIO-

FCFS and TRIO-SJF because, from OST’s perspective, each

OST was handling the same amount of data for the two cases.

By contrast, I/O time of NOTRIO was longer than the other

two due to contention. The impact of contention became more

significant under larger workloads.

VI. RELATED WORK

I/O Contention: In general, research around I/O contention

falls into two categories: client-side and server-side optimiza-

tion. In client-side optimization, processes involved in the

same job collaboratively coordinate their access to the PFS to

mitigate contention. Abbasia et al. [10] and Nisar et al. [30]

addressed contention by delegating the I/O of all processes

involved in the same application to a small number of compute

nodes. Chen et al. [13] and Liao et al. [31] mitigated I/O

contention in by having processes shuffle data in a layout-

aware manner. These mechanisms have been widely adopted

in existing I/O middlewares, such as ADIOS [27, 25] and MPI-

IO [38]. Server-side optimization embeds some I/O control

mechanisms on the server side. Dai et al. [14] designed an

I/O scheduler that dynamically places write operations among

servers to avoid congested servers. Zhang et al. [14] proposed

a server-side I/O orchestration mechanism to mitigate interfer-

ence between multiple processes. Liu et al. [24] researched a

low level caching mechanism that optimizes the I/O pattern on

hard disk drives. Different from these works, we address I/O

contention issues using BB as an intermediate layer. Compared

with client-side optimization, an orchestration framework on

BB is able to coordinate I/O traffic between different jobs,

mitigating I/O contention at a larger scope. Compared with

the server-side optimization, an orchestration framework on

BB can free storage servers from the extra responsibility of

handling I/O contention, making it portable to other PFSs.

Burst Buffer: The idea of BB was proposed recently to cope

with the exploding data pressure in the upcoming exascale

computing era. Two of the largest next-generation HPC sys-

tems, Coral [2] and Trinity [9], are designed with BB support.

The SCR group is currently trying to strengthen the support

for SCR by developing a multi-level checkpointing scheme on

top of BB [6]. DataDirect Networks is developing the Infinite

Memory Engine (IME) [3] as a BB layer to provide real-

time I/O service for the scientific applications. Most of these

works use BB as an intermediate layer to avoid application’s

direct interaction with PFS. The focal point of our work is the

interaction between BB and PFS. Namely, how to efficiently

flush data to PFS.

Inter-Job I/O Coordination: Compared with the numerous

research works on intra-job I/O coordination, inter-job coor-

dination has received very limited attention. Liu et al. [23]

designed a tool to extract the I/O signatures of various jobs to

assist the scheduler in making optimal scheduling decisions.

Dorier et al. [16] proposed a reactive approach to mitigate

I/O interference from multiple applications by dynamically

interrupting and serializing application’s execution upon per-

formance decrease. Our work differs in that it coordinates

inter-job I/O traffic in a layout-aware manner to both avoid

bandwidth degradation and minimize average job I/O time

under contention.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have analyzed performance issues of

checkpointing operations on HPC systems: prolonged average

job I/O time and degraded storage server bandwidth utilization.

Accordingly, we have designed a burst buffer based orchestra-

tion framework, named TRIO, to reshape I/O traffic from burst

buffer to PFS. By increasing intra-BB write sequentiality and

coordinating inter-BB flushing order, TRIO efficiently utilized

storage bandwidth and reduced average job I/O time by 37%

in the typical checkpointing patterns.

We plan our future work to strengthen the current design

in three aspects. First, existing framework uses one arbitrator

for orchestration, which limits its scalability. So one focus is

to distribute the responsibility of the arbitrator to a number of

BBs. This can be accomplished by partitioning storage servers

into disjoint sets and assigning one arbitrator to orchestrate

the I/O requests to each set. Second, existing framework is

designed to handle large, sequential checkpointing workload,

which is not favored by small or noncontiguous checkpointing

workload. We believe the latter can be resolved by introducing

additional support on top of existing framework [11, 41, 21,

39]. Third, we will investigate an aggressive mechanism that

can automatically flush the data based on their utilization.

Acknowledgments

This research is sponsored in part by the Office of Advanced

Scientific Computing Research; U.S. Department of Energy

202202202202202202202202202

and performed at the Oak Ridge National Laboratory, which

is managed by UT-Battelle, LLC under Contract No. DE-

AC05-00OR22725 and resources of the Oak Ridge Leadership

Computing Facility, located in the National Center for Com-

putational Sciences at Oak Ridge National Laboratory. This

work is also funded in part by an Alabama Innovation Award

and National Science Foundation awards 1059376, 1320016,

1340947, and 1432892.

REFERENCES

[1] blktrace. http://linux.die.net/man/8/blktrace.
[2] CORAL. https://www.olcf.ornl.gov/summit.
[3] IME. http://www.ddn.com/products.
[4] Introducing Titan. http://www.olcf.ornl.gov/titan/.
[5] MPI-Tile-IO. http://www.mcs.anl.gov/research/projects.
[6] SCR. https://computation.llnl.gov/project/scr.
[7] The ASC Sequoia Draft Statement of Work. https://asc.llnl.gov/

sequoia/rfp/02 SequoiaSOW V06.doc.
[8] Tianhe-2. http://www.top500.org/system/177999.
[9] TRINITY. https://www.nersc.gov/assets/Trinity–NERSC-8-

RFP/Documents/trinity-NERSC8-use-case-v1.2a.pdf.
[10] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan,

and F. Zheng. Datastager: Scalable data staging services for
petascale applications. Cluster Computing, 13(3):277–290,
2010.

[11] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate. PLFS: A checkpoint
filesystem for parallel applications. In SC, 2009.

[12] P. J. Braam and R. Zahir. Lustre: A scalable, high performance
file system. Cluster File Systems, Inc, 2002.

[13] Y. Chen, X.-H. Sun, R. Thakur, P. C. Roth, and W. D. Gropp.
LACIO: A new collective I/O strategy for parallel I/O systems.
In IPDPS.

[14] D. Dai, Y. Chen, D. Kimpe, and R. Ross. Two-choice random-
ized dynamic I/O scheduler for object storage systems. In SC,
2014.

[15] D. A. Dillow, G. M. Shipman, S. Oral, Z. Zhang, and Y. Kim.
Enhancing I/O throughput via efficient routing and placement
for large-scale parallel file systems. In IPCCC, 2011.

[16] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, S. Ibrahim, et al.
CALCIOM: Mitigating I/O interference in hpc systems through
cross-application coordination. In IPDPS, 2014.

[17] K. Ferreira, R. Riesen, R. Oldfield, J. Stearley, J. Laros,
K. Pedretti, T. Kordenbrock, and R. Brightwell. Increasing fault
resiliency in a message-passing environment. Sandia National
Laboratories, Tech. Rep. SAND2009-6753, 2009.

[18] J. N. Glosli, D. F. Richards, K. Caspersen, R. Rudd, J. A.
Gunnels, and F. H. Streitz. Extending stability beyond cpu
millennium: a micron-scale atomistic simulation of kelvin-
helmholtz instability. In SC, 2007.

[19] Y. Kim, S. Atchley, G. R. Vallée, and G. M. Shipman. LADS:
optimizing data transfers using layout-aware data scheduling.
In FAST, 2015.

[20] D. E. Knuth. The Art of Computer Programming, Volume 3:
(2Nd Ed.) Sorting and Searching. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1998.

[21] J. Liu, B. Crysler, Y. Lu, and Y. Chen. Locality-driven high-
level I/O aggregation for processing scientific datasets. In IEEE
BigData, 2013.

[22] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider,

A. Crume, and C. Maltzahn. On the role of burst buffers in
leadership-class storage systems. In MSST, 2012.

[23] Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai. Automatic
identification of application I/O signatures from noisy server-
side traces. In FAST, 2014.

[24] Z. Liu, B. Wang, P. Carpenter, D. Li, J. S. Vetter, and W. Yu.
PCM-based durable write cache for fast disk I/O. In MASCOTS,
2012.

[25] Z. Liu, B. Wang, T. Wang, Y. Tian, C. Xu, Y. Wang, W. Yu,
C. A. Cruz, S. Zhou, T. Clune, et al. Profiling and improving
i/o performance of a large-scale climate scientific application.
In ICCCN, pages 1–7. IEEE, 2013.

[26] LLNL. IOR Benchmark. http://www.llnl.gov/asci/purple/
benchmarks/limited/ior.

[27] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable,
metadata rich IO methods for portable high performance IO. In
IPDPS, 2009.

[28] C. Mitchell, Y. Geng, and J. Li. Using one-sided RDMA reads
to build a fast, cpu-efficient key-value store. In USENIX ATC,
2013.

[29] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski.
Design, modeling, and evaluation of a scalable multi-level
checkpointing system. In SC, 2010.

[30] A. Nisar, W.-k. Liao, and A. Choudhary. Scaling parallel I/O
performance through I/O delegate and caching system. In SC,
2008.

[31] A. Nisar, W.-k. Liao, and A. Choudhary. Delegation-based I/O
mechanism for high performance computing systems. TPDS,
23(2):271–279, 2012.

[32] R. A. Oldfield, L. Ward, R. Riesen, A. B. Maccabe, P. Widener,
and T. Kordenbrock. Lightweight I/O for scientific applications.
In CLUSTER, 2006.

[33] S. Oral, D. A. Dillow, D. Fuller, J. Hill, D. Leverman, S. S.
Vazhkudai, F. Wang, Y. Kim, J. Rogers, J. Simmons, et al. Olcfs
1 TB/s, next-generation Lustre file system. In CUG, 2013.

[34] F. Petrini. Scaling to thousands of processors with buffered
coscheduling. In Scaling to New Heights Workshop, 2002.

[35] K. Ren and G. A. Gibson. TABLEFS: Enhancing metadata
efficiency in the local file system. In USENIX ATC, 2013.

[36] O. Rodeh, J. Bacik, and C. Mason. BTRFS: The linux B-tree
filesystem. TOS, 9(3):9, 2013.

[37] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang. Server-side
I/O coordination for parallel file systems. In SC, 2011.

[38] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective
I/O in ROMIO. In Frontiers of Massively Parallel Computation,
1999. Frontiers’ 99. The Seventh Symposium on the, pages 182–
189. IEEE, 1999.

[39] Y. Tian, Z. Liu, S. Klasky, B. Wang, H. Abbasi, S. Zhou,
N. Podhorszki, T. Clune, J. Logan, and W. Yu. A lightweight
I/O scheme to facilitate spatial and temporal queries of scientific
data analytics. In MSST, 2013.

[40] T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and
W. Yu. Burstmem: A high-performance burst buffer system
for scientific applications. In IEEE BigData, 2014.

[41] T. Wang, K. Vasko, Z. Liu, H. Chen, and W. Yu. Bpar: A
bundle-based parallel aggregation framework for decoupled I/O
execution. In DISCS, 2014.

[42] P. Wong and R. der Wijngaart. Nas parallel benchmarks i/o
version 2.4. NASA Ames Research Center, Moffet Field, CA,
Tech. Rep. NAS-03-002, 2003.

[43] X. Zhang, K. Davis, and S. Jiang. IOrchestrator: improving
the performance of multi-node I/O systems via inter-server
coordination. In SC, 2010.

203203203203203203203203203

