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ABSTRACT
Sequentially arriving jobs share a MapReduce cluster, each
desiring a fair allocation of computing resources to serve its
associated map and reduce tasks. The model of such a sys-
tem consists of a processor sharing queue for the MapTasks
and a multi-server queue for the ReduceTasks. These two
queues are dependent through a constraint that the input
data of each ReduceTask are fetched from the intermediate
data generated by the MapTasks belonging to the same job.
A more generalized form of MapReduce queueing model can
capture the essence of other distributed data processing sys-
tems that contain interdependent processor sharing queues
and multi-server queues.

Through theoretical modeling and extensive experiments,
we show that, this dependence, if not carefully dealt with,
can cause non-work-conserving effects that negatively im-
pact system performance and scalability. First, we charac-
terize the heavy-traffic approximation. Depending on how
tasks are scheduled, the number of jobs in the system can
even exhibit jumps in diffusion limits, resulting in prolonged
job execution times. This problem can be mitigated through
carefully applying a tie-breaking rule for ReduceTasks, which
as a theoretical finding has direct engineering implications.
Second, we empirically validate a criticality phenomenon
using experiments. MapReduce systems experience an un-
desirable performance degradation when they have reached
certain critical points, another finding that offers fundamen-
tal guidance on managing MapReduce systems.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Queuing Theory, Stochas-
tic Processes; D.2.8 [Software Engineering]: Metrics—
complexity measures, performance measures

1. INTRODUCTION
A MapReduce cluster supports multiple users and pro-

cesses a large number of jobs with distinctive service level
objectives, such as job response time and throughput. To
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fulfill the service commitment, efficient scheduling is critical,
as evidenced by the popularity of Hadoop Fair Scheduler [2]
and Capacity Scheduler [1].

Each MapReduce job is composed of a certain number of
map and reduce tasks. The MapReduce model for serving
multiple jobs consists of a processor sharing queue for the
MapTasks and a multi-server queue for the ReduceTasks [28].
The underlying rationale is based on the well-known pattern
of map and reduce task execution durations. Usually Map-
Tasks are short and ReduceTasks are long. For example,
empirical studies show that MapTasks take 19 seconds and
ReduceTasks take 231 seconds in median numbers [32]. The
map queue model is attributed to the fact that round-robin
task scheduling with a small time quantum at an appropri-
ate scale can be well approximated by processor sharing.
However, once the execution times become significant for
long ReduceTasks, a different treatment at the same time
scale, e.g., using a multi-server queue, can better capture
the essence of the queueing behavior. Intriguingly, these two
queues are dependent through a constraint that the interme-
diate data fetched by the ReduceTasks cannot exceed those
already generated by the MapTasks at any time. Since data
movement and processing can be conducted in a fine-grained
unit (e.g., a few bytes) [22], this model is different from the
traditional tandem queue model (e.g., [9]), for which a job
in its entirety moves between several stations.

It is common for data to move through processing units
governed by different scheduling disciplines. Thus, the pre-
vious MapReduce model can be generalized to capture the
essential component of other distributed data processing sys-
tems that contain dependent processor sharing queues and
multi-server queues. Some of the typical examples include
graph computation framework [23], distributed dataflow com-
puting [24], Dryad [16] (a computation framework struc-
tured as a directed graph), online streaming jobs [11], and
distributed programs with partitioned tables [25].

As one of the dominant paradigms for processing large un-
structured data sets in a massively parallel manner, MapRe-
duce has attracted increasing interest in practice. However,
there is still a lack of theoretical understanding on its fun-
damental performance trends at scale. Most of the previous
studies seem to focus on either the execution of MapTasks or
that of ReduceTasks, abiding by the distinct difference be-
tween them but ignoring the dependence therein [1, 2, 7, 17,
32]. This approach for analysis can provide reasonable ap-
proximations when the experienced workload is mild. How-
ever, under heavy traffic scenarios, the oblivion of this inter-
nal dependence misses some intriguing non-work-conserving



effects that, if not carefully dealt with, can greatly degrade
system performance.

MapReduce background

MapReduce has a number of implementations. Hadoop [3]
is a popular open source realization. Usually, a typical job
includes both MapTasks and ReduceTasks. Each MapTask
generates intermediate data in key-value pairs after taking
a block of input data. Then, ReduceTasks fetch these in-
termediate data through the copy/shuffle phase according
to keys, and proceed to the reduce phase after receiving all
the intermediate results. The management of computing re-
sources is through the allocation of task slots; each slot only
permits a single task to be launched. As already mentioned,
MapTasks are small and independent, executed in multiple
parallel waves. Once a MapTask finishes, it immediately re-
leases the occupied slot. Therefore, the available slots can be
evenly allocated to multiple competing jobs in a fine-grained
time scale. On the contrary, ReduceTasks tend to be long-
running and are non-preemptive [17, 7, 32] in most of the
MapReduce implementations. They lack the flexibility that
MapTasks exhibit, and their exeuction times are usually on
a much larger time scale than those of MapTasks [32].

Upon the completion of a small percentage (by default 5%
for Hadoop [3]) of the MapTasks, ReduceTasks of the same
job are launched greedily to a maximum that is determined
by max-min fairness criteria constrained by the number of
available slots. However, only using max-min fairness cannot
fully describe the scheduling. A tie-breaking rule is needed
when there are more competing jobs than the number of
available slots. Interestingly, this tie-breaking rule, if not
carefully chosen, can result in jumps to the number of jobs
when the system is heavily loaded.

For many of the existing implementations [2, 16, 7, 17],
ReduceTasks do not support preemptions; they only release
the occupied slots after completion, once launched. That
is also why their executions are modeled by a multi-server
queue. Recently some implementations have introduced pre-
emptions for ReduceTasks [29, 5, 27]. Though this mecha-
nism is interesting, we do not study it in this paper, due
to the following reasons. Apart from the fact that many
existing MapReduce implementations do not support it yet,
there are scenarios that data processing frameworks with
components captured by the model studied in this paper
are not preferable to execute preemptions due to possible
heavy overhead.

Summary of contributions

We study two non-work-conserving effects for the schedul-
ing model of MapReduce that are caused by the dependence
constraint between map and reduce tasks. First, we use dif-
fusion limit to describe the typical sample paths that happen
with a high probability in a normalized time and space scale
(heavy traffic regime). Second, we empirically characterize
a criticality phenomenon for the impact on the tail of the
job delay distribution, which occurs with a small probability
(large deviation regime).

First, we investigate the diffusion approximation. In a
heavy traffic regime, we derive the diffusion limits (Qm(t),
Qr(t)) for the number of jobs in the map queue and the re-
duce queue under a proper scaling. Specifically, the number
of jobs in the system can even exhibit jumps in the diffusion
limit. A similar result has been shown for servers with vaca-
tions [19]. In the case of MapReduce, the jumps are caused

by the dependence constraint between the processor shar-
ing queue and the multi-server queue. When the processor
sharing queue of the MapTasks is heavily loaded, the in-
termediate data generating speed can be significantly lower
than the fetching speed of the ReduceTasks. Because Re-
duceTasks are non-preemptive, the computing resources of
the occupied slots will not be fully utilized while being taken
by idle ReduceTasks. During these periods, the number of
jobs in the system can built up quickly, which contributes
to the jumps in the diffusion limit. Interestingly, this prob-
lem can be avoided through careful designing a tie-breaking
rule. These underutilized periods can be minimized through
choosing a job with the shortest remaining service time for
its map phase. In some existing implementations, this tie-
breaking rule is based on the arrival order. This rule can
cause jumps in its diffusion limit if the map service time
distribution has an increasing hazard function. However, if
the distribution has a decreasing hazard function or a finite
support, then it is almost as efficient as the one based on
the shortest remaining service time for the map phase. This
insight has direct engineering implications.

Second, we empirically validate a criticality phenomenon
for MapReduce that was theoretically discovered in [28].
Specifically, this phenomenon is on configuring the num-
ber of ReduceTasks. It depicts an undesirable performance
degradation when the system reaches certain critical points.
The existing MapReduce systems often rely on users to spec-
ify the number of ReduceTasks. Most users apply large num-
bers of ReduceTasks to achieve high parallelism, expecting
to accelerate the job execution without realizing the dynam-
ics of the number of available reduce slots in a shared clus-
ter. In general, a selfish optimal strategy taken by individ-
uals does not necessarily lead to a globally optimal one. In
this regard, an analytic result on how the number of Re-
duceTasks can impact the delay distribution is established
in [28]. It reveals that when the number of ReduceTasks,
configured by independent users, reaches a critical value that
depends on all the jobs running in the cluster, then the job
processing time distribution tail can even change by one or-
der for typical heavy-tailed workload. It implies that, if not
carefully managed, much longer job execution times can oc-
cur when multiple users configure their jobs independently
in a shared cluster. This undesirable consequence is due to
the non-work-conserving effect that some large jobs can oc-
cupy underutilized reduce slots beyond a critical number,
even when they do not have enough work for their Reduc-
eTasks to process. However, this phenomenon remains to be
verified against real experiments. We empirically validate it
with workloads that are similar to Facebook traffic [6].

Paper organization

Section 2 presents the MapReduce model, with a detailed
description of the tie-breaking rules. In Section 3, we first
prove a lower bound for the number of jobs in the system,
independent of the tie-breaking rules. Then, we investigate
conditions under which the previous lower bound is attain-
able. Specifically, we show that the diffusion limit can even
exhibit jumps to the number of jobs in the system, depend-
ing on the tie-breaking rules. After that, we demonstrate in
Section 4 the criticality phenomenon for typical MapReduce
workloads using real experiments. Section 5 contains the
details of the testbed and the conducted experiments, which
is followed by the conclusion in Section 6.



2. MODEL DESCRIPTION
We use a schematic diagram in Fig. 1 to describe the

MapReduce model with arriving jobs. The map phase is
modeled as an M/G/1 processor sharing queue, and the re-
duce phase is modeled as a multi-server queue. This model
was first proposed in [28].

Figure 1: MapReduce model for job scheduling

Job arrivals are modeled by a Poisson random process
with rate λ, with the inter-arrival times {Ai}i>−∞. Let Bi
be the total map service time of job i. The i.i.d. sequence
{Bi}i>−∞ is independent of other random variables with

Bi
d
= B (“

d
=” means equal in distribution).

The reduce phase is modeled as a multi-server queue. Let
r > 1 be the total number of reduce slots (servers) in the
cluster and Ri the number of ReduceTasks of Job i. Re-
duceTask scheduling follows the max-min fairness criteria.
Denote by Ri(t) the number of running ReduceTasks of job
i at time t. When available reduce slots exist, all of them will
be allocated to the maximum number of existing jobs such
that the assignments Ri(t) for all i in service are as close as
possible, constrained by the condition that Ri(t) cannot be
larger than the number of unfinished ReduceTasks of job i.
In addition, for any job i, the set of time points when at
least one of its ReduceTasks are in service forms a time in-
terval [si, ei]. In other words, between the starting point si
and the ending point ei, there is always at least one Reduc-
eTask running for job i. It means that intermittent services
are avoided. We refer the previous scheduling rules as the
primary requirement. Still, it is possible when multiple jobs
compete for a single slot the primary requirement is not suf-
ficient to fully describe the scheduling decisions. In this case,
a tie-breaking rule is needed, which will be elaborated in the
next section.

A reduce server permits a single ReduceTask to run, which
needs to sequentially process the copy/shuffle phase and
the reduce phase. We use a tuple (Cji , D

j
i ) to character-

ize the jth reduce task of job i, which has a workload Cji for

the copy/shuffle phase, and Dj
i for the reduce phase. The

copy/shuffle phase of a job can overlap in time with its map
phase but needs to wait for the map phase to generate the
intermediate data. In order to capture this dependence con-
straint, we introduce function ΘJ(t), which is defined to be
the finished percentage of the workload for job J at time
t. For example, Θ

C
j
i
(t) represents the attained fraction of

service for copy/shuffle phase Cji , and ΘBi(t) the finished
fraction of work for map phase Bi at time t. For MapRe-
duce, we have Θ

C
j
i
(t) ≤ ΘBi(t) for all t, i, 1 ≤ j ≤ Ri,

because intermediate data can be fetched by ReduceTasks

only after MapTasks have generated them. We term it the
dependence constraint for MapReduce. This dependence,
seemingly simple, tremendously complicates the system and
results in interesting analytical characterization.

For illustration purposes, we use measurements collected
from a real experiment that is conducted using Fair Sched-
uler [2] on Hadoop [3]. We plot the number of map and
reduce slots taken by each job at each time in the left part
of Fig. 2, which are represented by different shaded areas. In
addition, we also plot in the right part of Fig. 2 at each time
the amount of intermediate data generated by the MapTasks
for each job as well as for all of the jobs and the amount of
data already fetched by the ReduceTasks.
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Figure 2: Runtime profile of slot allocation and in-
termediate data shuffling

As shown in the top-left of Fig. 2, when the second job
arrives, the map slots are evenly shared between the first two
jobs. However, as soon as the first job completes, all reduce
slots are taken by job 2, as shown in the bottom-left of Fig. 2.
When jobs 3 and 4 arrive, they can share the map slots
evenly with job 2. But only until job 2 releases some reduce
slots, can jobs 3 and 4 be able to share these available reduce
slots. The curves on the generated and fetched intermediate
data for all of the jobs demonstrate that the progress of
copy/shuffle phase cannot exceed that of the map phase. In
the bottom-right of Fig. 2, for 1 ≤ i ≤ 4, mi represents
the generated data from the MapTasks of job i and ri the
fetched data by the ReduceTasks of job i.

Assumption 1. The three mutually independent random
sequences {C,Cji }, {D,D

j
i } and {R,Ri} are i.i.d. for each

sequence. They are also independent of {Ai}.

Because of the i.i.d. assumptions, we can simply represent
the workload by (B,C,D,R) with arrival rate λ.

In this paper, we use the following notation. The function
space D[0, 1], endowed with the Skorohod metric, contains
all right continuous functions on [0, 1] with left limits; many
results in this space can be easily extended to D[0,∞) [8].
A subspace of continuous functions is denoted by C[0, 1];
W ∗(t) ∈ C[0, 1] is the standard Brownian motion. Our anal-
ysis relies on the weak convergence of probability measures;
see [8] for a complete treatment. If probability measures Pn
and P satisfy limn→∞

∫
D fdPn =

∫
D fdP for every bounded,

continuous and real-valued functions f on D, then Pn is said



to converge weakly to P as n → ∞, denoted by Pn ⇒ P .
Let ρ(x, y) , sup0≤t≤1 |x(t) − y(t)| be the uniform metric
for x, y ∈ D. When the limit has unmatched jumps, M1

topology [19] is needed. Denote by Yn
P→ Y that a sequence

of random variables Yn converges in distribution to Y . Re-
call that an → a represents a sequence of real numbers an
converging to a. Let 1S(t) be the indicator function of the
set S.

3. DIFFUSION LIMIT
Consider a sequence of MapReduce systems indexed by n.

The workload
(
B(n), C(n), D(n), R(n)

)
is fed into the nth

system with a Poisson arrival rate λ(n), λ(n) → λ > 0.

Let Q
(n)
m (t) be the number of submitted jobs that still have

not completed their map phases at time t. Regarding the
total number of jobs in the reduce queue, we use a restricted

definition as follows. Denote by Q
(n)
r (t) the number of the

jobs in the reduce queue at time t that either 1) have finished
their map phases but still have not started any ReduceTasks
before time t or 2) successfully occupy at least one reduce
server at time t. In addition to the previous two kinds of
jobs, the others are the jobs that are still running in the
map queue but have not started any ReduceTasks yet. Here
we intentionally exclude these jobs from being counted in
the reduce queue, since this definition can ease the analysis
and presentation. Denote by Q(n)(t) the total number of
running jobs in the system at time t. Then, due to the r
servers of the reduce queue, we have

Q(n)
m (t) +Q(n)

r (t)− r ≤ Q(n)(t) ≤ Q(n)
m (t) +Q(n)

r (t). (1)

In heavy traffic, we are interested in the scaled processes

Q̂(n)
m (t) =

Q
(n)
m (nt)√
n

, Q̂(n)
r (t) =

Q
(n)
r (nt)√
n

, Q̂(n)(t) =
Q(n)(nt)√

n
.

Assume that the map queue is in stationarity at time 0.

Thus, Q
(n)
m (0) follows a geometric distribution with parame-

ter λ(n)E
[
B(n)

]
. Conditional on Q

(n)
m (0) = n, the first n job

sizes are i.i.d. and follow the residual distribution of B(n).
We make the following heavy traffic assumptions. For two
positive constants η, ξ,

√
n
(

1− λ(n)E
[
B(n)

])
→ η, (2)

√
n

(
1− λ(n) 1

r
E
[(
C(n) +D(n)

)
R(n)

])
→ ξ. (3)

Under conditions (2) and (3), both the map queue and the
reduce queue are in heavy traffic. Furthermore, we need
the following technical assumption for the processor shar-
ing queue [21], for θ > 0, µb , E[B] < ∞ and σb ,
(Var[B])1/2 <∞,(

E
[
B(n)

]
,Var

[
B(n)

])
→
(
µb, σ

2
b

)
. (4)

For the reduce queue, assume that it is empty before

time 0 (Q
(n)
r (0−) = 0). Let Z

(n)
i ,

∑R
(n)
i

j=1

(
C

(n),j
i +D

(n),j
i

)
be an i.i.d. sequence with Z

(n)
i

d
= Z(n). Specify ν

(n)
r ,

E
[
R(n)

]
, µ

(n)
r , E

[
Z(n)

]
< ∞, σ

(n)
r ,

(
Var

[
Z(n)

])1/2
<

∞. For 0 < νr, µr, σr <∞ and every k > 0,(
ν(n)r , µ(n)

r , σ(n)
r

)
→ (νr, µr, σr) , (5)

lim
n→∞

∫
|y|>k

√
n

y2dP
[
Z(n) − µ(n)

r < y
]
<∞. (6)

Equation (6) is equivalent to the condition of Lindeberg [26].
This condition, by Theorem 3.1 in [26], ensures the weak
convergence to a standard Brownian motion W ∗(t)∑dnte

i=1

(
Z

(n)
i − µ(n)

r

)
σ
(n)
r
√
n

⇒W ∗(t). (7)

For f ∈ D, define a continuous mapping function Φ(f(t)) =
f(t)− inf0≤s≤t f(s).

Map queue: Under the aforementioned conditions, us-
ing Theorem 5.1 and Proposition 5.6 in [21] (see also Theo-
rem 2.3 and Corollary 2.4 in [12]), we know, as n→∞,

Q̂(n)
m (t)⇒ Φ

(
Q̂m(0) +W ∗m(t)

)
, Q̂m(t), (8)

where W ∗m(t) is a Brownian motion with W ∗m(0) = 0, drift
−2ηµb/(µ

2
b + σ2

b ), variance 4(µb/λ + σ2
b )µb/(µ

2
b + σ2

b )2 and

Q̂m(0) independent of W ∗m(t). The distribution of Q̂m(0)
follows from the stationarity assumption, for x ≥ 0,

P[Q̂m(0) > x] = lim
n→∞

P

[
Q

(n)
m (0)√
n

> x

]

= lim
n→∞

(
1− η√

n

)√nx
= e−ηx.

The map queue, using processor sharing, is symmetric
with Poisson arrivals. Thus, the departure process is also
Poisson. Due to the reversibility (Theorem 3.11 of [20]), the

departure process prior to t is independent of Q
(n)
m (t).

Reduce queue: Because of the dependence constraint,
the reduce queue can idle when the MapTasks do not gen-
erate enough intermediate data. We prove a lower bound to

Q̂
(n)
r (t) in Section 3.2. Whether this lower bound is attain-

able depends on the tie-breaking rules described below.
In Section 2 we have specified the primary requirement

for scheduling ReduceTasks. However, it is not sufficient to
fully determine the scheduling. If there are more than r jobs
running in the system, say k, then at least k−r jobs are not
in service in the reduce queue. In this case when a server
becomes available, a tie-breaking rule is needed. In order to
show that such a rule can greatly impact Q̂r(t), we introduce
three policies, all satisfying the primary requirement. When
a tie-breaking decision is needed, we first consider jobs in
the reduce queue that have already finished their map ser-
vices. If there are multiple such jobs, an arbitrary rule that
does not depend on the reduce service times (e.g., using the
arrival order) can be used. Then, the remaining tie-breaking
decision is according to one of the following policies.

I: Jobs with smaller remaining map service times have
higher priorities.

II: Tie breaking is through uniform random selection.
III: Jobs arrived earlier have higher priorities.

Interestingly, Policy I attains the lower bound. However,
Policy II can incur jumps to the number of jobs in the re-
duce queue Q̂r(t) /∈ C[0,∞). Thus it cannot attain the lower



bound, implying longer delays for the job executions. Policy
III may or may not cause jumps, depending on the map ser-
vice time distribution. These theoretical results have direct
engineering implications.

3.1 Intuition
Before conducting the rigorous analysis, we first describe

the underlying intuition on when the limit can exhibit jumps.
In heavy traffic, Qm(t) can be approximated by a reflected
Brownian motion with drift [12]. When heavily loaded,
Qr(t) is larger than the number r of reduce slots most of
the time. Because of the max-min fairness requirement for
launching ReduceTasks, the reduce queue will be very close,
but different, to a FIFO multi-server queue with a service
time

∑Ri
j=1

(
Cij +Di

j

)
for job i. In the following, we explain

how the tie-breaking rules impact performance.
Policy I chooses the job with the smallest remaining map

service. This job completes its map workload earlier than
other jobs that are already in the system. The only problem
is that the newly arrived jobs can have an even smaller map
service. However, this event happens with a small probabil-
ity. Thus, the arrival process of the reduce queue is close
(yet not exactly due to Θ

C
j
i
(t) ≤ ΘBi(t)) to the departure

process of the map queue. Since the map queue is symmet-
ric, its departure process prior to t is independent of Qm(t).

Because of this independence, Q̂
(n)
m (t) and Q̂

(n)
r (t) converge

weakly to Q̂m(t) and Q̂r(t), two independent reflected Brow-
nian motions with drifts.

Next, we explain the jumps in the diffusion limit under
Policy II. Recall that time t is on the scale of n and the queue
size on the scale of

√
n; let Qm(nt0) = qm

√
n + o(

√
n) and

later we will omit o(
√
n). Immediately when Qr(nt0) is be-

low r at time nt0, a random job J∗ from theQm(nt0) number
of jobs running in the map queue will be selected to take the
available reduce slot. Using the state space collapse result
for processor sharing queue in heavy traffic (Theorem 4.7
in [12]), we know that approximately job J∗ will have a
remaining service time Be that follows the residual distri-
bution of B, with P[Be > x] =

∫∞
x

P[B > u]/E[B]du, x ≥ 0.
Let Be = be. Job J∗ shares the map queue equally with
qm
√
n number of jobs. Therefore, job J∗ will work on the

reduce slot during the time interval [nt0, nt0 + beqm
√
n].

However, during this period of time the reduce queue can
only use at most r − 1 slots to serve other ReduceTasks.
Due to condition (3), the service rate of the reduce queue
in this time interval is smaller than the input rate λµr ≈ r
(µr is defined in (5)). By law of large numbers, when n is
large, during [nt0, nt0 + beqm

√
n], there will be λbeqm

√
n

number of jobs joining the reduce queue. Thus, job J∗ will
cause at least λbeqm

√
n/r number of jobs queueing in the re-

duce queue at time nt0 + beqm
√
n, i.e., Qr(nt0 + beqm

√
n) &

λbeqm
√
n/r. The time interval [nt0, nt0 + beqm

√
n] will de-

generate to a single point t0 since the time is on a scale of n.
However, there will be a jump that is larger than λbeqm/r

at time t0, i.e., Q̂r(t0+)− Q̂r(t0−) ≥ λbeqm/r.
The analysis for Policy III is based on the arguments for

Policy I and II. First, consider the case when B has an in-
creasing hazard function. If a job has processed its map
phase for a long time, then its remaining service time is ex-
pected to be also long. In this case, the chosen job will have
a remaining service time that is stochastically larger than
the one under Policy II (uniform random selection). Thus,

it can incur jumps. The second case is when B has a de-
creasing hazard function or a finite support. The chosen job
will likely have a short remaining service time. To better
understand this point, consider a special case when B ≡ c
for a constant c > 0. In this case, Policy III is equivalent to
Policy I. Thus, the diffusion limit does not have jumps.

3.2 Lower bound
We first prove a lower bound that holds independent of the

tie-breaking policies. The proof relies on the construction of
a work-conserving queue.

Theorem 1. There exists a sequence Q̂
l,(n)
r (t) ≤ Q̂

(n)
r (t)

such that Q̂
l,(n)
r (t)⇒ Φ (W ∗r (t)) where W ∗r (t) is a Brownian

motion with W ∗r (0) = 0, drift −rξ/µr, variance λ + σ2
r/µ

3
r

and independent of W ∗m(t).

Remark 1. When {C(n),j
i , D

(n),j
i , R

(n),j
i } is dependent of

{B(n)
i }, the two Brownian motions W ∗r (t) and W ∗m(t) can be

also dependent, but we still have Q̂
l,(n)
r (t)⇒ Φ (W ∗r (t)).

Proof. The reduce queue is not work-conserving since
Θ
C

(n),j
i

(t) ≤ Θ
B

(n)
i

(t). We construct a work-conserving re-

duce queue by coupling arguments. The new reduce queue
has the same input as the original one.

In the new reduce queue, we specify the following three
requirements. First, we abandon the constraint Θ

C
(n),j
i

(t) ≤
Θ
B

(n)
i

(t) so that a task can keep running until finish using

the assigned server without being idle. Second, after a job
arrives to the new queue it is always given at least an equal
number of servers as the same job that is running in the orig-
inal queue at any time unless it does not have any remaining
workload in the new queue. Clearly, under these two require-
ments, a running job in the new queue completes no later
than the same job running in the original queue. Third, only
using the preceding two requirements, the new queue may
idle even when there are enough workloads. In this case, it
arbitrarily allocates the available servers to one of the jobs
that are already in service by splitting the workload of its

running ReduceTasks. Denote by Q
l,(n)
r (t) the number of

jobs and by W
l,(n)
r (t) the total workload in the new reduce

queue at time t. It is clear that Q
l,(n)
r (t) ≤ Q

(n)
r (t) for all t

based on the construction. Furthermore, the new queue is
work-conserving and can process at most r jobs simultane-
ously.

The only technical issue is that the arrival time points
of the reduce queue are not equal to the departure points

of the map queue; recall the definition of Q
(n)
r (t) at the

beginning of Section 3. There are two different cases for
a departure from the map queue: 1) if this job still has
not started any of its ReduceTasks, then this departure is
immediately an arrival to the reduce queue; 2) if this job
has taken at least one reduce slot earlier, then the departure
does not correspond to an arrival of the reduce queue. The
second case is illustrated in Fig. 3. When job i finishes its
map phase at time ti, it has already occupied at least one
reduce slot before ti. The arrival point of this job is the
earliest time when a slot is taken, i.e., time νi in Fig. 3.

Denote by L
(n)
r (t) the number of jobs that have arrived to

the reduce queue and by X(n)(t) the number of departures
from the map queue on [0, t] for the nth system. It is easy to
observe that, due to Θ

C
(n),j
i

(t) ≤ Θ
B

(n)
i

(t), r reduce slots,



Figure 3: Arrivals of the reduce queue

and the fact that ReduceTasks are not preemptive,

X(n)(t) ≤ L(n)
r (t) ≤ X(n)(t) + r, (9)

which implies that

ρ

(
L
(n)
r (nt)− λ(n)nt

√
n

,
X(n)(nt)− λ(n)nt

√
n

)
≤

r
√
n
→ 0. (10)

Let U
(n)
i be the inter-arrival time of the ith job into the re-

duce queue. Note that U
(n)
i are not i.i.d. because some jobs

arrive to the reduce queue before their map services finish;
see Fig. 3. Therefore, we cannot directly apply Donsker’s
Theorem (pg.137 of [8]) to derive the diffusion limit. In-
stead, we use the relationship between the partial sum and
the associated counting process.

Applying Theorem 3.1 in [26], we obtain n−1/2
(
X(n)(nt)

−λ(n)nt
)
⇒ λ1/2W ∗(t), which, by (10) and the Convergence

Together Theorem (Theorem 4.1 in [8]), implies(
L

(n)
r (nt)− λ(n)nt

)
√
n

⇒ λ1/2W ∗(t). (11)

Then, using the connection between the counting process

L
(n)
r (nt) and the partial sums

∑n
i=1

(
U

(n)
i − 1/λ(n)

)
(The-

orem 1 of [15]), we obtain∑dnte
i=1 U

(n)
i − nt/λ(n)

√
n

⇒ −λ−1W ∗(t). (12)

Based on the construction, the workload W
l,(n)
r (t) in the

new queue is equal to the workload in a single server FIFO
queue. Combining (7), (12) and (3) and using the well-
known result on single server FIFO queues (e.g., see Sec-
tion 6 in [9]) yield

W
l,(n)
r (nt)√

n
⇒ µrΦ (W ∗r (t)) . (13)

Because the new queue can only serve at most r jobs si-
multaneously and the remaining service of each job being

served at time t is upper bounded by max1≤k≤L(n)(t) Z
(n)
k ,

we obtain∣∣∣∣∣∣∣
L

(n)
r (t)∑

i=L
(n)
r (t)−Q(n)

r (t)

Z
(n)
i −W l,(n)

r (t)

∣∣∣∣∣∣∣ ≤ r max
1≤k≤L(n)

r (t)

Z
(n)
k .

This result, using

L
(n)
r (t)∑

i=L
(n)
r (t)−Q(n)

r (t)

Z
(n)
i = Q

(n)
r (t)µ

(n)
r +

 L
(n)
r (t)∑

i=L
(n)
r (t)−Q(n)

r (t)

(
Z

(n)
i − µ(n)r

) ,

implies, for t ∈ [0, 1],

ρ

(
W
l,(n)
r (nt)
√
n

,
µ
(n)
r Q

(n)
r (nt)
√
n

)
≤
rmax

1≤k≤L(n)
r (n)

Z
(n)
k

√
n

+ sup
0≤t≤1

∣∣∣∣∣∣∣
L

(n)
r (nt)∑

i=L
(n)
r (nt)−Q(n)

r (nt)

(
Z

(n)
i − µ(n)r

)∣∣∣∣∣∣∣
, I

(n)
1 + I

(n)
2 . (14)

Using L
(n)
r (n)/n → 1/µr, σ

(n)
r → σr < ∞ and Lemma 3.3

in [13], we obtain I
(n)
1 → 0 almost surely. Observe that (7)

validates the C-tightness (Lemma 3.2 in [13]) of the sequence(∑dnte
i=1

(
Z

(n)
i − µ(n)

r

))
/
√
n, we can repeat the same argu-

ments in the proof of Lemma 5.1 (pg. 165) in [13] to show

I
(n)
2

P→ 0. These two facts yield

ρ

(
W

l,(n)
r (nt)√

n
,
µ
(n)
r Q

(n)
r (nt)√
n

)
P→ 0, (15)

which, by (13), the condition µ
(n)
r → µr and the Con-

vergence Together Theorem (Theorem 4.1 in [8]), implies

Q̂
l,(n)
r (t) ⇒ Φ (W ∗r (t)) on D[0, 1]. This result can be easily

extended to D[0,∞). The reason why W ∗r (t) is independent

of W ∗m(t) is from the fact that {X(n)(s), s < t} is indepen-

dent of Q
(n)
m (t) (Theorem 3.11 of [20]) and that {Z(n)

i } is

also independent of Q
(n)
m (t).

3.3 Is the lower bound attainable?
Next, we investigate whether the previous lower bound

is attainable or not. If the limit is continuous, we can use
D([0,∞), J1) with the Skorohod J1 topology [8]. If the limit
has unmatched jumps, M1 topology is needed [19]. Later our

result shows that Q
(n)
r (0) = 0 but its limit can be equal to

a nonzero jump size. Since the pointwise convergence must
hold at 0 even using M1 topology, we exclude the origin and
use the space D((0,∞),M1). After excluding the origin, we
do not have a problem; this approach to overcome this minor
technical issue has been exploited in [19].

Theorem 2. 1) Under Policy I, if P[Bn ≤ κ] = 1, κ >
0, then,

Q̂(n)
r (t)⇒ Φ (W ∗r (t)) , (16)

and Q̂(n)(t)⇒ Q̂m(t) + Φ (W ∗r (t)) in D([0,∞), J1).

2) Under Policy II, if P[Bn ≤ κ] = 1, κ > 0, then,

Q̂(n)
r (t)⇒ Φ∗ (W ∗r (t)) , in D((0,∞),M1), (17)

where Φ∗ (W ∗r (t)) is modified from Φ (W ∗r (t)) by hav-
ing jumps up of random size Jk when Φ∗ (W ∗r (t)) hits
zero at time τk, k = 0, 1, 2, · · · , τ0 = 0, with Jk ≥
λBekQ̂m(τk)/r for i.i.d. Bek

d
= Be. In addition, we

have Q̂(n)(t)⇒ Q̂m(t) + Φ∗ (W ∗r (t)) in D((0,∞),M1).

3) Under Policy III, if B has an increasing hazard func-
tion, the result is the same as in (17) with Φ∗ (W ∗r (t))
having jumps. If B has a decreasing hazard function
or a finite support, the result is the same as in (16).



Remark 2. This result has a direct implication on through-
put and delay. Even though these policies result in the same
throughput when the system is stable, the experienced job
delay will be different. By Little’s law [20], the average de-
lay is equal to the average number of jobs in the system
divided by the throughput. These possible jumps increase
the number of running jobs in the system, implying a pro-
longed average job execution time. It has been shown that
servers with vacations can incur jumps to the number of
jobs in heavy traffic [19]. Under Policy II and Policy III
with some conditions, jumps also occur. This is an indica-
tion that the computing resources are not fully utilized, as if
the servers took vacations from time to time. The result on
Policy I shows that these jumps can be eliminated through
careful scheduling.

Remark 3. The condition P[Bn ≤ κ] = 1 simplifies the
proof, which can be relaxed. In addition, for Policy II,
we can prove Jk ≤ λmax

{
Bek,1, B

e
k,2, · · · , Bek,r

}
Q̂m(τk) for

i.i.d. Bek,l
d
= Be. Note that {Jk} are not i.i.d. since they

depend on the map queue size observed at τk. It can be
shown that {Jk} is a Harris-recurrent Markov chain.

We first establish a lemma that shows the lower bound is
indeed attainable if the MapReduce system does not have
the dependence constraint between the map queue and the
reduce queue. When the constraint Θ

C
j
i
(t) ≤ ΘBi(t) is

ignored, we term the model a relaxed MapReduce. Tie-
breaking can use any rule that does not depend on the reduce
service times. Though a relaxed MapReduce is not realistic,
we will prove that under Policy I, typical sample paths in
heavy traffic are close to the ones in the relaxed MapReduce.
Therefore, even with the dependence constraint, the lower
bound is still attainable with careful scheduling.

Lemma 1. For the relaxed MapReduce, as n→∞,

Q̂(n)
r (t)⇒ Φ (W ∗r (t)) .

Proof. By Theorem 1, we only need to prove the upper
bound. An upper bound for a multi-server queue in heavy
traffic is provided in [13], relying the construction of a mod-
ified queuing system. The proof in [13] does not directly
apply for the reduce queue, since a job have multiple Re-
duceTasks that can run simultaneously on several servers
of the reduce queue. We take a different approach by first

characterizing the number Q̌
(n)
r (t) of ReduceTasks running

in the reduce queue at time t. Then, we use the Convergence

Together Theorem to connect Q̌
(n)
r (t) and Q

(n)
r (t).

Let A(n)(t) be the total number of ReduceTasks submitted

to the reduce queue on [0, t]. Recall that L
(n)
r (t) denote the

number of jobs arriving in the reduce queue on [0, t]. Clearly,

A(n)(t) =
∑L

(n)
r (t)

i=1 R
(n)
i . Repeating the same arguments for

showing I
(n)
2

P→ 0 in (14), we can prove that, on D[0, 1],

ρ

A(n)(nt)− λ(n)E[R(n)]nt
√
n

,

(
L
(n)
r (nt)− λ(n)nt

)
E[R(n)]

√
n



≤ sup
1≤t≤1

∑L
(n)
r (nt)

i=1

(
R

(n)
i − E[R(n)]

)
√
n

P→ 0,

which, recalling E[R(n)]→ νr in (5), using (11) and applying

Theorem 4.1 in [8], yields
(
A(n)(nt)− λ(n)E[R(n)]nt

)
/
√
n

⇒ λ1/2νrW
∗(t). The preceding result, in conjunction with

(3) and using Theorem 1 in [14], implies

Q̌
(n)
r (nt)√
n

⇒ νrΦ (W ∗r (t)) . (18)

Next, we study Q
(n)
r (t) using (18). Note that∣∣∣∣∣∣∣

L
(n)
r (t)∑

i=L
(n)
r (t)−Q(n)

r (t)

R
(n)
i − Q̌(n)

r (t)

∣∣∣∣∣∣∣ ≤ r max
1≤k≤L(n)

r (t)

R
(n)
k ,

which, using the same argument for (14) and (15), implies

that Q
(n)
r (nt)/

√
n⇒ Φ (W ∗r (t)).

In the next two subsections, we provide the proofs for
Policy I and II. We skip the proof for Policy III, since the
result is expected using the intuition explained in Section 3.1
and the proving methods for Policy I and II.

3.3.1 Proof for Policy I
Let R(n)(t) be the smallest remaining service time among

all the jobs that are running in the processor sharing map
queue at time t; if there are no tasks in the queue then
R(n)(t) = 0. In addition, let M (n)(t) be the maximum num-
ber of jobs in the map queue on the time interval [0, t]. De-

note by W
(n)
m (t) and W

(n)
r (t) the total workload in the map

queue and the reduce queue at time t, respectively. For
εq, εr > 0, define

A(n)
εq,εr =

{
R(n)(t) < εr, ∀t ∈

{
s : s ∈ [0, n],W

(n)
m (s) > εq

√
n
}}

.

This event means that for each time t ∈ [0, n] withW
(n)
m (t) >

εq
√
n, the processor sharing map queue always contains at

least one task with a remaining service time less than εr.

Lemma 2. For any εq, εr > 0 and 0 < η < 1, there exists
n0 such that n > n0 implies

P
[
A(n)
εq,εr

]
≥ 1− η. (19)

Proof. The proof relies on the state space collapse prop-
erty of processor sharing queue in heavy traffic [12, 21]. The

state descriptor {µ(n)
t : t ≥ 0} is such that for each t ≥ 0,

µ
(n)
t is a random measure on [0,∞) that has a unit of mass

at the residual service time of each task in the nth proces-
sor sharing map queue. For 0 < ε < ε◦ and a continuous
function

g(x) = 1x∈[0,ε](x) +

(
1− x− ε

ε◦ − ε

)
1x∈(ε,ε◦](x),

define a random function

H(t) =

∣∣∣∣∣
∫ ε◦

0
g(x)dµ

(n)
t −W (n)

m (t)

∫ ε◦

0
g(x)

P[B(n) > x]

E[B(n)]
dx

∣∣∣∣∣ .
The state space collapse is characterized by Theorem 4.7

in [12] for GI/GI/1 queue under the condition of a finite
forth moment. For M/GI/1 queue it has been relaxed to a
finite second moment condition [21]. It implies that, for any
0 < η < 1, ξ > 0, there exists n0 such that for all n > n0,

P

[
sup
t∈[0,n]

H(t) ≤ ξ
√
n

]
≥ 1− η. (20)



Recall (4) with E[B(n)] =
∫∞
0

P[B(n) > x]dx → µb > 0.

Since P[B(n) > 0−] = 1 (0− to avoid the mass at the origin)

and P[B(n) > x] is non-increasing in x, there exists ζ, δ > 0

and n0 such that infn>n1 P[B(n) > δ]/E[B(n)] > ζ.

The condition W
(n)
m (t) > εq

√
n implies, for ε◦ < δ,

W (n)
m (t)

∫ ε◦

0

g(x)
P[B(n) > x]

E[B(n)]
dx ≥ εζεq

√
n.

In addition, we have µ
(n)
t ([0, ε◦]) ≥

∫ ε◦
0
g(x)dµt. Thus, for

0 < ε < ε◦ < δ and 0 < ξ < εζεq, the event H(t) ≤ ξ
√
n

implies that, if W
(n)
m (t) > εq

√
n, then µ

(n)
t ([0, ε◦]) ≥ (εζεq −

ξ)
√
n. Because εζεq − ξ > 0, choosing ε◦ < εr, we know

R(n)(t) < εr. Therefore,
{

supt∈[0,n]H(t) ≤ ξ
√
n
}
⊆ A(n)

εq,εr ,

which finishes the proof.

Lemma 3. For any 0 < η < 1, there exists mη and n0

such that n > n0 implies

P[M (n)(n) ≤ mη

√
n] ≥ 1− η. (21)

Proof. This is a direct consequence of Q̂
(n)
m (t)⇒ Q̂m(t)

in D([0, 1], J1), as shown in (8). Since taking the max-
imum of a function is a continuous mapping, we obtain
M (n)(n)/

√
n ⇒ supt∈[0,1] Q̂m(t) , MQ. By the well known

result on the maximum of a reflected Brownian motion with
negative drift on [0, 1], MQ is almost sure finite, which proves
the lemma.

For εq, εm > 0, define

B(n)
εq,εm =

{
sup

0≤s,t≤n,|s−t|<εmn
|W (n)

m (s)−W (n)
m (t)| < εq

√
n

}
.

It characterizes the continuity of W
(n)
m (t) on [0, n]. Using

Lemma 3.2 of [13], we obtain the following lemma.

Lemma 4. For εq, η, there exists 0 < εm < 1 and n0 such
that n > n0 implies

P
[
B(n)
εq,εm

]
≥ 1− η. (22)

Since there are r servers in the reduce queue, at any time t
we denote by Tt the set that contains the running reduce
tasks on these servers. If no such task exists at time t, then
Tt = ∅. Each element in Tt, if not empty, can be denoted by
rji , meaning the jth reduce task of job i. For a reduce task

rji , denote by V
(n)
m (rji , t) the remaining map workload of job

i observed at time t (with V
(n)
m (∅, t) ≡ 0), and by V

(n)
r (rji , t)

the remaining workload of task rji at time t.

Proof for Policy I. We only need to prove the result
onD([0, 1], J1), since it can be extended toD([0,∞), J1) [30].
The proof is based on constructing a new work-conserving
reduce queue. It has a larger workload than the original
non-work-conserving reduce queue. Then, we compare the
workloads in the new queue and the relaxed MapReduce
(defined before Lemma 1), and show that the difference of
the normalized queue sizes vanishes.

For any εq, εr > 0 and 0 < η < 1, due to Lemmas 2, 3

and 4, the subset E(n) , {M (n)(n) ≤ mη
√
n} ∩ A(n)

εq,εr ∩
B(n)
εq,εm satisfies P[E(n)] > 1− 3η for n > n0. In the following

discussion, we only work on the sample paths within E(n),
since we can pass η → 0.

Let txy be the time when ReduceTask rxy is first assigned

to a reduce server. If V
(n)
m (rxy , t

x
y) = 0 then task rxy al-

ways satisfies the dependence constraint. Therefore, we only

need to take care of the case V
(n)
m (rxy , t

x
y) > 0. Consider

the map queue workload W
(n)
m (t) observed at time txy with

V
(n)
m (rxy , t

x
y) > 0. For εq > 0, there are two different cases:

1) W
(n)
m

(
txy
)
≤ εq
√
n and 2) W

(n)
m

(
txy
)
> εq
√
n.

For the first case, within B(n)
εq,εm , the event W

(n)
m

(
txy
)
≤

εq
√
n implies W

(n)
m

(
txy + εmn

)
≤ 2εq

√
n. Define C(n)εq ={

Q
(n)
m (t) ≤ Kεq

√
n,∀t ∈

{
s : W

(n)
m (s) ≤ 2εq

√
n, s ∈ [0, n]

}}
.

The state space collapse property [12, 21] shows P
[
C(n)εq

]
>

1 − η, for n large enough and some K > 0 that does not

depend on εq. Therefore, within B(n)
εq,εm ∩C

(n)
εq , task rxy share

with at most Kεq
√
n number of jobs in the processor shar-

ing map queue during [txy , t
x
y + εmn]. Since P[Bn ≤ κ] = 1,

choosing n > (Kκεq/εm)2, we know that task rxy can finish
before time txy + εmn. Furthermore, it can only idle for at
most Kκεq

√
n time when waiting for its map phase to fin-

ish. Thus, we can upper bound the remaining processing

time of rxy by Kκεq
√
n + V

(n)
r (rxy , t

x
y). For the second case,

task rxy has the smallest remaining map service time among
all the jobs in the system at time txy under Policy I. By

Lemma 2, we know V
(n)
r (rxy , t

x
y) < εr within E(n). In addi-

tion, M (n)(n) ≤ mη
√
n within E(n), at most mη

√
n number

of jobs share the map queue. Thus, task rji can idle for at
most εrmη

√
n time. For εr = εq and K̄ = max{Kκ,mη},

we obtain an upper bound K̄εq
√
n+ V

(n)
r (rxy , t

x
y) to the re-

maining processing time of task rxy for both cases.
Now, we construct a new work-conserving reduce queue,

with W
(n)
new(t) being its workload at time t. The new queue

is constructed by replacing the remaining workload of a Re-

duceTask rxy by K̄εq
√
n+V

(n)
r (rxy , t

x
y) if V

(n)
m (rxy , t

x
y) > 0 and

ignoring the dependence constraint Θ
C

j
i
(t) ≤ ΘBi(t) for all

i, j. With this construction, conditional on E(n) ∩ C(n)εq , the
execution time of each job is no smaller in the new queue
than in the original queue. In addition, the new queue is

work-conserving with W
(n)
new(t) ≥W (n)

r (t) for t ∈ [0, n]. Note

that outside of the set E(n)∩C(n)εq , these results may not hold.
We operate the new reduce queue and the relaxed MapRe-

duce under Policy I using the same input and the same or-
der to serve ReduceTasks. Let the workload of the reduce
queue in the relaxed MapReduce be W

(n)
relax(t). Denote by

Q
(n)
new(t) and Q

(n)
relax(t) the number of ReduceTasks in the

reduce queue for the new system and the relaxed MapRe-

duce, respectively. It is clear that W
(n)
new(t) ≥ W

(n)
relax(t)

and Q
(n)
new(t) ≥ Q

(n)
relax(t). Note that a ReduceTask rxy can

only increase its workload by K̄εq
√
n when Q

(n)
new

(
txy
)
≤ r

for the new system. Thus, when Q
(n)
new (t) ≤ r, we have

W
(n)
new(t)−W (n)

relax(t) ≤ rK̄εq
√
n since there are r servers. On

the other hand, when Q
(n)
new (t) > r, the workloads W

(n)
new(t)

and W
(n)
relax(t) always change by the same value. Therefore,

uniformly for both cases, we obtain, within E(n) ∩ C(n)εq ,

W (n)
new(t)−W (n)

relax(t) ≤ rK̄εq
√
n, for all t ∈ [0,n]. (23)

Repeating the same arguments as for (15), we can connect
the workloads and the number of jobs between the new



queue and the relaxed MapReduce. Therefore, by (23), there
exist n0 and a constant d > 0 such that for all n > n0 and
s ∈ [0, 1],

P

[
ρ

(
Q

(n)
new(sn)√

n
−
Q

(n)
relax(sn)√

n

)
≤ dεq, E(n) ∩ C(n)

]
> 1− 5η. (24)

Recalling Lemma 1, we obtain

Q
(n)
relax(sn)√

n
⇒ Φ(W ∗r (s)). (25)

Passing εq → 0, η → 0,mη → ∞ and using (25), (24) with
Convergence Together Theorem, we finish the proof of (16).

The proof of the result on Q̂(n)(t) is a direct consequence of
(16) and Theorem 1, in view of (1).

3.3.2 Proof for Policy II
We can define two modes for the reduce queue at each

time t. Mode A is when at least one reduce task rxy run-
ning on a server (i.e., rxy ∈ Tt) has unfinished map phase

Vm(rxy , t) > 0. Mode B is when V
(n)
m (rxy , t) = 0 for every

rxy ∈ Tt; recall V
(n)
m (∅, t) = 0. Let Xr(t) denote the mode of

the reduce queue at time t. It is clearly that the reduce queue
can be either in mode A or mode B, i.e., Xr(t) ∈ {A,B}.

Now, we can inductively define successive cycles. Re-
call that the reduce queue is empty at time 0− and new

reduce tasks join at 0 (Xr(0) = A). Let T
(n)
1 = 0 and

T
(n)
A,1 = inf{t : Xr(t) = B, t > 0}. Denote by T

(n)
2 the first

time after T
(n)
A,1 when the reduce queue turns from mode B

to mode A, i.e., T
(n)
2 = inf

{
t : Xr(t) = A, t > T

(n)
A,1

}
. Induc-

tively, let T
(n)
A,k = inf

{
t : Xr(t) = B, t > T

(n)
k

}
and T

(n)

(k+1) =

inf
{
t : Xr(t) = A, t > T

(n)
A,k

}
. Let L

(n)
k be the length of the

kth cycle in the system indexed by n, i.e., L
(n)
k = T

(n)
k+1 −

T
(n)
k . Note that {T (n)

k , k = 1, 2, · · · } are not regenerative.

Proof for Policy II. 2) We break the queueing pro-
cess of the reduce queue over the successive cycles along the

time sequence T
(n)
k , k = 1, 2, · · · . Consider the process dur-

ing the kth cycle, Q
(n),k
r (nt) , Q

(n)
r (t)1

[T
(n)
k

,T
(n)
k+1

)
(nt) for

t ≥ 0. Thus, T
(n)
k =

∑k−1
i=1 L

(n)
i , k ≥ 2 and

Q̂(n)
r (t) =

∞∑
k=1

Q(n),k
r (nt)/

√
n. (26)

The proof follows a similar approach in [19]. However, the

difference is that in our case T
(n)
k , k = 1, 2, · · · are not regen-

erative points. The issue is that at the beginning of the kth

cycle T
(n)
k , k ≥ 2, some of the ReduceTasks in the system

can have remaining service times that depend on the queue-

ing dynamics of cycle k − 1. Let R
(n)
max(k) be the maximum

of the remaining service times for all the ReduceTasks that

are still in the system observed immediately before T
(n)
k .

If we can show that, for each k,

1
√
n

(
Q

(n),1
r (nt), Q

(n),2
r (nt), · · · , Q(n),k

r (nt), L
(n)
1 , L

(n)
2 , · · · , L(n)

k

)
⇒
(
Q̂1
r(t), Q̂

2
r(t), · · · , Q̂kr (t), L1, L2, · · · , Lk

)
(27)

and P[Lk > 0] = 1 with Tk , L1 + L1 + · · · + Lk
P→ ∞ as

k →∞, then, we obtain, as n→∞,

Q̂(n)
r (t)⇒

∞∑
k=1

Q̂kr (t). (28)

We use mathematical induction on the cycle indexed by
k, as illustrated in Fig. 4. Assuming it is true for the first

Figure 4: Illustration of the kth cycle

k − 1 cycles, we prove five results for the kth cycle. (a)

R
(n)
max(k)/

√
n
P→ 0 (the remaining workload left from cycle

k − 1 vanishes on the scale
√
n) and

(
T

(n)
A,k − T

(n)
k

)
/n

P→
0 (the time spent in mode A within a cycle vanishes on
the scale n). (b) The normalized number of jobs in the

reduce queue Q
(n)
r (t) /

√
n observed at T

(n)
A,k converges in

probability to Jk, which has a lower bound λBekQ̂m(Tk)/r.
(c) For any 0 < η < 1, there exists lηk > 1 such that

P
[
T

(n)
k+1 < (lηk − 1)n

]
> 1−η for n large enough. Because of

this result, we only need to focus on t ∈ [0, lηkn] for study-
ing the first k cycles. On [0, lηkn], we can use Lemmas 3
and 4, which hold for any fixed lηk > 0. (d) The queueing

process Q̂(n)(t) after T
(n)
A,k converges weakly to a Brownian

motion BM(t) starting at Jk with drift −rξ/µr and variance

λ + σ2
r/µ

3
r. (e) T

(n)
k+1 converges weakly to the first-passage

time to 0 of BM(t). Comparing the proof of Theorem 2.1
in [19] with ours, we only need to prove (a), (b) and (c).

The assumption P[B(n) < κ] makes R
(n)
max(k)/

√
n → 0

trivial. Actually, it can be shown that (a) holds even when

B(n) has an infinite support. For the first k − 1 cycles,

we distinguish two cases A) Q
(n)
m

(
T

(n)
k

)
≤ εq

√
n and B)

Q
(n)
m

(
T

(n)
k

)
> εq
√
n. For case A), using a similar approach

to case 1) in the proof of Policy I and the state space collapse

property, we can prove that Q
(n)
r

(
T

(n)
A,k

)
≤ Kεq

√
n for some

K > 0. Passing εq → 0 takes care of this case.
Therefore, we only need to focus on case B). Recall that

the tie-breaking rule is uniform random selection. At time

T
(n)
k , the chosen task J∗ has a remaining service time X

(n)
k

with CDF ν
(n)
k (x), x ≥ 0. Note that P[B(e) ≤ x] is a contin-

uous function. We can construct a sequence of simple CDF
functions Fm(x) =

∑km
i=1 f

m
i 1[bmi−1,b

m
i ) (x) , bmi > 0, 1 ≤ i ≤

km for m = 1, 2, · · · , with ρ
(
Fm(x),P[B(e) ≤ x]

)
< ε/2 for

m large enough. By the state space collapse property of pro-

cesor sharing [12], we know ρ
(
ν
(n)
k (x),P[B(e) ≤ x]

)
< ε/2

for n large enough, which implies ρ
(
ν
(n)
k (x), Fm(x)

)
< ε.

Thus, we can first assume X
(n)
k ∈ {bmi , 1 ≤ i ≤ km} for a

fixed m that is large enough.



Define D(n)
q =

{
Q

(n)
m

(
T

(n)
k

)
/
√
n > q

}
for q ≥ εq. Denote

by Yk the length of the time interval when task J∗ occupies
a server. Using Lemma 4 and the state space collapse prop-
erty, we can repeat the similar arguments in proving case 1)
for Policy I to show, for 1 > ε > 0 and n large enough,

P
[
Yk ≥ (1− ε)bmi q

√
n|X(n)

k = bmi ,D(n)
q

]
> 1− η. (29)

Let

W(n)
k =

{
Q(n)
r

(
T

(n)
k + Yk

)
> (1− ε)λmin{bmi }εq

√
n/r
}
.

Due to Poisson departures from the map queue and the law
of large numbers, using (29) with q = εq on Yk ≥ (1 −
ε) min{bmi }εq

√
n, we obtain P

[
W(n)
k

∣∣D(n)
εq

]
> 1 − 2η, for n

large enough. For E(n) =
{
M (n)(lηk−1n) ≤ mη

√
n
}

, with

M (n)(lηk−1n) being the maximum of W
(n)
m (t) on the interval

[0, lηk−1n] (noting that P[T
(n)
k−1 < (lηk−1 − 1)n] > 1 − η), we

have, by Lemma 2, for any 0 < η < 1, there exist mη and

n0 such that P
[
E(n)

]
≥ 1− η for all n > n0. We can prove

P
[{
T

(n)
A,k − T

(n)
k < rκmη

√
n
}
∩ E(n) ∩W(n)

k

∣∣D(n)
εq

]
> 1− 3η

for n large enough, which, in combination with the upper
bound for case A), proves (a). The previous arguments, by
(29), at the same time also provide a better lower bound

P
[
Q(n)
r

(
T

(n)
k + Yk

)
> (1− ε)λbmi q

√
n/r
∣∣G(n)] > 1− 2η,

where G(n) = D(n)
q ∩ {X(n)

k = bmi } with n large enough. It
can be used to prove (b). We skip the lengthy technical
details and the proof of (c) here. Putting all together and
using the M1 topology, by the arguments in the proof of
Theorem 2.1 in [19], we finish the proof.

4. CRITICALITY PHENOMENON
The criticality phenomenon was first characterized through

analysis by the logarithmic asymptotics derived in Theo-
rem 4 of [28]. It assumes that B follows a power law distri-
bution, which represents typical MapReduce workloads [6,
10, 18]. Essentially, it says that if R∗ = sup{n : P[R =
n] > 0} is smaller than a critical value λE[R]E[C +D] then
log P[T > x]/ log x ≈ −α + 1; if R∗ > λE[R]E[C + D] then
log P[T > x]/ log x ≈ −α. It reveals that when the number
of ReduceTasks, configured by independent users, reaches
a critical value that depends on the statistic characteristics
of the jobs running in the system, then the job processing
time distribution tail can even change by one order. This
can result in much longer job execution times when multi-
ple users configure the number of ReduceTasks for their jobs
independently in a shared cluster.

We empirically validate this criticality phenomenon for
representative workloads that are similar to Facebook traf-
fic [6]. The details of the testbed are described in Section 5.
We can find the best configuration for the number of Reduc-
eTasks that optimizes each job’s processing time in a stand-
alone environment. However, using these configurations in
a shared run-time, we demonstrate that the job execution
distribution exhibits much worse performance than using a
different configuration, under which every job runs slower in
a stand-alone environment. This result provides guidance
on configuring the number of ReduceTasks for MapReduce.

To validate the criticality phenomenon, we test a flow con-
sisting of 506 jobs that represent the Facebook traffic as de-
scribed in [6]. This workload captures two critical features in
real traffic [6, 10]. First, the input job sizes exhibit a power
law distribution with an exponent equal to 1.6, as measured
in [6]. Second, it contains a diverse set of jobs that stress dif-
ferent resource bottlenecks (e.g., CPU, I/O, network) in the
cluster. Some jobs such as Wordcount and Termvector con-
sume a large amount of CPU computation while generating
little intermediate data. Other jobs such as Sequencecount
and Terasort impose heavy pressure on both network and
storage systems, straining the copy/shuffle phase.

The job composition of the flow is shown in Table 1. In
the table, we sort all the jobs according to their input data
sizes and the number of ReduceTasks specified by a given
job. All of these jobs are categorized into 9 different groups
in increasing order.

Table 1: Composition of 506 jobs that are similar to
the Facebook workload [6]

Group Benchmark Input Size Job (#) ReduceTasks (#)
Test-1 Test-2

1 Wordcount 64MB 330 1 1
2 Termvector 128MB 109 4 4
3 Invertedindex 256MB 36 8 18
4 Termvector 512MB 16 12 24
5 Invertedindex 1GB 5 12 32
6 Terasort 2GB 4 16 46
7 Adjancylist 4GB 3 16 46
8 Sequencecount 8GB 2 20 46
9 Sequencecount 16GB 1 20 46

We conduct two sets of tests: all configurations for Test 1
and Test 2 are identical except that the number of Reduc-
eTasks are different, as shown in the column on ReduceTasks
for Test 1 and Test 2 in Table 1. In both tests, job sub-
mission time points follow the same Poisson process with
an average interval of 8 seconds. Test 1 configures each job
with a small/medium number of ReduceTasks; none of them
takes the full reduce slots. On the contrary, Test 2 sets a
large number of ReduceTasks to jobs in Group 6-9. In prac-
tice, users optimize their individual jobs in a selfish manner,
applying large numbers of ReduceTasks to achieve high par-
allelism and accelerate job executions. We indeed observe
that, with the configuration in Table 1, every job running in
a stand-alone environment takes longer time under Test 1
than under Test 2.
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Figure 5: Criticality phenomenon exhibited by
workloads similar to Facebook traffic [6]

However, running in a shared environment, as shown in
Fig. 5, the job processing time under Test 2 is much worse



than under Test 1, in the sense that they even have one
order magnitude of difference for the empirical distribution
tail (i.e., 1.9 for Test 1 and 0.9 for Test 2). The average exe-
cution time for Test 1 is 42.6 seconds, contrasting to the pro-
longed average execution time 70.66 seconds under Test 2.
In Test 1, we do not observe job starvation, which is de-
fined to be the phenomenon that a job cannot successfully
take a reduce slot even after its map phase completes [31].
Nevertheless, in Test 2, though each job runs faster in a
stand-alone environment, we observe dramatically increased
job delays to many small jobs that are submitted after large
ones, since these large jobs can monopolize the availalbe
slots. The one order difference of the empirical distribu-
tions for the job processing times under the two tests suf-
ficiently validates the criticality phenomenon in Theorem 4
of [28]. The criticality phenomenon shows that that self-
ish optimization for individual jobs can deviate significantly
from a global optimum for configuring MapReduce.

5. EXPERIMENTS
This section describes the test bed and the experiment

that illustrates the performance in heavy-traffic.

5.1 Environment
Test-bed Setup: All experiments are conducted on a

cluster with 24 nodes using Linux 22.6.18-194.17.4.el5 ker-
nel. Each node is equipped with four 2.67GHz hex-core
Intel Xeon X5650 CPUs with Hyper-threading capability,
24GB memory, and two 500GB Western Digital SATA hard
drivers. All nodes are connected to the same Top-of-Rack
1Gigabit Ethernet switch.

Hadoop Configuration: One master node is dedicated
as the NameNode of the Hadoop Distributed File System
and JobTracker of the Hadoop MapReduce. Each of the
other slave nodes has 4 map slots and 2 reduce slots, to-
taling 92 map slots and 46 reduce slots in the cluster. We
assign 8GB heap memory to the JobTracker and 1GB heap
memory to each map and reduce task, respectively. HDFS
block size is 128MB. Given that Hadoop contains hundreds
of configuration parameters, we follow the default setting for
most of them, such as 3 seconds heartbeat interval, 3 data
block replicas, 5% slowstart, etc.

Benchmarks: We employ Tarazu benchmark suite de-
signed in [4] to compose the workloads. It is designed to
represent typical workload, including Wordcount, Terasort,
Termvector, Invertedindex, Sequencecount and Adjancylist.
This benchmark is used to empirically validate the criticality
phenomenon in Section 4.

5.2 Detailed desciption
ReduceTasks are launched once a small percentage of Map-

Tasks of a job complete so that the copy/shuffle phase of
ReduceTasks can overlap with the map phase. Ideally, as
soon as the map phase of a job finishes, ReduceTasks should
quickly step into the reduce phase to execute reduce func-
tions without further waiting for intermediate data trans-
fer. However, when the system is heavily loaded, we observe
that MapTasks and ReduceTasks cannot overlap in time.
To demonstrate this issue, we submit 180 Terasort jobs ac-
cording to a Poisson process with average arrival interval 18
seconds. The stand-alone execution time of each Terasort
job is 120 seconds.
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Figure 6: Non-overlap for map and reduce tasks in
heavy traffic

In Fig. 6, we profile the number of running jobs that are
in the map phase and the reduce phase. In addition, we also
monitor the number of non-overlapping jobs, of which all
ReduceTasks are launched after all MapTasks of the same
job complete. Since a majority of the jobs have not fin-
ished their map phases before 100 minutes, these jobs are
not non-overlapping jobs. After 100 minutes, we observe a
quick increase in the number of non-overlapping jobs in the
system. As more and more jobs finish their map phases, a
large fraction of them find their copy/shuffle phases severely
delayed. The number of non-overlapping jobs reaches 73
(40.5% of total jobs) at around 200 minutes. After 200 min-
utes, the number of non-overlapping jobs gradually declines
due to job departures. This experiment demonstrates that
the map phase and the reduce phase of the same job cannot
effectively overlap in heavy traffic.

6. CONCLUSION
A MapReduce system serving multiple jobs can be mod-

eled by a processor sharing queue coupled with a multi-
server queue. Theoretically understanding its scaling per-
formance can provide guidance in managing the system and
configuring job parameters. Through modeling analysis and
real experiments, we show that this system, if not carefully
dealt with, can cause interesting non-work-conserving ef-
fects. First, we derive the diffusion limit when the system is
in heavy traffic. We show that, some seemingly innocuous
design choices for a tie-breaking rule can result in undesir-
able performance. Depending on how tasks are scheduled,
the diffusion limit can even exhibit spiking behaviors, im-
plying longer job execution times. Second, we empirically
validate a criticality phenomenon by real experiments. The
results offer insights on configuring MapReduce systems and
user job parameters.
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