
Design and Evaluation of Network-Levitated
Merge for Hadoop Acceleration

Weikuan Yu, Member, IEEE, Yandong Wang, and Xinyu Que

Abstract—Hadoop is a popular open source implementation of the MapReduce programming model for cloud computing. However, it

faces a number of issues to achieve the best performance from the underlying systems. These include a serialization barrier that

delays the reduce phase, repetitive merges, and disk accesses, and the lack of portability to different interconnects. To keep up with

the increasing volume of data sets, Hadoop also requires efficient I/O capability from the underlying computer systems to process and

analyze data. We describe Hadoop-A, an acceleration framework that optimizes Hadoop with plug-in components for fast data

movement, overcoming the existing limitations. A novel network-levitated merge algorithm is introduced to merge data without

repetition and disk access. In addition, a full pipeline is designed to overlap the shuffle, merge, and reduce phases. Our experimental

results show that Hadoop-A significantly speeds up data movement in MapReduce and doubles the throughput of Hadoop. In addition,

Hadoop-A significantly reduces disk accesses caused by intermediate data.

Index Terms—Hadoop, MapReduce, network-levitated merge, Hadoop acceleration, cloud computing

Ç

1 INTRODUCTION

MAPREDUCE has emerged as a popular and easy-to-use
programming model for cloud computing [1]. It has

been used by numerous organizations to process explosive
amounts of data, perform massive computation, and extract
critical knowledge for business intelligence. Hadoop [2] is
an open source implementation of MapReduce, currently
maintained by the Apache Foundation, and supported by
leading IT companies such as Facebook and Yahoo!.
Hadoop implements MapReduce framework with two
categories of components: a JobTracker and many Task-
Trackers. The JobTracker commands TaskTrackers (a.k.a.
slaves) to process data in parallel through two main
functions: map and reduce. In this process, the JobTracker
is in charge of scheduling map tasks (MapTasks) and
reduce tasks (ReduceTasks) to TaskTrackers. It also moni-
tors their progress, collects runtime execution statistics, and
handles possible faults and errors through task reexecution.
Between the two phases, a ReduceTask needs to fetch a part
of the intermediate output from all finished MapTasks.
Globally, this leads to the shuffling of intermediate data (in
segments) from all MapTasks to all ReduceTasks. For many
data-intensive MapReduce programs, data shuffling can
lead to a significant number of disk operations, contending
for the limited I/O bandwidth. This presents a severe
problem of disk I/O contention in MapReduce programs,
which entails further research on efficient data shuffling
and merging algorithms.

A number of studies [3], [4], [5] have been carried out to
improve the performance of Hadoop MapReduce frame-
work. Condie et al. [4] have proposed the MapReduce Online
architecture to open up direct network channels between
MapTasks and ReduceTasks and speed up the delivery of
data from MapTasks to ReduceTasks. It remains as a critical
issue to examine the relationship of Hadoop MapReduce’s
three data processing phases, i.e., shuffle, merge, and
reduce, and their implication to the efficiency of Hadoop.

With an extensive examination of Hadoop MapReduce
framework, particularly its ReduceTasks, we reveal that the
original architecture faces a number of challenging issues to
exploit the best performance from the underlying system.
To ensure the correctness of MapReduce, no ReduceTasks
can start reducing data until all intermediate data have been
merged together. This results in a serialization barrier that
significantly delays the reduce operation of ReduceTasks.
More importantly, the current merge algorithm in Hadoop
merges intermediate data segments from MapTasks when
the number of available segments (including those that are
already merged) goes over a threshold. These segments are
spilled to local disk storage when their total size is bigger
than the available memory. This algorithm causes data
segments to be merged repetitively and, therefore, multiple
rounds of disk accesses of the same data (cf. Section 2.2).

To address these critical issues for Hadoop MapReduce
framework, we have designed Hadoop-A, a portable
acceleration framework that can take advantage of plug-in
components for performance enhancement and protocol
optimizations. Several enhancements are introduced: 1) a
novel algorithm that enables ReduceTasks to perform data
merging without repetitive merges and extra disk accesses;
2) a full pipeline is designed to overlap the shuffle, merge,
and reduce phases for ReduceTasks; and 3) a portable
implementation of Hadoop-A that can support both TCP/
IP and remote direct memory access (RDMA). Since
ReduceTasks are able to merge data by staying above local

602 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

. W. Yu is with the Department of Computer Science & Software
Engineering, Auburn University, 3101 Shelby Center, Auburn, AL
36849. E-mail: wkyu@auburn.edu.

. Y. Wang and X. Que are with the Department of Computer Science &
Software Engineering, Auburn University, 2105 Shelby Center, Auburn,
AL 36849. E-mail: {wangyd, xque}@auburn.edu.

Manuscript received 13 Aug. 2012; revised 2 Feb. 2013; accepted 10 Feb. 2013;
published online 27 Feb. 2013.
Recommended for acceptance by J. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-08-0727.
Digital Object Identifier no. 10.1109/TPDS.2013.59.

1045-9219/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

disks, we refer to this new algorithm as network-levitated
merge (NLM). We have carried out an extensive set of
experiments to evaluate the performance of Hadoop-A. Our
evaluation demonstrates that the network-levitated merge
algorithm is able to remove the serialization barrier and
effectively overlap data merge and reduce operations for
Hadoop ReduceTasks. Overall, Hadoop-A is able to double
the throughput of Hadoop data processing.

The rest of the paper is organized as follows. Section 2
provides the motivation. We describe the network-levitated
merge algorithm in Section 3, followed by the portable
implementation of Hadoop-A in Section 4. Section 5
provides experimental results. We then discuss our per-
spectives on Hadoop-A scalability in Section 6. Section 7
provides a review of related work. Finally, we conclude the
paper in Section 8.

2 MOTIVATION

Hadoop’s MapReduce implementation enables a conveni-
ent and easy-to-use data processing framework. An
overview is provided in the electronic appendix, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.59.
Our characterization and analysis reveal a number of
issues, including 1) the serialization between Hadoop
shuffle/merge and reduce phases, 2) repetitive merges
and disk access, and 3) the lack of portability to different
interconnects.

2.1 A Serialization in Hadoop Data Processing

Hadoop strives to pipeline the data processing. It is indeed
able to do so, particularly for map and shuffle/merge
phases. As shown in Fig. 1, after a brief initialization period,
a pool of concurrent MapTasks starts the map function on
the first set of data splits. As soon as Map Output Files (MOFs)
are generated from these splits, a pool of ReduceTasks starts
to fetch partitions from these MOFs. At each ReduceTask,
when the number of segments is larger than a threshold, or
when their total data size is more than a memory threshold,
the smallest segments are merged.

For the correctness of the MapReduce programming
model, it is necessary to ensure that the reduce phase does
not start until the map phase is done for all data splits.
However, the pipeline, as shown in Fig. 1, contains an
implicit serialization. At each ReduceTask, only until all its
segments are available and merged, will the reduce phase
start to process data segments via the reduce function. This
essentially enforce a serialization between the shuffle/
merge phase and the reduce phase. When there are many
segments to process (which is often the case), it takes a
significant amount of time for a ReduceTask to shuffle and

merge them. As a result, the reduce phase will be
significantly delayed. Our analysis has revealed that this
can increase the total execution time by nearly 40 percent
(cf. Table 2 for time dissection in the electronic appendix,
available in the online supplemental material).

2.2 Repetitive Merges and Disk Access

Hadoop ReduceTasks merge data segments when the
number of segments or their total size goes over a
threshold. A newly merged segment has to be spilled to
local disks due to memory pressure. However, the current
merge algorithm in Hadoop often leads to repetitive
merges, thus extra disk accesses. Fig. 2 shows a common
sequence of merge operations in Hadoop. For the purpose
of illustration, we use a very small threshold parameter
io.sort.factor ¼ 3. A ReduceTask fetches its data segments
and arranges them in the order of their size. When the
number of data segments reaches six, i.e., twice the
threshold, the smallest three segments are merged, shown
as Step 1 in Fig. 2. Under memory pressure, this will incur
disk access. The resulting segment is inserted back into the
heap based on its relative size.

When more segments arrive (as shown in Step 2), the
threshold is reached again. It is then necessary to merge
another set of segments, shown as Step 3. This again
causes additional disk access, let alone the need to read
segments back if they have been stored on local disks. As
even more segments arrive, a previously merged segment
will be grouped into another set and merged again, as
shown in Step 4. Furthermore, any segment merged from
a subset of segments eventually needs to be merged for
final results. Altogether, this means repetitive merges and
disk access, causing degraded performance for Hadoop.
Therefore, an alternative merge algorithm is critical for
Hadoop to mitigate the impact of repetitive merges and
extra disk accesses.

2.3 The Lack of Network Portability

Besides the TCP/IP protocol, Hadoop does not support
other transport protocols such as RDMA on InfiniBand [6]
and 10-Gigabit Ethernet (10GigE) that have matured in the
high-performance computing (HPC) community. Simply
replacing the network hardware with the latest interconnect
technologies such as InfiniBand and 10GigE and continuing
to run Hadoop on TCP/IP will not enable Hadoop to
leverage the strengths of RDMA. It is worth noting that
despite the high-price differential between RDMA-capable
interconnects and traditional commodity Gigabit Ethernets,
such price differences have shrunk significantly over the
past few years. Many popular commodity interconnects,

YU ET AL.: DESIGN AND EVALUATION OF NETWORK-LEVITATED MERGE FOR HADOOP ACCELERATION 603

Fig. 1. Serialization between shuffle/merge and reduce phases.

Fig. 2. An illustration of repetitive merges.

such as 10GigE, are becoming RDMA-capable as well. Thus,
the lack of portability on multiple interconnects will prevent
Hadoop from keeping up with the advances of other
computer technologies, particularly when more powerful
processors, storage, and interconnect devices are deployed
to various computing and data centers.

3 A NETWORK-LEVITATED PIPELINE OF SHUFFLE,
MERGE, AND REDUCE PHASES

To address the first two issues in Hadoop as mentioned in
Section 2, we describe a network-levitated merge algorithm
that avoids repeated merges and then detail the construc-
tion of a new pipeline to eliminate the serialization barrier.

3.1 Network-Levitated Merge

Hadoop resorts to repetitive merges because of limited
memory compared to the size of data. For each remotely
completed MOF, each ReduceTask invokes an HTTP GET
request to query the partition length, pull the entire data,
and store locally in memory or on disk. This incurs many
memory loads/stores and/or disk I/O operations. We
design an algorithm that can merge all data partitions
exactly once and, at the same time, stay levitated above local
disks. Fig. 3 shows our network-levitated merge algorithm.
The key idea is to leave data on remote disks until it is time
to merge the intended data records.

As shown in Fig. 3a, three remote segments S1, S2, and
S3 are to be fetched and merged. Instead of fetching them to
local disks, our new algorithm only fetches a small header
from each segment. Each header is especially constructed to
contain partition length, offset, and the first pair of
<key,val>. These <key,val> pairs are sufficient to construct
a priority queue (PQ) to organize these segments. More
records after the first <key,val> pair can be fetched as
allowed by the available memory. Because it fetches only a
small amount of data per segment, this algorithm does not
have to store or merge segments onto local disks. Instead of
merging segments when the number of segments is over a
threshold, we keep building up the PQ until all headers
arrive and are integrated. As soon as the PQ has been set
up, the merge phase starts. The leading <key,val> pair will
be the beginning point of merge operations for individual
segments, i.e., the merge point. This is shown in Fig. 3b.

Our algorithm merges the available <key,val> pairs in
the same way as is done in Hadoop. When the PQ is
completely established, the root of the PQ is the first
<key,val> pair among all segments. We extract the root
pair as the first <key,val> in the final merged data. Then,

we update the order of PQ based on the first <key,val>
pairs of all segments. The next root will be the first

<key,val> among all remaining segments. It will be
extracted again and stored to the final merged data. When

the available data records in a segment are depleted, our
algorithm can fetch the next set of records to resume the

merge operation. In fact, our algorithm always ensures that
the fetching of upcoming records happens concurrently

with the merging of available records. As shown in Fig. 3c,
the headers of all three segments are safely merged; more

data records are fetched, and the merge points are
relocated accordingly. Concurrent data fetching and mer-

ging continues until all records are merged. All <key,val>
records are merged exactly once and stored as part of the

merged results. Fig. 3d shows a possible state of the three
segments when their merge completes. Since the merge

data have the final order for all records, we can safely
deliver the available data to the Java-side ReduceTask

where it is then consumed by the reduce function. Further
details are available in the following section.

3.2 Pipelined Shuffle, Merge, and Reduce

Besides avoiding repetitive merges, our algorithm removes

the serialization barrier between merge and reduce. As
described in Section 3.1, the merged data have <key,val>

pairs ordered in their final order and can be delivered to the
Java-side ReduceTask as soon as they are available. Thus,

the reduce phase no longer has to wait until the end of the
merge phase.

In view of the possibility to closely couple the shuffle,

merge, and reduce phases, they can form a full pipeline as
shown in Fig. 4. In this pipeline, MapTasks map data split

as soon as they can. When the first MOF is available,
ReduceTasks fetch the headers and build up the PQ. These

activities are pipelined. Header fetching and PQ setup are
pipelined and overlapped with the map function, but they

are very lightweight, compared to shuffle and merge
operations. As soon as the last MOF is available, completed

PQs are constructed. The full pipeline of shuffle, merge,
and reduce then starts. One may notice that there is still a

serialization between the availability of the last MOF and
the beginning of this pipeline. This is inevitable in
order for Hadoop to conform to the correctness of the

MapReduce programming model. Simply stated, before all
<key,val> pairs are available, it is erroneous to send any

<key,val> pair to the reduce function (for final results)
because its relative order with future <key,val> pairs is yet

to be decided.

604 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Fig. 3. A network-levitated merge algorithm.
Fig. 4. Pipelined shuffle, merge, and reduce.

Therefore, our pipeline is able to shuffle, merge, and

reduce data records as soon as all MOFs are available. This

eliminates the previous serialization barrier in Hadoop and

allows intermediate results to be reduced as soon as

possible for final results.

4 PORTABLE HADOOP ACCELERATION THROUGH

NETWORK-LEVITATED MERGE

With the network-levitated merge algorithm, it is also

important to design an implementation that can enable

Hadoop Acceleration as a portable plug-in on different

interconnects without affecting existing Hadoop applica-

tions.

4.1 Software Architecture of Hadoop-A

Fig. 5 shows the architecture of Hadoop-A. Two new user-

configurable plug-in components, MOFSupplier and Net-

Merger, are introduced to leverage RDMA-capable inter-

connects and enable alternative data merge algorithms.

Both MOFSupplier and NetMerger are threaded C imple-

mentations. The choice of C over Java is to avoid the

overhead of the Java Virtual Machine (JVM) in data

processing and allow flexible choice of new connection

mechanisms such as RDMA, which is not yet available in

Java. A primary requirement of Hadoop-A is to maintain

the same programming and control interfaces for users. To

this end, we design the MOFSupplier and NetMerger plug-

ins as native C programs that can be launched by

TaskTrackers. A user can choose to enable or disable the

acceleration, which is controlled by a parameter in the

configuration file. Hadoop programs can run without any

change when the Hadoop-A plug-in is activated. Additional

implementation details are provided in the electronic

appendix, available in the online supplemental material.

4.2 Portable Implementation

Hadoop-A is designed to be portable, in which we have

developed an implementation that supports both the RDMA

protocol for interconnects such as InfiniBand, and the TCP/

IP protocol for ubiquitous Ethernet networks. Apart from

traditional TCP/IP protocol, InfiniBand Architecture de-

fines RDMA [7] that supports zero-copy data transfer.

Through RDMA, applications can directly access memory

buffers of remote processes so long as those buffers have to

be pinned during the communication.

The left half of Fig. 6 shows the communication stack
currently used for Hadoop data shuffling. When notified of
the completion of a MOF, Hadoop ReduceTasks invoke copy
threads to fetch their data partitions through Java-based
HTTP GET requests. On the server side, a Java-based HTTP
server is launched by every TaskTracker. A specific HTTP
servlet is attached to this server to handle HTTP GET
requests and serve data partitions from the MOF files
accordingly.

Hadoop-A allows us to introduce alternative commu-
nication protocols for data shuffling in Hadoop. To support
different interconnects, we design our data shuffling
protocol completely in the native C language, as shown
on the right of Fig. 6. The new implementation can transfer
data on top of both RDMA verbs and TCP/IP protocols. It
completely avoids the overhead of JVM for Hadoop data
shuffling. With this portable implementation, Hadoop-A
can run on both InfiniBand and Ethernet networks.

The transport protocol of Hadoop-A consists of a server
in the MOFSupplier and a client in the NetMerger. On the
client side, one thread is designed particularly to send
fetch/connection requests to remote servers; meanwhile,
multiple data threads are running concurrently to retrieve
data from remote servers. Correspondingly, on the server
side, one thread is dedicated to listening to the incoming
connection requests and delegates actual data transfer to
data threads.

We use the portable RDMA CM protocol for connection
establishment on RDMA networks and the socket connec-
tion protocol on TCP/IP networks. Once connected, clients
and servers communicate data through preallocated mem-
ory buffers. To constrain the total number of connections and
their memory consumption, we put a configurable threshold
(512 by default) on the number of active connections on any
interconnect. When the total number of connections reaches
this threshold, an old connection will be torn down before
establishing a new connection. Hadoop-A create connec-
tions on a per node basis. Compared to the original Hadoop,
which creates connections per Java Copier thread, our
connection model improves the scalability by several folds.
Nonetheless, running Hadoop-A across 1,000 s or 10,000 s of
nodes will lead to a host of challenging efficiency and
scalability issues, which we would like to pursue as our
future work.

5 EXPERIMENTAL RESULTS

We conduct our experiments on a cluster of 26 nodes. Each
node is equipped with dual-socket quad-core 2.13-GHz
Intel Xeon processors and 8 GB of DDR2 800-MHz
memory, along with 8x PCI-Express Gen 2.0 bus. Four
cores on a socket share 4-MB L2 cache. These nodes run

YU ET AL.: DESIGN AND EVALUATION OF NETWORK-LEVITATED MERGE FOR HADOOP ACCELERATION 605

Fig. 5. Software architecture of Hadoop-A.

Fig. 6. Portable data movement on different protocols.

Linux 2.6.18-164.el5 kernels. All nodes are equipped with
Mellanox ConnectX-2 QDR Host Channel Adaptors and
are connected to a 36-port InfiniBand QDR switch
providing up to 40-Gb/s full bisection bandwidth per
port. We use the InfiniBand software stack, OFED [8]
version 1.5.2, as released by Mellanox. Each node has two
250-GB, 7,200-RPM, Western Digital SATA hard drives.
The basic network performance results are provided in the
electronic appendix, available in the online supplemental
material. IPoIB (an emulated implementation of TCP/IP on
InfiniBand) provides standardized IP encapsulation over
InfiniBand links. Therefore, all applications that require
TCP/IP can continue to run without any modification.
Detailed description of IPoIB can be found in [9].

5.1 Benchmarks

In our evaluation experiments, we employ TeraSort and
WordCount benchmarks from the default Hadoop package.
TeraSort is a de facto standard Hadoop I/O benchmark, in
which the sizes of intermediate data and the final output are
as large as the input size. TeraSort generates a lot of
intermediate data and can expose the I/O bottleneck across
the Hadoop data processing pipeline. WordCount counts
the occurrence of words in the input data and generates
relatively smaller intermediate data. Besides experimental
results described here, additional results are also provided
in the electronic appendix, available in the online supple-
mental material.

5.2 Overall Performance

We run Hadoop TeraSort and WordCount programs with
different data sizes and different numbers of slave nodes.
We choose the data size per split as 256 MB. Each slave has
eight MapTasks and four ReduceTasks. Fig. 7 shows the
performance comparison between Hadoop-A and Hadoop
for TeraSort and WordCount programs (Hadoop-A is
evaluated with RDMA protocol). The Y -axis shows
the percentage of completion for map and reduce tasks.
The X-axis shows the progress of time during execution. As
shown in (a) and (b), Hadoop-A speeds up the total
execution time significantly for the TeraSort program, by

more than 47 percent compared to Hadoop over IPoIB or
GigE. WordCount, on the other hand, does not benefit
much from Hadoop-A because of the small size of its
intermediate data and low requirement on data movement,
as shown in (c) and (d). We focus on TeraSort for the rest of
the performance evaluation.

Fig. 7a shows that MapTasks of TeraSort complete
much faster with Hadoop-A, especially when the percen-
tage of completion goes over 50 percent. This is because
Hadoop-A only performs lightweight operations such as
fetching headers and setting up PQ, thereby leaving more
resources such as disk bandwidth for MapTasks. Note that
Hadoop reports the progress of ReduceTasks as soon as
data are being merged. Hadoop-A implements the same.
Because Hadoop-A waits until the completion of last MOF
before merge, this results in seemingly slow progress of
ReduceTasks in Hadoop-A. Hadoop-A still makes progress
on ReduceTasks. Once it begins reporting, its progress in
terms of percentage jumps up quickly, as shown in (b) and
(d) for TeraSort and WordCount, respectively.

5.3 Scalability of Hadoop-A

Being able to leverage more nodes to process large amounts
of data is an essential feature of Hadoop. We want to ensure
that Hadoop-A can deliver scalability in a similar manner.
So we measure the total execution time of TeraSort in two
scaling patterns: one with fixed amount of total data
(128 GB) and increasing number of nodes, and the other
with fixed data (4 GB) per ReduceTask and increasing
number of nodes. The aggregated throughput is calculated
by dividing the total size with the program execution time.

Fig. 8a shows the scalability comparison between
Hadoop-A and Hadoop with a fixed data size per node.
Both Hadoop and Hadoop-A can achieve linear scalability.
Hadoop-A can reduce the execution time by approximately
50 percent and, therefore, double the throughput. Fig. 8b
shows the scalability comparison between Hadoop-A and
Hadoop with a fixed size of total data. Again both Hadoop
and Hadoop-A can achieve good scalability. (The running
time of jobs are reduced by 60.6 and 51.5 percent when the
number of nodes increases from 10 to 20, in the case of
Hadoop and Hadoop-A, respectively.) Hadoop-A can
reduce the execution time by up to 40 and 43 percent,
compared to Hadoop on IPoIB and GigE, respectively.
Conversely, this results in a throughput improvement of
66.7 and 75.4 percent, respectively. These results adequately
demonstrate that Hadoop-A is able to efficiently accelerate
job execution, meanwhile achieve comparable scalability as
Hadoop for large-scale data processing.

606 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Fig. 7. Progress diagrams of TeraSort and WordCount.

Fig. 8. Hadoop-A scalability evaluation.

5.4 Performance on Multiple Disks

Slave nodes in a Hadoop cluster may be equipped
with multiple disks; therefore, Hadoop MapTasks and
ReduceTasks are designed to utilize the bandwidth of all
local disks. When several tasks (either MapTask or
ReduceTask) are running on the same node, their inter-
mediate data are spread among all disks in a round robin
manner. Thus, the I/O traffic to any single disk can be
greatly reduced. This can help shorten the wait time of I/O
requests. For this reason, Hadoop-A is also implemented
with multiple I/O threads to support data accesses to
multiple disks. Accordingly, we have measured the
performance of Hadoop and Hadoop-A when multiple
disks are used to store the intermediate data.

Fig. 9 shows the results of running TeraSort with
different input sizes on 16 slave nodes. Increasing the
number of disks can improve the performance of both
Hadoop and Hadoop-A. When two disks are used for
storing intermediate data, although the disk I/O bottleneck
problem is significantly alleviated in Hadoop, Hadoop-A is
still able to provide up to 21.9 percent better performance
for 256-GB data. In addition, we observe that the improve-
ment of Hadoop-A increases with bigger data size. This is
because bigger data size leads to more I/O requests, which
causes a more severe I/O bottleneck at the disk. Therefore,
Hadoop-A can exploit benefits from the network-levitated
merge algorithm.

In addition, we also notice that when multiple disks are
used to store intermediate data, it is inefficient to use only
one thread to read the data from all disks. This can cause
underutilization of some disks while others are busy.
Therefore, we implement multiple I/O threads to serve the
fetch requests in parallel. We measure the performance of
Hadoop-A when several threads are used within the
MOFSupplier. Fig. 9b shows that multiple I/O threads can
accelerate the processing of fetch requests and the improve-
ment can be up to 18 percent when eight threads are used.
However, for tests with only one disk, increasing the number
of threads has slightly degraded the performance. This is
because the only disk is already overloaded. More threads
actually introduce higher interferences among requests.
Overall, our experiments demonstrate that Hadoop-A is
capable of effectively utilizing multiple disks to improve the
performance of Hadoop clusters.

It is worth noting that adding more disks improves the
performance of Hadoop through reducing the disk I/O
contention. This applies to additional investment in other
resources as well besides an investment on disks. However,
our work is complementary to such hardware investments.

Hadoop-A not only makes good use of the network, but
also reduces the contention on disk bandwidth, thereby
increasing the efficiency of I/O.

5.5 Improvement on Disk Accesses

Hadoop-A aims to lift the data shuffling and merging above
disks for ReduceTasks through network-levitated merge
algorithm. It avoids fetching the intermediate data to local
disks. Instead, it leaves data on remote disks and only
fetches small-size headers that can be stored in memory. In
addition, the new merge algorithm sorts and merges all
<key, val> pairs in memory. To assess the effectiveness of
network-levitated merge, we have also measured the disk
accesses during data shuffling under Hadoop-A and
compared the results with that of Hadoop. We run TeraSort
on 20 slave nodes with 160 GB as input size; each slave node
has four MapTasks and two ReduceTasks. On each node,
we run vmstat and iostat to collect I/O statistics and trace
the output every 2 seconds.

Table 1 shows the comparison of the number of bytes
read and written by Hadoop and Hadoop-A into local disks
per slave node. Overall, Hadoop-A significantly reduces the
number of read blocks by 55.1 percent and write blocks by
37.6 percent. This effectively demonstrates that Hadoop-A
reduces the number of I/O operations and relieves the load
of underlying disks.

Fig. 10 shows the progressive profile of read and write
bytes during the job execution. During the first 200 seconds
in which MapTasks are active, there is no substantial
difference between Hadoop and Hadoop-A in terms of disk
I/O traffic. After the first 200 seconds, ReduceTasks start
fetching and merging the intermediate data actively.
Because Hadoop-A uses the network-levitated merge
algorithm that completely eliminates the disk access for
the shuffling and merging of data segments, we observe
that Hadoop-A effectively reduces the number of bytes read
from or written to the disks. Therefore, disk I/O traffic is
significantly reduced during this period.

When disk bandwidth is a scarce resource, high disk I/O
traffic can lead to long queuing time of I/O requests. This
degrades the performance of the original Hadoop. To
further analyze the benefit from the reduced disk accesses,

YU ET AL.: DESIGN AND EVALUATION OF NETWORK-LEVITATED MERGE FOR HADOOP ACCELERATION 607

Fig. 9. Tuning of I/O performance.

TABLE 1
I/O Blocks

Fig. 10. I/O improvement.

we measure the service time and wait time of I/O requests
for Hadoop and Hadoop-A. The service time is the time
taken to complete one I/O request and the wait time
includes an I/O request’s queuing time and its service time.
The result is shown in Fig. 11. A couple of I/O behaviors
can be observed from this figure. First, there is a big gap
between Hadoop’s service time and wait time, which
indicates that most I/O requests have spent a huge amount
of time waiting in the disk’s queue. Second, the I/O service
time is comparable between Hadoop and Hadoop-A. Fig. 11
shows that Hadoop-A leads to similar or lower I/O wait
time during the first 200 seconds, which corresponds to the
mapping phase of the execution. As the execution pro-
gresses, the I/O wait time of Hadoop-A is significantly
reduced when job enters into the shuffle/merge and reduce
phases. This demonstrates that the reduction of disk
accesses contributes to the reduction of I/O wait time.
Taken together, these experiments indicate that Hadoop-A
with network-levitated merge can effectively improve the
I/O performance in Hadoop, thereby effectively shortening
job execution time.

5.6 Performance Benefits of Network-Levitated
Merge and RDMA

To investigate the respective improvement brought by
network-levitated merge and RDMA, respectively, we
compare the performance of Hadoop-A with different
network protocols on InfiniBand. When running on top of
TCP/IP, performance improvement is mainly attributed to
the NLM. We compare the performance of Hadoop-A when
it is running on RDMA with that of running on IPoIB to
quantify the improvement introduced by RDMA. The
results are shown in Fig. 12.

As shown in the figure, on average, Hadoop-A on IPoIB
efficiently reduces the job execution time by 18.9 percent
when compared to Hadoop on IPoIB. This demonstrates
that NLM is effective at improving the performance of
Hadoop by reducing disk accesses on the ReduceTask side
and forming a pipelined shuffle, merge, and reduce phases.
Fig. 12 also shows that, by leveraging RDMA, Hadoop-A
can further lower the job execution time. Compared to
Hadoop-A on IPoIB, Hadoop-A on RDMA cuts down on
the execution time by 19.9 percent on average.

In addition, Fig. 12 also shows that running Hadoop-A
on 10-Gigabit Ethernet with TCP/IP achieves similar
performance as Hadoop-A on IPoIB.

6 DISCUSSION

In this section, we discuss our perspectives on the
scalability of Hadoop-A for very large data and on its
implications to network bandwidth and topology.

6.1 Memory Scalability

Although network-levitated merge is capable of efficiently
supporting most Hadoop production jobs (jobs with
�10 GB input make up �92 percent of total jobs [10]),
there is a potential issue of coping with extremely large data
sets. In the network-levitated merge algorithm, data are
fetched from the remote MOF and stored a block before
being merged to its staging buffer. So there must be at least
a memory buffer (Mb) per segment to keep up the merging
process. For a Hadoop application, the total number of
segments (N) is determined by the size of application’s data
set (S) and the size of a data split (B), i.e., N ¼ S

B . Thus, the
amount of memory (Mt) per PQ is then given by
Mt ¼Mb � S

B . Conversely, the application data size is given
by S ¼ Mt

Mb
�B. Because there are multiple ReduceTasks and

multiple PQs for one application, the available memory for
a PQ is then limited. Assuming Mt equals 4 GB, Mb 8 KB,
and B 256 MB, a simple back-of-the-envelope calculation
can demonstrate that the maximum supported data size is
128 TB for the network-levitated merge algorithm. This is
sufficient for many applications with tens of terabytes of
data. However, a key issue here is that the memory
requirement grows linearly (i.e., on the order of OðNÞ)
with respect to the number of segments. For future
applications with exascale data sets, the linear growth of
memory requirement does not promise good scalability.

For better scalability in the future, a hierarchical merge

algorithm is needed to organize memory buffers. Then, we

can activate the data shuffling for only one branch of the

tree and leave the other branch temporarily inactive, i.e., not

holding any data in memory. Fig. 13 shows a general idea

with a two-level tree organization. At the very bottom, a

linear array (called treeset) is used to sort the incoming

segments based on their size. Once the number of segments

goes over a threshold, the segments are moved into a leaf

priority queue (LPQ). More segments will lead to the

creation of more LPQs. After all segments have arrived, the

remaining segments in treeset are moved to the last LPQ.

All LPQs are then organized into a root priority queue

(RPQ), which merges data from LPQs into an additional

608 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Fig. 11. I/O request service and wait time. Fig. 12. Network-levitated merge and RDMA.

Fig. 13. Hierarchical merge for memory scalability.

staging buffer. The segments are spread into many small

LPQs. For simplicity, assuming that all LPQs and the RPQ

are of the same size, the number of segments in one LPQ

grows in the order of Oð
ffiffiffiffiffi
N
p
Þ. To keep the pipeline running

with overlapped fetching and merging, only one LPQ needs

to fetch data actively. Thus, the memory requirement

becomes Mt ¼
ffiffiffi
S
B

q
�Mb. With such a hierarchical organiza-

tion, the maximum supported data size for a single Hadoop

job can be calculated as 64 exabytes, using the same

numbers as before.
For even better scalability, a deeper hierarchy can be

exploited for merging the memory segments. However, a
hierarchical organization requires more memory copies.
While it can improve memory scalability, a two-level tree
hierarchy means that each <key, val> pair must be merged
twice: one in LPQ and another in RPQ. A deeper hierarchy
implies more memory copies. We deem it as a further
research topic to investigate the strengths and weaknesses
of the hierarchical merge algorithm and find a good trade-
off between the memory scalability and the cost of memory
copies. A prototype of hierarchical merge algorithm has
been designed and evaluated in [11].

6.2 Network Bandwidth and Topology

One may reasonably wonder that, since network-levitated
merge delays data shuffling, the time window in Hadoop-A
for shuffling could be possibly shorter than the original
Hadoop, causing a higher requirement on the network
bandwidth. This actually is not an issue because Hadoop-A
overlaps data shuffling with the reducing phase instead of
the mapping phase in the original Hadoop. While we
change the actual phase that is overlapped with data
shuffling, it does not alter the existence of concurrent disk
activities. For shuffling to complete, each <key, val> pair is
read from disk and copied in memory at least once. So,
depending on the relative performance between network I/
O and disk I/O, this may or may not cause a performance
issue. When a Hadoop cluster can provide sufficient
network bandwidth that is much higher than local disk
bandwidth, Hadoop-A can efficiently exploit the perfor-
mance of memory and network to eliminate the slow on-
disk merge process, thus accelerating the execution of
ReduceTask. On a cluster that is equipped with high-speed
storage devices (such as multiple SCSI or Flash disks that
are capable of more than 250 MB/sec) but low-bandwidth
networks (such as Gigabit Ethernet), the network perfor-
mance becomes the system bottleneck. In this case, both
Hadoop-A and the original Hadoop will be affected. The
only sound solution is to correct such imbalance of system
resources and relieve the bottleneck on network bandwidth.

A more common situation on networked systems is the
presence of network links that connect multiple switches
together. Hadoop-A is not aimed to address the problem
in a hierarchical network environment. The same chal-
lenge applies to the original Hadoop, particularly at the
cross-switch links. A solution that can address the bottle-
necks at the cross-switch links needs to be aware of the
network topology, and design a shuffle/merge algorithm
that can avoid overloading such cross-switch links. For
example, CamDoop [12] is a recent attempt to perform

topology-aware network aggregation of intermediate data
for the CamCube network (a direct-connected 3D torus
network constructed). It has shed light on intriguing issues
that are yet to be investigated for hierarchical networks
(such as Ethernet or InfiniBand) that consist of many
switches connected by cross-switch links. We consider a
topology-aware shuffle/merge algorithm as a very inter-
esting topic to address in future studies and not in the
scope of this work.

7 RELATED WORK

MapReduce is a programming model for large-scale
arbitrary data processing. To fully take advantage of the
multicore and multiprocessor systems, Ranger et al. [13]
designed Phoenix, a MapReduce implementation for
shared-memory systems. In Phoenix, users only need to
write simple parallel code without considering the complex-
ity of thread creation, dynamic task scheduling, data
partitioning, and fault tolerance across processor nodes.
Kaashoek et al. [14] then designed a new MapReduce library
with a compromise data structure, which outperforms its
simpler peers, including Phoenix. Tiled-MapReduce de-
signed by Chen et al. [15] further improves the Phoenix by
leveraging the tiling strategy that is commonly used in
complier community. It divides a large MapReduce job into
multiple discrete subjobs and extends the Reduce phase to
process partial map output. By meticulously reusing
memory and threads, Tiled-MapReduce achieves consider-
able speedup over Phoenix. But our work is completely
different from these works in three aspects. First, we aims to
improve the Hadoop MapReduce that is designed for large-
scale clusters instead of for single machine with multicores.
Second, our optimization strategy is to reduce the contention
over disk I/O instead of cache and shared data structures.
Third, we consider the impact of high-performance inter-
connects over Hadoop MapReduce. It is also worth
mentioning that although Tiled-MapReduce introduces a
strategy to pipeline multiple subjobs on each core, such
interjob pipelining optimization is in stark contrast with our
shuffle/merge/reduce interphase pipelining.

Several studies were published on tuning the perfor-
mance of MapReduce. These include [3], [16], [17] that
tuned different parameters of Hadoop MapReduce for
performance improvements. Jiang et al. [3] conducted a
comprehensive performance study of MapReduce (Ha-
doop), concluding that the total performance could be
improved by a factor of 2.5 to 3.5 by carefully tuning the
factors, including: I/O mode, indexing, data parsing,
grouping schemes, and block-level scheduling. Herodotou
and Babu [18] designed a cost-based optimizer with
performance knobs to help choose better Hadoop config-
urations. Zaharia et al. [5] proposed a new scheduling
algorithm, Longest Approximate Time to End (LATE), for
environments with heterogeneous server configurations.
Ananthanarayanan et al. [19] proposed Mantri to monitor
tasks and cull outliers for better job completion time and
later proposed Scarlett [20] to replicate data blocks to
alleviate hotspots. Jahani et al. [21] applied compiler
techniques for Hadoop optimizations. But none of these
works investigated the I/O problem caused by MapReduce

YU ET AL.: DESIGN AND EVALUATION OF NETWORK-LEVITATED MERGE FOR HADOOP ACCELERATION 609

data shuffling. Our work takes on a different perspective to
investigate new strategies for efficient data shuffling and
merging in MapReduce, relieving its I/O contention. Li
et al. [22] introduce MR-hash and Inc-hash to eliminate the
repetitive merge problem, thus improving the I/O effi-
ciency. However, their solution still requires heavy disk I/O
within ReduceTask for large key space.

Leveraging RDMA for high-speed data movement has
been very popular in various programming models and
storage paradigms. Liu et al. [23] designed RDMA-based
MPI over InfiniBand. Sur et al. [24] evaluated Hadoop
Distributed File system over InfiniBand [6] through using
socket direct protocol (SDP) and IPoIB protocols. The same
group also leveraged RDMA to accelerate memcached [25].
Our acceleration framework uses both RDMA and TCP/IP
protocols, and complements previous efforts to enable
RDMA for Hadoop to process large data sets.

8 CONCLUSIONS

We have examined the design and architecture of Hadoop’s
MapReduce framework in great detail. Particularly, our
analysis has focused on data processing inside ReduceTasks.
We reveal that there are several critical issues faced by the
existing Hadoop implementation, including its merge algo-
rithm, its pipeline of shuffle, merge, and reduce phases, as
well as its lack of portability for multiple interconnects. We
have designed and implemented Hadoop-A as an extensible
acceleration framework that can allow plug-in components to
address all these issues. By introducing a new network-
levitated algorithm that merges data without touching disks
and designing a full pipeline of shuffle, merge, and reduce
phases for ReduceTasks, we have successfully accomplished
an accelerated Hadoop framework, Hadoop-A. In addition,
Hadoop-A has been designed as a portable framework that
can run on both high-performance RDMA protocol and
ubiquitous TCP/IP protocol. Our experimental results
demonstrate that Hadoop-A doubles the data processing
throughput of Hadoop, and that Hadoop-A is capable of
effectively utilizing multiple threads to read data from
multiple disks. Because of the use of network-levitated merge
algorithm, it can significantly reduce disk accesses during
Hadoop’s shuffling andmerging phases, therebyspeeding up
data movement. Furthermore, we have quantified the
performance benefits of network-levitated merge and the
RDMA protocol, respectively, on the Hadoop MapReduce.

ACKNOWLEDGMENTS

This work is funded in part by a Mellanox grant to Auburn
University, and by National Science Foundation awards
CNS-1059376.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Proces-
sing on Large Clusters,” Proc. Sixth Symp. Operating System Design
and Implementation (OSDI ’04), pp. 137-150, Dec. 2004.

[2] Apache Hadoop Project, http://hadoop.apache.org/, 2013.
[3] D. Jiang, B.C. Ooi, L. Shi, and S. Wu, “The Performance of

MapReduce: An In-Depth Study,” Proc. VLDB Endowment, vol. 3,
no. 1, pp. 472-483, 2010.

[4] T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein, K. Elmeleegy,
and R. Sears, “MapReduce Online,” Proc. Seventh USENIX Symp.
Networked Systems Design and Implementation (NSDI), pp. 312-328,
Apr. 2010.

[5] M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, and I. Stoica,
“Improving MapReduce Performance in Heterogeneous Environ-
ments,” Proc. Eighth USENIX Symp. Operating Systems Design and
Implementation (OSDI ’08), Dec. 2008.

[6] Infiniband Trade Association, http://www.infinibandta.org.
2013.

[7] R. Recio, P. Culley, D. Garcia, and J. Hilland, “An RDMA Protocol
Specification (Version 1.0),” Oct. 2002.

[8] Open Fabrics Alliance, http://www.openfabrics.org. 2013.
[9] IP over InfiniBand (IPoIB), http://www.ietf.org/wg/concluded/

ipoib.html, 2013.
[10] Y. Chen, S. Alspaugh, and R.H. Katz, “Interactive Query

Processing in Big Data Systems: A Cross Industry Study of
MapReduce Workloads,” Technical Report UCB/EECS-2012-37,
EECS Dept., Univ. of California, Berkeley, Apr. 2012.

[11] X. Que, Y. Wang, C. Xu, and W. Yu, “Hierarchical Merge for
Scalable MapReduce,” Proc. Workshop Management of Big Data
Systems (MBDS ’12), pp. 1-6, 2012.

[12] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea, “Camdoop:
Exploiting in-Network Aggregation for Big Data Applications,”
Proc. Ninth USENIX Conf. Networked Systems Design and Imple-
mentation (NSDI ’12), p. 3, 2012.

[13] C. Ranger, R. Raghuraman, A. Penmetsa, G.R. Bradski, and C.
Kozyrakis, “Evaluating MapReduce for Multi-Core and Multi-
processor Systems,” Proc. IEEE 13th Int’l Symp. High Performance
Computer Architecture (HPCA ’07), pp. 13-24, 2007.

[14] Y. Mao, R. Morris, and F. Kaashoek, “Optimizing MapReduce for
Multicore Architectures,” Technical Report MIT-CSAIL-TR-2010-
020, Massachusetts Inst. of Technology, May 2010.

[15] R. Chen, H. Chen, and B. Zang, “Tiled-MapReduce: Optimizing
Resource Usages of Data-Parallel Applications on Multicore with
Tiling,” Proc. 19th Int’l Conf. Parallel Architectures and Compilation
Techniques (PACT ’10), pp. 523-534, 2010.

[16] S. Babu, “Towards Automatic Optimization of MapReduce
Programs,” Proc. First ACM Symp. Cloud Computing (SoCC ’10),
pp. 137-142, 2010.

[17] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: Locality-
Aware Resource Allocation for MapReduce in a Cloud,” Proc.
Conf. High Performance Computing Networking, Storage and Analysis,
pp. 58:1-58:11, Nov. 2011.

[18] H. Herodotou and S. Babu, “Profiling, What-If Analysis, and Cost-
Based Optimization of MapReduce Programs,” Proc. 37th Int’l
Conf. Very Large Data Bases, 2011.

[19] G. Ananthanarayanan, S. Kandula, A.G. Greenberg, I. Stoica, Y.
Lu, B. Saha, and E. Harris, “Reining in the Outliers in Map-Reduce
Clusters Using Mantri,” Proc. Ninth USENIX Symp. Operating
Systems Design and Implementation (OSDI ’10), pp. 265-278, Oct.
2010.

[20] G. Ananthanarayanan, S. Agarwal, S. Kandula, A.G. Greenberg, I.
Stoica, D. Harlan, and E. Harris, “Scarlett: Coping with Skewed
Content Popularity in MapReduce Clusters,” Proc. Sixth European
Conf. Computer Systems (EuroSys ’11), Apr. 2011.

[21] E. Jahani, M.J. Cafarella, and C. Re, “Automatic Optimization for
MapReduce Programs,” Proc. VLDB Endowment, vol. 4, pp. 385-
396, 2011.

[22] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy, “A Platform
for Scalable One-Pass Analytics Using MapReduce,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’11), pp. 985-
996, 2011.

[23] J. Liu, J. Wu, and D.K. Panda, “High Performance RDMA-Based
MPI Implementation over InfiniBand,” Int’l J. Parallel Program-
ming, vol. 32, pp. 167-198, 2004.

[24] S. Sur, H. Wang, J. Huang, X. Ouyang, and D.K. Panda, “Can
High-Performance Interconnects Benefit Hadoop Distributed File
System?” Proc. Workshop Micro Architectural Support for Virtualiza-
tion, Data Center Computing, and Clouds (MASVDC). Held in
Conjunction with MICRO, Dec. 2010.

[25] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-ur
Rahman, N.S. Islam, X. Ouyang, H. Wang, S. Sur, and D.K. Panda,
“Memcached Design on High Performance RDMA Capable
Interconnects,” Proc. Int’l Conf. Parallel Processing (ICPP ’11),
pp. 743-752, 2011.

610 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Weikuan Yu received the bachelor degree in
genetics from Wuhan University, China, and the
master’s degree in developmental biology from
the Ohio State University. He received the PhD
degree in computer science from the Ohio State
University in 2006. He is currently an assistant
professor in the Department of Computer
Science and Software Engineering, Auburn
University. Prior to joining Auburn, he served
as a research scientist for two and a half years at

Oak Ridge National Laboratory (ORNL) until January 2009. He is also a
joint faculty at ORNL. At Auburn University, he leads the Parallel
Architecture and System Laboratory for research and development on
high-end computing, parallel and distributing networking, storage and
file systems, as well as interdisciplinary topics on computational biology.
He is a member of the AAAS, ACM, and the IEEE.

Yandong Wang received the master’s degree in
computer science from the Rochester Institute of
Technology in 2010. He is currently working
toward the PhD degree at the Parallel Architec-
ture and System Laboratory, Department of
Computer Science, Auburn University. His re-
search interests include cloud computing, high-
speed networking, and file and storage systems.

Xinyu Que received the master’s degree in
computer science from the University of Con-
necticut in 2009. He is currently working
toward the PhD degree at the Parallel Archi-
tecture and System Laboratory, Department of
Computer Science, Auburn University. His
research interests include high-performance
computing, high-speed networking, and net-
work and grid computing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YU ET AL.: DESIGN AND EVALUATION OF NETWORK-LEVITATED MERGE FOR HADOOP ACCELERATION 611

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

