
Characterization and Optimization of
Memory-Resident MapReduce on HPC Systems

Yandong Wang∗ Robin Goldstone† Weikuan Yu∗ Teng Wang∗

Auburn University∗ Lawrence Livermore National Laboratory†

{wangyd,wkyu,tzw0019}@auburn.edu {goldstone1}@llnl.gov

Abstract—MapReduce is a widely accepted framework for
addressing big data challenges. Recently, it has also gained
broad attention from scientists at the U.S. leadership computing
facilities as a promising solution to process gigantic simulation
results. However, conventional high-end computing systems are
constructed based on the compute-centric paradigm while big
data analytics applications prefer a data-centric paradigm such
as MapReduce. This work characterizes the performance impact
of key differences between compute- and data-centric paradigms
and then provides optimizations to enable a dual-purpose HPC
system that can efficiently support conventional HPC applications
and new data analytics applications. Using a state-of-the-art
MapReduce implementation Spark and the Hyperion system at
Lawrence Livermore National Laboratory, we have examined the
impact of storage architectures, data locality and task scheduling
to the memory-resident MapReduce jobs. Based on our charac-
terization and findings of the performance behaviors, we have
introduced two optimization techniques, namely Enhanced Load
Balancer and Congestion-Aware Task Dispatching, to improve the
performance of Spark applications.

I. INTRODUCTION

One grand challenge faced by our society is a deluge of
digital data, so called Big Data. According to the 2011 IDC
report [1], a total of 1,220 exabytes of data was created and
replicated on earth in 2010. IDC estimated that the volume of
digital data will continue to grow at an annual rate of 50%, i.e.,
the amount of data is expected to reach more than 8 zettabytes
by 2015. To cope with the data deluge challenge, the past few
years have witnessed rapid development of big data analytics
frameworks [2], [3], [4], [5], [6]. Among them, MapReduce [2]
has achieved widespread success.

Many organizations have been embracing MapReduce and
deploying its different implementations such as Hadoop [3],
Dryad [4], and Spark [5] to meet their needs of massive com-
putation and analysis of enormous datasets, thereby mining
critical knowledge for their business.

In this modern rush for gold from data, different organiza-
tions are facing very different considerations when it comes to
a decision on their data analytics systems. With the prevalence
of cloud platforms and commercial computing services, many
customers can leave that decision to their system providers.
But the system providers really have to juggle between two
choices: should they construct from scratch dedicated sys-
tems for data analytics, or should they evolve their systems
to meet the demands of data analytics applications while
continuing to support existing applications and customers?

The latter is a particularly perplexing situation faced by the
users and administrators at the leadership computing facilities
who have been relying on traditional HPC (High-Performance
Computing) systems for their scientific applications. Along
with this dilemma is that there is a hidden paradigm shift
along with the emergent focus on big data. For the first few
decades of computer history, computing power has been a
scarce resource. Thus conventional systems are constructed
based on a compute-centric paradigm while the grand objective
is to aggregate as much computing power as possible in terms
of the number of floating-point operations per second. The
need to analyze big data has actually pushed the transition of
computer systems into a data-centric paradigm for which the
grand objective is to attain the fastest analytics power in terms
of the number of bytes and records processed per second.

(a): Compute-Centric paradigm

Parallel File System &
Backend Storage

MapReduce on
HDFS or Google File System

Data	
Node	

PE	

(b): Data-Centric paradigm

Data	
Node	

PE	

Data	
Node	

PE	
PE	 PE	 PE	

Fig. 1: Data-centric and compute-centric paradigms.

Fig. 1 shows a comparison between compute- and data-
centric paradigms. There are two key distinctions between
these paradigms. First, there is a key difference on the place-
ment of compute and storage resources. The conventional
compute-centric paradigm has separated compute and storage
resources in the form of a computer cluster and a parallel file
system that are connected via high speed networks. In contrast,
the data-centric paradigm provides co-located compute and
storage resources on the same node. Second, there is a key
difference in terms of the impact of task scheduling and data
placement. In the compute-centric paradigm, tasks on com-
pute nodes are, in general, equally distant from the backend
storage system. HPC systems are Typical manifestations of
this paradigm. In the data-centric paradigm, tasks have strong
affinity to the nodes containing their datasets. (Note that we
are aware of some hierarchical compute-centric systems such
as BlueGene series on which physical locations of compute
nodes affect the speed of storage access.) Because of these dis-
tinctions, on compute-centric paradigm, applications sharing

2014 IEEE 28th International Parallel & Distributed Processing Symposium

1530-2075/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPS.2014.87

799

the same data often involve repetitive data movement between
the computing resource and the storage backend. In contrast,
the data-centric paradigm provides co-located compute and
storage resources on the same node to facilitate locality-
oriented task scheduling. By scheduling computing tasks to
where data resides, data movement can be minimized for
applications sharing the data.

These distinctions between compute- and data-centric
paradigms have significant performance implications to dif-
ferent types of application workloads. For system providers
who are eager to support more MapReduce-based analytics
applications on HPC platforms, it is imperative to characterize
the performance of key architectural components in these two
different paradigms. Particularly, how does the configuration
of storage resources such as parallel file systems affect job
scalability and throughput? What is the impact of data place-
ment and task scheduling? And how to reconcile and converge
the architectural differences between the two paradigms so that
one system can be configured and tuned for productive sharing
by both conventional HPC applications and the emergent
MapReduce-based analytics applications.

In this paper, we undertake an effort with intensive experi-
ments to characterize the performance, identify the inefficiency
of a MapReduce-based framework on the compute-centric
paradigm, and compare its performance with that on the
data-centric paradigm. Accordingly, we also introduce several
optimizations targeting at compute-centric HPC systems.

Among many MapReduce frameworks, we have chosen
Spark [5], which is a memory-resident implementation shown
to outperform Hadoop for many applications by orders of
magnitude [5], [7]. We leverage the Hyperion [8] system at
Lawrence Livermore National Laboratory with two distinct
configurations: one under the compute-centric paradigm and
the other under the data-centric paradigm.

In summary, we conduct a comprehensive investigation to
characterize the performance critical aspects of compute- and
data-centric paradigms and shed light on how to build a dual-
purpose HPC system to enable fast data analytics. We have
made the following contributions in this research.
• We have studied the impact of storage architecture to the

performance of different types of MapReduce jobs, and
revealed that their performance on HPC systems is highly
dependent on their computation intensity.

• We have characterized the importance of intermediate
data placement and the benefits of hierarchical storage
media to Spark applications. Particularly, we show that
MapReduce applications need to be aware of the perfor-
mance implications of storage consistency mechanisms
on HPC systems and avoid the cascading effects of lock
contention from HPC file systems such as Lustre.

• We have evaluated the impact of locality-oriented
scheduling techniques for MapReduce jobs on compute-
centric HPC systems. We show that maximizing data
locality is not so critical, and delay scheduling [9], a
popular strategy to delay tasks for data locality can even
cause performance degradation.

• We have introduced two optimization techniques: En-
hanced Load Balancer and Congestion-Aware Task Dis-
patching. The former takes into account performance vari-
ation and imbalanced data distribution when scheduling
tasks, resulting an improvement of 26% on job execution
time. The latter recognizes the existing oblivity of Spark
to new storage devices such as SSD, throttles the launch
of Spark tasks and mitigates the congestion, thereby
achieving a performance gain up to 41.2%.

II. COMPARISON BETWEEN COMPUTE-CENTRIC AND
DATA-CENTRIC PARADIGMS

In this section, we provide a direct comparison between the
compute-centric and data-centric processing paradigms.

 MDS OSS

Interconnect

 OSS

 OSS

 OSS

 OSS

 OSS

Datanode

…

Executor
Datanode

…

Executor
Datanode

…

Executor

HDFS

NameNode

MapReduce

Scheduler

(a): A typical compute-
centric HPC system.

(b): A typical data-centric big
data analytics system.

Fig. 2: Detailed comparison between compute- and data-
centric paradigms.

A. HPC Systems Representing the Compute-Centric Paradigm

Fig. 2(a) shows a diagram of typical compute-centric HPC
systems. The core of such systems consists of a large collection
of compute nodes, i.e., processing elements (PEs), which offer
the bulk of computing power. Via a high-speed interconnect,
these PEs are connected to a parallel file system from the
storage backend for data I/O. Lustre is a typical file system
used on HPC systems. It is a POSIX-compliant, object-based
parallel file system, offering parallel I/O services to the clients
(PEs) through a MetaData Server (MDS) and many Object
Storage Servers (OSSes).

Lustre provides fine-grained parallel file services with its
distributed lock management. To guarantee file consistency,
it serializes data accesses to a file or file extents using a
distributed lock management mechanism. Because of the need
for maintaining file consistency, all processes first have to
acquire locks before they can update a shared file or an
overlapped file block. Thus, when all processes are accessing
the same file, their I/O performance is dependent not only on
the aggregated physical bandwidth from the storage devices,
but on the amount of lock contention among them as well.

B. Spark – A Representative of Data-Centric Paradigm

MapReduce frameworks distribute computation map and
reduce tasks among a number of slave nodes. Reduce tasks
consolidate and transform the intermediate data generated by
tasks from the previous map phase. Spark is a recent, highly
popular MapReduce implementation. It consists of two cate-
gories of components: a scheduler and many executors. The

800

scheduler is in charge of scheduling tasks, monitoring their
progress, and fault handling through task re-execution. The
executors are responsible for executing the actual computing
and data processing tasks. As many MapReduce implementa-
tions, Spark usually works together with distributed file sys-
tems that are designed to co-locate the storage resource (i.e.,
DataNode) with the compute resources (i.e., tasks launched
by Executors) as shown in Fig. 2(b). For example, Spark
relies on the HDFS [10] to manage the flow of data. HDFS is
composed of a master NameNode and many slave DataNodes.
Google’s MapReduce has a similar reliance on the Colossus,
the latest version of Google file system. Such co-localization
of DataNodes and Executors realizes a data-centric computing
model to minimize data movement between computation tasks
and the storage system.

C. Memory-Resident Resilient Distributed Datasets in Spark

Compared to other MapReduce implementations such as
Hadoop [3], Spark provides two key features. First, Spark
leverages the distributed memory from all slave nodes to store
most intermediate data during job execution and the final
execution results at job completion. By doing so, it avoids the
file system, retaining most data resident in distributed memory
across phases in the same job and/or different jobs. Such
memory-resident feature benefits many applications such as
machine learning or iterative algorithms that require extensive
reuse of results among multiple MapReduce jobs. Second,
Spark introduces resilient distributed datasets (RDDs) to fa-
cilitate the programming of parallel applications. Each RDD
represents a collection of data partitions that spread across the
cluster. A rich set of operations are provided to manipulate
RDDs (e.g., map, flatMap, groupBy, and reduce, etc). Overall,
those operations can be categorized into two types, which are
transformation and action, respectively.

Split	

Split	

……	

Split	

HDFS	
Hadoop

RDD
Filtered

RDD
FlatMapped

RDD

Disk	

Disk	

Disk	

Disk	

Shuffled
RDD

filter flatMap groupByKey

Mapped
RDD

map
Fig. 3: MapReduce processing pipeline via using RDDs.

A transformation converts a source RDD to a destination
RDD by applying User-Defined Functions (UDF) to each par-
tition contained in the former. Fig. 3 illustrates an example of
a Spark MapReduce job, in which an HDFS file is transformed
to the final MappedRDD through four transformations: filter,
flatMap, groupByKey and map. When Spark is deployed on a
cluster featuring compute-centric paradigm, HadoopRDD can
be replaced by system dependent RDD, such as LustreRDD,
to retrieve input from HPC parallel file system.

Spark’s actions include reduce, count, collect, etc. An action
triggers Spark to construct an execution plan represented

internally as a directed acyclic graph (DAG) that consists of
multiple stages. Each stage includes many transformations that
can be pipelined. Stages are connected through the shuffle
operations for intermediate data shuffling. An implicit stage
is embedded into the DAG for every shuffle operation. For
example, filter and flatMap in Fig. 3 are grouped into a same
stage, while the groupByKey is in an independent stage. Sparks
launches stages within the DAG in a serialized manner.

The shuffling of intermediate data is a major performance
bottleneck of MapReduce implementations, including Spark.
However, such shuffle operation widely exists in many critical
operations, such as join, reduceByKey, and groupBy, etc. To
avoid substantial overhead and provide reliable job execution,
Spark materializes partitions onto the local file system. When
a shuffle operation is encountered, Spark will undertake two
phases for moving intermediate data: storing and shuffling. In
the storing phase, Spark schedules a round of ShuffleMapTasks
to flush in-memory output from the previous stage to the
file system. Then in the shuffling phase, a ShuffledRDD is
introduced to transfer the intermediate data across the network.

III. METHODOLOGY

A. Experimental Testbed

TABLE I: List of key Spark configuration parameters.

Parameter Name Value
spark.reducer.maxMbInFlight 1GB
spark.rdd.compress false
spark.shuffle.compress true
spark.buffer.size 8MB
spark.default.parallelism application dependent

Unless otherwise specified, our experiments are carried
out on the Hyperion cluster [8] with 101 compute nodes at
Lawrence Livermore National Laboratory. One node serves
as the master of the Spark and the NameNode of HDFS.
Each compute node is equipped with two 2.60GHz Intel E5-
2670 processors (16 cores per node) and 64 GB of RAM. We
allocate 30 GB per node for Spark jobs and reserve 32 GB
for RAMDisk. On each node, there is one SATA-based SSD
of 128 GB storage space mounted via ext4 file system. Its
peak sequential write and read bandwidths reach 387 MB/sec
and 507 MB/sec, respectively. All compute nodes span across
two racks and are fully connected through InfiniBand QDR
which delivers up to 32 Gpbs link bandwidth. A centralized
Lustre file system providing 47 GB/sec aggregated bandwidth
is mounted on all the compute nodes.

All compute nodes run Linux 2.6.32 kernels. Spark 0.7.0,
along with Scala 2.9.2 and Oracle Java 1.7.0 are used. The
HDFS block size is set as 128 MB. We have also carefully
tuned Spark on Hyperion. Table I summarizes main parameters
that have noticeable performance impact. For all tests, we
report the median of five test runs.

B. Benchmarks

We have selected three representative benchmarks includ-
ing GroupBy, Grep, and Logistic Regression (LR). They are
described as follows.

801

Stage&2:&Storing&
Intermediate&data&&

Stage&1:&
Computa4on&&

Stage&3:&Shuffling&
Intermediate&data&&

(a): GroupBy (c): Logistic
Regression

Stage&1:&
Computa4on&&

Stage&2:&
Computa4on&&

Stage&3:&
Computa4on&&

Stage&2:&Storing&
Intermediate&data&&

Stage&1:&
Computa4on&&

Stage&3:&Shuffling&
Intermediate&data&&

(b): Grep

Fig. 4: Execution plans of three representative benchmarks.

GroupBy is a critical operation used by many applications,
including kMeans, wordcount, and calculating transitive clo-
sure of a graph, etc. It helps reveal the pattern of shuffle
operations. Fig. 4(a) depicts the execution plan of GroupBy.
It consists of three stages. In the first computation stage,
each task generates <key, value> pairs in memory. In the
second stage, Spark schedules ShuffleMapTasks to partition
the intermediate data and store them into the file systems.
In the last stage, fetching tasks shuffle intermediate data
over the network. Across such data processing pipeline, the
intermediate data size is equal to the input size.

Grep searches a string that matches a regular expression
from a set of documents. It represents a wide range of data
analytics applications, such as logQuery and select, etc. Grep’s
execution plan as shown in Fig. 4(b) bears some similarity to
that of GroupBy. However, it generates much less intermediate
data, requiring very little shuffling of data. Its intermediate data
size ranges from 1 MB to 200 MB in our test cases.

Logistic Regression (LR) is an iterative application that
predicts the value of a vector according to a qualitative
response model. It can leverage the strength of Spark in
caching job results in memory. As shown in Fig. 4(c), we
run three iterations for LR. Every iteration is translated into
one Spark job that is executed in one stage. Multiple stages
are not pipelined in this benchmark.

IV. THE IMPACT OF STORAGE ARCHITECTURE

As discussed in the introduction, the storage architecture is a
key distinction between data- and compute-centric paradigms.
In the data-centric paradigm computation tasks are co-located
with the storage resources, while in compute-centric paradigm
tasks need to access a separate storage subsystem via in-
terconnect. In this section, we characterize the impact of
storage architecture on MapReduce jobs. To have a storage
architecture for the data-centric paradigm, we configure an
HDFS file system with 32 GB RAMDisk as the storage for
each DataNode on Hyperion. For the storage architecture of
the compute-centric paradigm, we directly use the Lustre file
system of Hyperion.

A. Location of Data Source

Among the three benchmarks, both Grep and LR work with
a varying amount of input data. But they differ significantly in
terms of their analytics computation. Grep generates a small
amount of intermediate data, for which shuffling is required;

 50

 100

 150

 200

 250

 300

 350

 100 200 300 400 500 600 700 800 900 1000

J
o

b
 E

x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c

s
)

Input Data Sizes (GB)

HDFS (32MB)
HDFS (128MB)
Lustre (32MB)
Lustre (128MB)

(a) Grep.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100 200 300 400 500 600 700 800 900 1000

J
o

b
 E

x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c

s
)

Input Data Sizes (GB)

HDFS (32MB)
HDFS (128MB)
Lustre (32MB)
Lustre (128MB)

(b) Logistic Regression (LR).

Fig. 5: Performance of retrieving inputs from HDFS and
Lustre.

and LR does mostly computation. We run both benchmarks
with their input coming from the compute-centric Lustre-based
configuration and the data-centric HDFS-based configuration.

Fig. 5 shows the comparison of the job execution time of
Grep and LR benchmarks for both configurations. Overall, we
have observed that the extent of impact is highly dependent on
the computational intensity of MapReduce tasks. For Grep jobs
with low computation, such as simply scanning of the input,
the Lustre configuration results in severe performance penalty.
Fig. 5(a) shows that, with 32 MB split size, the compute-
centric Lustre configuration performs up to 5.7× worse than
HDFS on average. For the Lustre configuration, increasing the
split size from 32 MB to 128 MB reduces the job execution
time by 15.9% due to less scheduling overhead. But there is
still a significant performance loss when running Grep on the
compute-centric Lustre configuration.

On the contrary, for the computation-intensive jobs, such
as multidimensional vector multiplication in LR, the cost of
retrieving input from Lustre is not as significant as shown
in Fig. 5(b). Furthermore, as shown in the figure, the Lustre
configuration outperforms HDFS by 12.7% on average for
a 32 MB split size. This improvement is consistent across
different split sizes. The performance difference is caused by
delay scheduling policy [9] adopted by Spark, which will be
further analyzed in Section V-A.

Taken together, the impact of the storage architecture to
MapReduce applications depends on the characteristic of the
applications’ computation tasks. For LR-type computation-
intensive jobs, the impact is negligible. But for Grep-based
jobs with low computation requirements, the compute-centric
Lustre configuration negatively affects the performance.

B. Location of Intermediate Data

The location of intermediate data is another critical issue.
It directly determines the performance of intermediate data
shuffling. To investigate this factor, we use the GroupBy
benchmark that allows flexible tuning of the intermediate data
size. During the evaluation, we run GroupBy and store the
intermediate data to the two different storage configurations.

Fig. 7(a) illustrates the performance of GroupBy when
intermediate data resides in different storage architectures.
Overall, the data-centric HDFS configuration exhibits sig-
nificant advantage over the compute-centric alternative. It
outperforms the optimal Lustre case (Lustre-local) by up to
6.5× on average, and the improvement ratio increases linearly

802

Network	
Server	

Fetching	
Task	

FetchRequest 1
2

3
Send data

Lustre	

Compute Node

(a): Lustre-local Case

ShuffleMap
Task

Lustre	

Fetching	
Task	

Fetching	
Task	

ShuffleMap
Task

ShuffleMap
Task

(b): Lustre-shared Case

1 Write

2 Read

Fig. 6: Two approaches to use Lustre to conduct intermediate
data shuffling.

with the size of intermediate data. However, due to the limited
storage spaces, HDFS can only support a maximum of 1.2 TB
intermediate data size.

However, in many scenarios, compute nodes in HPC clusters
are not equipped with any local persistent storage systems,
for which placing intermediate data on the compute-centric
Lustre-based storage is the only choice.

Lustre-local and Lustre-shared, as shown in Fig. 6, illustrate
two approaches to use Lustre for intermediate data shuffling.
In the Lustre-local case, fetching tasks that need to shuffle the
intermediate data are unaware of the existence of the Lustre.
Thus they initiate FetchRequests to the remote servers which
in turn retrieve the data from their local Lustre directories
and send them back across the network. However, since data
retrieval from Lustre requires a movement over the network,
Lustre-local can cause repetitive data movements, wasting the
network bandwidth.

We have examined the alternative Lustre-shared approach,
in which each fetching task directly retrieves intermediate
data from Lustre. Although this approach seemingly addresses
the issue of repetitive data movement within Lustre-local, it
suffers from tremendous performance degradation due to file
consistency ensured by Lustre.

Fig. 7(a) illustrates that Lustre-shared performs worse than
Lustre-local by up to 3.8× with GroupBy benchmark. The
detailed dissection in Fig. 7(b) further reveals that, although
the two approaches perform comparably in the data storing
phase, the shuffling phase of Lustre-shared is inferior to that
of Lustre-local by up to one order of magnitude. The main
reason for the inferiority of Lustre-shared is that retrieving
intermediate data written by remote servers incurs costly
metadata operations at the OSSes due to the need to maintain
the storage consistency.

In the Lustre-local approach, the server that handles the
FetchRequests simply retrieves the intermediate data written
by the tasks on the same node. Meanwhile, due to the effect
of large buffer cache in a compute node, it is likely that those
intermediate data and corresponding metadata, such as write
locks, still reside in the local memory. Thus, they can be
quickly retrieved to serve the FetchRequests without involving
expensive internal operations of Lustre for maintaining the
data consistency.

On the contrary, in the Lustre-shared case, each fetching
task accesses Lustre to retrieve the data written by remote
nodes. Such design requires the Distributed Lock Manager

 0

 500

 1000

 1500

 2000

 2500

 3000

 200 400 600 800 1000 1200 1400

J
o

b
 E

x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
s
)

Intermediate Data Sizes (GB)

Lustre-local

Lustre-shared

HDFS

(a) Job Execution Time of GroupBy.

 1

 10

 100

 1000

 200 400 600 800 1000 1200 1400

J
o

b
 E

x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
s
)

Intermediate Data Sizes (GB)

Storing Phase (Lustre-local)

Shuffling Phase (Lustre-local)

Storing Phase (Lustre-shared)

Shuffling Phase (Lustre-shared)

(b) Dissection of Lustre Cases.

Fig. 7: Performance when intermediate data resides in Lustre.

of Lustre to revoke the write locks. After lock revocation,
intermediate data cached remotely is forced to be flushed to
the OSSes before they become available to fetching tasks. This
sequence of internal operations substantially delays the inter-
mediate data movement. Furthermore, current Spark launches
fetching tasks of a job simultaneously during the shuffling
phase, forcing all the intermediate data to be flushed to the
OSSes around the same time. As a result, such behavior can
cause serious contention at Lustre, significantly degrading the
performance of the shuffling phase.

In summary, the data-centric HDFS configuration shows
dramatic advantage over the compute-centric configuration
when used for storing the intermediate data. In the compute-
centric case with a shared file system such as Lustre, fetching
tasks can avoid costly metadata operation for better perfor-
mance if they are oblivious to the features of the shared file
system.

C. Leveraging Solid State Disks for Intermediate Data

Many HPC systems are embracing a hierarchical stack of
different storage devices in order to support both data-centric
and compute-centric paradigms, so that they can support
both traditional HPC applications and emerging data analytics
programs. A major effort to achieve such goal is the trend
to integrate high-performance Solid State Drives (SSD) to the
compute nodes. An immediate impact to MapReduce is that
they can efficiently facilitate the processing of intermediate
data. To understand such performance implication, we have
conducted a set of experiments to study the performance
impact of SSD on MapReduce jobs with similar data-centric
HDFS configuration as that in Section IV-B. The performance
of using RAMDisk as the local persistent storage is employed
for performance comparison. We continue to use GroupBy as
the benchmark for this study.

Fig. 8(a) presents the job execution time of GroupBy
when intermediate data is stored on RAMDisk and SDD,
respectively. Overall, using SSD for intermediate data achieves
comparable performance as RAMDisk when the data size
ranges from 100 GB to 600 GB due to the caching effects
from the file system. Once the data size exceeds 700 GB,
RAMDisk performs substantially better than SSD. Note that
SSD can support jobs with much larger intermediate data sizes
than RAMDisk due to the capacity advantage of SSD.

Fig. 8(b) further shows a detailed dissection of job execution
time when SSD is employed. Data shuffling is shown as

803

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 200 400 600 800 1000 1200 1400

J
o

b
 E

x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
s
)

Intermediate Data Sizes (GB)

RAMDisk
SSD

(a) Job Execution Time.

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400
 0

 10

 20

 30

 40

 50

 60

T
im

e
 (

s
e
c
s
)

S
h

u
ff

li
n

g
 T

h
ro

u
g

h
p

u
t

(G
B

/s
e
c
)

Intermediate Data Sizes (GB)

Computation
Intermediate Data Storing
Intermediate Data Shuffling
Shuffling Throughput

(b) Detailed dissection.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 200 400 600 800 1000 1200 1400

T
a
s
k
 E

x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Intermediate Data Sizes (GB)

18.1X

Fastest
Average
Slowest

(c) Performance variation among
tasks that write SSDs.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000 6000 7000

T
a
s
k
 E

x
e
c
u

ti
o

n
 T

im
e
 (

s
e

c
)

ShuffleMapTask Id

(d) Execution time of all ShuffleMap-
Tasks.

Fig. 8: Performance when SSD is used for storing the intermediate data and detailed analysis of tasks that write to and shuffle
data from SSDs.

the key bottleneck when data size ≤ 600 GB, in which the
throughput is bounded by the network bandwidth. When the
data size is between 700 GB and 900 GB, the cache can no
longer satisfy all the write operations during the storing phase.
As a result, both storing and shuffling of intermediate data
contribute equally to the job execution. When the data size
increases further beyond 900 GB, we observe sharp drops on
the performance of storing and shuffling phases due to the
degraded performance of SSD write and read operations. In
addition, the write performance falls more drastically than that
of read. When the storing phase of intermediate data becomes
the major bottleneck of job execution, the throughput of data
shuffling then becomes SSD-bound.

D. Inefficiency in Utilizing SSD

In our experiments with SSD, there is a significant perfor-
mance variation among ShuffleMapTasks writing intermediate
data to SSDs as shown in Fig. 8(c). The performance gap
between the fastest and the slowest tasks can be as wide as
18× when the data size reaches 1.5 TB. On the contrary, the
performance variation among shuffling tasks is moderate (not
shown for brevity), indicating a mild interference among SSD
read operations.

The dramatic variations among ShuffleMapTasks is because
Spark aggressively launches tasks as they arrive in order
to reduce the latency. This is oblivious to the congestion
of underlying SSDs. When multiple data-intensive tasks are
running and issuing a large number of write requests, such
oblivity can result in substantial interference amony tasks. To
gain insight into this issue, we have profiled the execution
times of all ShuffleMapTasks in the 1.5 TB test case. We
plot the execution times of these tasks based on the order
of their launch time in Fig.8 (d). As shown in the figure, early
tasks can take advantage of write buffer and clean blocks
on SSDs. They can quickly complete their work. When the
buffer gradually fills up and clean SSD blocks are depleted,
internal operations for delayed write and garbage collection are
activated. These operations start to interfere with the execution
of ShuffleMapTasks. Thus we observe a degraded performance
for Tasks ranging from 3100 to 4500. However, Spark is
unaware of such interference and continues to insert tasks.
This behavior further exacerbates the contention on the SSDs
and leads to severer interference among Tasks from 4800 to
6400.

In summary, our study reveals that the lack of awareness on
the unique features of SSD can lead to inefficient utilization of
resource when in the storage of intermediate data. Fortunately,
the inefficiency of congestion-oblivious write has also been
documented by many prior studies on SSD [11], [12], [13]. In
Section VI-B, we will demonstrate that an optimization using a
throttling mechanism can effectively mitigate the interference
and improve the storing phase by 41.2%.

V. THE IMPACT OF DATA LOCALITY AND TASK
SCHEDULING

A. Locality-Oriented Scheduling

 0

 10

 20

 30

 40

 50

 60

 100 200 300 400 500 600 700 800 900 1000

J
o

b
 E

x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
s
)

Input Data Sizes (GB)

HDFS-32MB (delay enabled)
HDFS-32MB (delay disabled)
HDFS-128MB (delay enabled)
HDFS-128MB (delay disabled)

(a) Grep.

 0

 200

 400

 600

 800

 1000

 1200

 100 200 300 400 500 600 700 800 900 1000

J
o

b
 E

x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
s
)

Input Data Sizes (GB)

HDFS-32MB (delay enabled)
HDFS-32MB (delay disabled)
HDFS-128MB (delay enabled)
HDFS-128MB (delay disabled)

(b) Logistic Regression (LR).

Fig. 9: Performance degradation caused by delay scheduling.

Maximizing data locality has been a critical objective of
MapReduce schedulers [9], [14], [15]. Delay scheduling [9],
adopted by Spark, is a notable effort for obtaining high
data locality for MapReduce frameworks in the environments
where network bandwidth is a scarce resource. Using the
same compute- and data-centric configurations as described
in Section IV, we conduct an experiment to characterize the
importance of locality-oriented scheduling.

Fig. 9 shows the experiment results when we activate delay
scheduling for the data-centric HDFS configuration. When the
split size is equal to 32 MB, job execution time degrades by
42.7% and 9.9% on average for Grep and LR, respectively.
Similar degradation occurs for other split sizes as well. In
contrast, with the compute-centric Lustre configuration, tasks
can be immediately launched on available compute nodes since
there is no locality constraint. All the computation tasks are
roughly at the same distance from storage resources. Thus,
compared to the data-centric configuration that favors the
use of delay scheduling for better data locality of tasks, this
setting can benefit the computation-intensive MapReduce jobs
as shown in Fig. 5(b),

804

1"

10"

100"

1000"

Ta
sk
%E
xe
cu
+o

n%
Ti
m
e%
(s
ec
)% Task"with"local"data"

Task"with"remote"data""

Grep%% GroupBy% LR%

Fig. 10: Task execution time of three benchmarks.

In addition, Spark pipelines computation with data input,
further diminishing any benefit of data locality. Fig. 10 demon-
strates such argument. It shows the comparison of average task
execution times along with maximum and minimum values of
three different benchmarks. “Task with local data” denotes
that the data input is obtained locally, while “Task with remote
data” indicates the data input from remote servers. As shown
in the figure, enforcing tasks to achieve 100% locality provides
little performance gain for all three benchmarks.

Taken together, our evaluation and characterization of
locality-oriented scheduling for the compute- and data-centric
configurations suggest that (1) scheduling for good local-
ity may not be effective in improving the performance of
MapReduce jobs in HPC environments, and (2) introducing
delays for better task locality is even detrimental on compute-
centric systems because of the uniform reachability of storage
resources to all computation tasks.

B. Load Balance of MapReduce Tasks

Although the compute nodes in a compute-centric envi-
ronment are homogeneous, there exist performance variations
among compute nodes due to the skew of workloads over time.
As a result, fast nodes tend to be assigned with more tasks by
the scheduler. When each of these tasks deposits a unit of
intermediate data, fast nodes end up with much more data
to shuffle or move. This leads to imbalanced distribution of
intermediate data. When a shuffle operation is needed, such
imbalanced distribution can cause straggler issue [16] that
prolongs the ensuing I/O-intensive data storing and shuffling
phases as depicted in Fig. 11.

N1	 N2	 N3	

Storing Phase

Straggler
N4	 N5	

Straggler

Shuffling Phase

N3	 N2	 N1	

Fig. 11: Straggler issue caused by imbalanced intermediate
data distribution during I/O intensive shuffle operation.

To investigate this issue, we use GroupBy as the benchmark
with a split size of 256 MB. Three sets of experiments are
conducted to run 2500 tasks on 50 nodes, 5000 tasks on 100
nodes, and 7500 tasks on 150 nodes, respectively. Fig. 12 (a)
and (b) illustrate the cumulative distribution functions (CDF)
of task and intermediate data distributions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 25 30 35 40 45 50 55 60

C
D

F
 o

f
N

o
d

e
s
 (

%
)

Number of Tasks

50 nodes
100 nodes
150 nodes
Optimal case

(a) Task distribution.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

C
D

F
 o

f
N

o
d

e
s
 (

%
)

Data Sizes (GB)

50 nodes
100 nodes
150 nodes

(b) Intermediate data distribution.

Fig. 12: Unbalanced task assignment leads to unbalanced
intermediate data distribution.

As shown in Fig. 12 (a), the workload among compute
nodes varies substantially. In the case of 100 nodes, for the
first 3% nodes at the head of the distribution, each machine
only hosts 7 GB of intermediate data. While for the last 10%
nodes at the tail of the distribution, each node accommodates
more than 14 GB, i.e., 2× of workload difference. Because
the execution time of storing and shuffling phases are directly
determined by the slowest tasks, those nodes with the most
intermediate data can severely drag down the performance
regardless of how fast other tasks have achieved.

In summary, performance variations and workload skews on
compute-centric systems can lead to imbalanced distribution
of both MapReduce tasks and their intermediate data. Without
an appropriate solution, such issue can hinder MapReduce
systems from achieving the best performance on compute-
centric HPC systems. We will demonstrate in Section VI-A
that, by taking into account of the intermediate data size, the
shuffle operation can be effectively accelerated.

VI. OPTIMIZATIONS FOR SPARK ON COMPUTE-CENTRIC
HPC SYSTEMS

Based on the characterization from Sections IV and V, we
have shown that there are two performance issues that need
to be addressed for the memory-resident Spark framework in
order for it to be effectively supported by the compute-centric
HPC systems. Firstly, the scheduler should take into account
of the need to balance the intermediate data among compute
nodes and mitigate the variations of task execution, thereby
avoiding stragglers. Secondly, the MapReduce workers should
be aware of the unique features of hierarchical storage devices
such as SSDs to effectively utilize them. Accordingly, we
introduce two optimizations: namely Enhanced Load Balancer
(ELB) and Congestion-Aware task Dispatching (CAD), to
address these issues.

A. Enhanced Load Balancer (ELB)

We design ELB to address the issue of imbalanced distribu-
tion of intermediate data. It considers the size of intermediate
data generated by tasks before making further task assignment
decision. When a job starts, ELB-enabled scheduler assigns
tasks to the workers in a round-robin manner. During the
job execution, ELB records the amount of intermediate data
generated by each completed task and monitors the average
data size among all nodes. When the size on a node goes
beyond the average by a threshold (25% currently), ELB

805

 20

 40

 60

 80

 100

 120

 200 400 600 800 1000 1200 1400

T
im

e
 (

s
e

c
s

)

Intermediate Data Sizes (GB)

Staging (Spark)

Staging (ELB-enabled)

Shuffling (Spark)

Shuffling (ELB-enabled)

(a) Storage is the bottleneck.

 20

 40

 60

 80

 100

 120

 200 400 600 800 1000 1200

T
im

e
 (

s
e

c
s

)

Intermediate Data Sizes (GB)

Staging (Spark)

Staging (ELB-enabled)

Shuffling (Spark)

Shuffling (ELB-enabled)

(b) Network is the bottleneck.

Fig. 13: Dissection of GroupBy job execution time.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 200 400 600 800 1000 1200 1400

J
o

b
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s

e
c

s
)

Intermediate Data Sizes (GB)

Original Spark

CAD-enabled Spark

(a) Job execution time.

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400

T
im

e
 (

s
e

c
s

)

Intermediate Data Sizes (GB)

Storing (Spark)

Storing (CAD-enabled)

Shuffling (Spark)

Shuffling (CAD-enabled)

(b) Dissected of job execution.

Fig. 14: Performance of Congestion-Aware task Dispatching.

notifies the scheduler to stop assigning more tasks to that
worker node. Instead, it picks the nodes hosting the least
amount of intermediate data to execute the pending tasks. Once
the average size goes up, ELB resumes to assign more tasks
to the original heavily loaded worker.

Although ELB can balance the size of intermediate data
among compute nodes, two issues arise under such design.
Firstly, ELB may conflict with the data locality, since the nodes
hosting the least amount of intermediate data may not possess
the input for the tasks. However, as shown in Section V-A,
enforcing data locality has negligible impacts on the task
execution time in the HPC environment. Thus it is desirable to
trade off the locality of task scheduling for a balance of data
distribution. Secondly, ELB can cause the idling of certain
workers when they have completed their share of computation
tasks, and the entire computation phase can be consequently
delayed due to the slowest task. However, we have observed
that the cost of waiting for the slowest computation task is
much less than the cost of waiting for the slowest I/O tasks.

In this context, to demonstrate the performance improve-
ment of ELB-enabled scheduler to communication and stor-
age bottlenecks during the shuffle operations, the GroupBy
benchmark is used. To create a scenario of storage bottlenecks,
SSD is used as the local storage device. In Hyperion, we are
not allowed to use other networks other than InfiniBand. So
to create a scenario of network bottlenecks, we reduce the
data size set in FetchRequest from 1 GB to 128 KB. Thus,
many more requests are needed to shuffle the same amount
of data, and the network bandwidth is consequently narrowed
(due to space constraint, we only present the dissection of job
execution and omit execution time of computation phases for
clearness).

Storage Bottlenecks: Fig. 13(a) shows that when the data
size ≤ 900 GB, Spark and ELB perform similarly. However,
ELB outperforms Spark by 26% on average in terms of job
execution time when the data size is between 1 TB and 1.5
TB. Such improvement is mainly attributed to the accelerated
staging phase introduced by the ELB. When data sizes reach
beyond 1 TB, Spark performs worse than ELB by 2.2× on
average in the staging phase. On the contrary, computation
phases from both remain nearly the same.

Network Bottlenecks: Spark performs 14.8% worse than
ELB on average in terms of job execution time. Moreover,
when the network is the bottleneck, unbalanced distribution
has severe impact on small datasets, showing up to 17.5%

degradation when data size is 400 GB. Such difference is
strongly determined by the shuffling phases as shown in
Fig. 13(b). On average, Spark shuffles data slower than ELB
by 29.1% when the input size ranges from 400 GB to 1.2 TB.

Taken together, our ELB demonstrates that unbalanced
distribution of intermediate data can prevent memory-resident
Spark from achieving the optimal performance in the HPC
environment.

B. Congestion-Aware Dispatching (CAD) of Tasks

We design CAD as a feedback control algorithm that aims to
mitigate the task interference when SSD is used as the storage
device for intermediate data. CAD speculates the congestion
status of SSD devices by monitoring the task execution time
of completed ShuffleMapTasks. When a significant jump of
execution time is detected, it throttles the dispatching of tasks
by introducing a delay interval before each dispatching step.
In the current design, we increase the interval by 50 ms
whenever the average execution time increases by 2× (these
are empirically chosen during our tuning process). Conversely,
we reduce the interval accordingly when the average task
execution time drops by half. Though simple, we have ob-
served that such mechanism is effective in optimizing the
SSD writes. This is because such delay interval allows more
time for outstanding operations inside SSD to complete their
work without worsening the congestion. In addition, it also
provides more opportunity to group many small writes, which
are harmful to SSD, thus further reducing the interference.

Fig. 14 compares the performance of the original Spark with
our CAD-enabled Spark by using the GroupBy benchmark
with different input sizes. Overall, CAD effectively accelerates
the intermediate data storing phase once the data size goes
beyond 600 GB. It achieves this without affecting another
two phases as shown in Fig. 14(b). On average, CAD reduces
the storing phase by up to 41.2% when the data size ranges
from 700 GB to 1.5 TB. Such acceleration is reflected in
the job execution time as shown in Fig. 14(a). The average
improvement ratio reaches 19.8%.

VII. DISCUSSION

In this section, we summarize our major findings and
discuss their implications to the design of future systems.

The Impact of Storage Architecture: Computation in-
tensity of MapReduce tasks determines how much impact
the storage architecture of HPC systems will have on the

806

job execution. For computation-intensive applications, there
is little impact between the storage architectures of data- and
compute-centric paradigms. In addition, there is no locality
to the storage for compute nodes on compute-centric sys-
tems; tasks can be launched on any node with little loss
of performance, or even better performance compared to the
data-centric environment. However the data-centric paradigm
still exhibits superior performance for applications with low
computation intensity and high data intensity. Therefore, it
is critical to consider the characteristics of MapReduce jobs
before making data placement decisions. This is important for
system providers in planning the evolvement of their compute-
centric HPC systems for data-centric analytics applications.

In addition, the storage architecture may use distributed
locking mechanism for maintaining file consistency, which
can severely degrade the performance of intermediate data
movement. So we show that designing shuffling mechanisms
can avoid the cascading effects of locking contention and keep
the efficiency of intermediate data shuffling. Users need to
avoid a pitfall to use traditional HPC parallel file system as a
bridge for fast storage of intermediate data.

When SSDs are used as the storage device for intermediate
data, our analysis shows that Spark is currently incapable of
utilizing them efficiently. Uncoordinated resource utilization
can cause severe congestion on the device, leading to signif-
icant task interference, as also shown in [17]. Our findings
suggest that comprehensive examinations are needed to assure
the performance of MapReduce applications while evolving
the underlying storage of a system to SSDs. Optimization
strategies, such as task throttling as shown by our study, can be
leveraged to improve the efficiency of SSD device utilization.

The Effectiveness of Locality-Oriented MapReduce
Schedulers in HPC Environment: Our characterization re-
veals that, when a data-centric storage architecture is con-
figured for computer nodes of an HPC system, MapReduce
schedulers that strive for maximum data locality is not critical.
Moreover, they may even hurt the performance by forcing
a task delay for future opportunistic locality. We have also
revealed that while HPC systems generally have homoge-
neous computer nodes, load imbalance can still arise. The
current scheduler is oblivious to the size of intermediate data
generated by computation tasks, leading to imbalanced data
distribution that can cause many stragglers during shuffle
operations. Our study demonstrates that such imbalanced
distribution can cause suboptimal performance to MapReduce
jobs. MapReduce applications on HPC systems shall not focus
on locality-oriented task scheduling but other critical factors
such as balancing distribution of intermediate data.

VIII. RELATED WORK

Spark is a critical cornerstone of Berkeley Data Analytics
Stack (BDAS) [18] that aims to compete with the open-
source Hadoop. It plays a pivotal role in many industry and
academia projects [7], [19], [20], [21] etc. Shark [7] is a
query processing framework on top of Spark. It compiles
user-submitted SQL queries into Spark jobs and leverages

optimization strategies commonly used in database systems
to optimize the execution plan. Also coupled with Spark,
BlinkDB [20] is another approximate query engine that trades
query accuracy for response time so that it can delivery near
instant response for interactive queries over massive scale
datasets. Spark streaming [19] exploits the potential of Spark
to process real-time streaming data. It partitions streaming
computations into small-sized deterministic batch jobs to fit
the computation model of Spark. Sparkler [21] optimizes
the Spark to support large-scale matrix factorization more
efficiently. It identifies a major inefficiency existing in current
Spark’s broadcast variable and introduces a Carousel Maps
to spread large dataset via using distributed hash table. Our
work is orthogonal to those efforts. In addition, Zaharia et
al. have introduced LATE [22]. Ananthanarayanan et al. have
introduced Mantri [16] and small job cloning [23] to mitigate
the impact of stragglers. However, none of them considers the
imbalanced intermediate data distribution issue.

Many parties have tried to incorporate MapReduce frame-
works with distributed file systems for compute-centric
paradigm. Ananthanarayanan et al. [24] evaluated MapReduce
when it runs with HDFS and GPFS. Maltzahn et al. [25]
studied the combination of Hadoop with Ceph file system.
Panasas [26] is also delivering the support for Hadoop. Our
analysis in this work provides researchers with the first hand
data about absorbing MapReduce into compute-centric HPC
paradigm that relies on above high-performance file systems.

Many efforts have been conducted to investigate the per-
formance of HPC applications on data-centric cloud. Evan-
gelinos et al., [27] analyzed a scientific HPC application on
Amazon EC2 and revealed that the performance of network
in cloud is worse than that of HPC by one to two orders of
magnitude. Gupta et al., [28] observed similar performance
on different cloud platforms. Though raw performance differ-
ence between compute-centric HPC and data-centric cloud is
pronounced, Marathe et al., [29] pointed out that queue wait
time is another critical factor to consider when choosing which
environment is the best for the applications. Our work stands
on the other side of the spectrum by investigating the data-
centric analytics framework on compute-centric paradigm.

IX. CONCLUSIONS

While many existing HPC facilities are evolving new
capabilities to support efficient analytics of big data, this
research addresses an important question on how to support
the traditional compute-centric paradigm for HPC applications
and the emerging data-centric paradigm for big data analytics
applications on the same HPC systems. We have examined
the design and architecture of a state-of-the-art MapReduce
framework – Spark – on HPC systems. Our work sheds
light on the performance issues and design inefficiency when
running Spark jobs on HPC systems with distinct data-centric
and compute-centric configurations: In particular, we have in-
vestigated the impact of storage architecture, locality-oriented
scheduling, and emerging storage devices to memory-resident
MapReduce applications on HPC systems. Based on the

807

experimental results, our optimization techniques, including
the Enhanced Load Balancer and the Congestion-Aware Task
Dispatching, can efficiently improve the performance of Spark
applications on HPC systems.

Acknowledgments

We are very thankful to the anonymous reviewers for their
insightful comments. This work is funded in part by an
Intel grant, an Alabama Innovation Award, and by National
Science Foundation awards 1059376, 1320016 and 1340947.
This work was also performed under the auspices of the US
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
647813).

REFERENCES

[1] “The 2011 Digital Universe Study: Extracting Value from Chaos.”
http://www.emc.com/collateral/demos/microsites/emc-digital-universe-
2011/index.htm.

[2] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[3] “Apache Hadoop Project.” http://hadoop.apache.org/.
[4] Michael Isard and Mihai Budiu and Yuan Yu and Andrew Birrell

and Dennis Fetterly, “Dryad: distributed data-parallel programs from
sequential building blocks,” in EuroSys (P. Ferreira, T. R. Gross, and
L. Veiga, eds.), pp. 59–72, ACM, 2007.

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
a fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation, NSDI’12, (Berkeley, CA, USA), pp. 2–2, USENIX
Association, 2012.

[6] Y. Wang, X. Que, W. Yu, D. Goldenberg, and D. Sehgal, “Hadoop
acceleration through network levitated merge,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, (New York, NY, USA), pp. 57:1–57:10,
ACM, 2011.

[7] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica,
“Shark: Sql and rich analytics at scale,” in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’13, (New York, NY, USA), pp. 13–24, ACM, 2013.

[8] “Hyperion Project.” https://hyperionproject.llnl.gov.
[9] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and

I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proceedings of the 5th European
conference on Computer systems, EuroSys ’10, (New York, NY, USA),
pp. 265–278, ACM, 2010.

[10] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proceedings of the 2010 IEEE 26th Sym-
posium on Mass Storage Systems and Technologies (MSST), MSST ’10,
(Washington, DC, USA), pp. 1–10, IEEE Computer Society, 2010.

[11] “Bcache.” http://bcache.evilpiepirate.org/.
[12] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic char-

acteristics and system implications of flash memory based solid state
drives,” in Proceedings of the eleventh international joint conference on
Measurement and modeling of computer systems, SIGMETRICS ’09,
(New York, NY, USA), pp. 181–192, ACM, 2009.

[13] K. Shen and S. Park, “Flashfq: A fair queueing i/o scheduler for flash-
based ssds,” in Proceedings of the USENIX Annual Technical Confer-
ence, USENIX ATC’12, (Berkeley, CA, USA), USENIX Association,
2013.

[14] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “A throughput optimal
algorithm for map task scheduling in mapreduce with data locality,”
SIGMETRICS Performance Evaluation Review, vol. 40, no. 4, pp. 33–
42, 2013.

[15] Y. Wang, J. Tan, W. Yu, X. Meng, and L. Zhang, “Preemptive reducetask
scheduling for fair and fast job completion,” in Proceedings of the
10th International Conference on Autonomic Computing, ICAC’13, June
2013.

[16] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri,” in Proceedings of the 9th USENIX conference on Op-
erating systems design and implementation, OSDI’10, (Berkeley, CA,
USA), pp. 1–16, USENIX Association, 2010.

[17] X. Li, Y. Wang, Y. Jiao, C. Xu, and W. Yu, “Coomr: Cross-task
coordination for efficient data management in mapreduce programs,” in
Proceedings of SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’13, (New York, NY,
USA), pp. 42:1–42:11, ACM, 2013.

[18] “Berkeley Data Analytics Stack.” https://amplab.cs.berkeley.edu/software/.
[19] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized

streams: an efficient and fault-tolerant model for stream processing
on large clusters,” in Proceedings of the 4th USENIX conference on
Hot Topics in Cloud Ccomputing, HotCloud’12, (Berkeley, CA, USA),
pp. 10–10, USENIX Association, 2012.

[20] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica,
“Blinkdb: queries with bounded errors and bounded response times on
very large data,” in Proceedings of the 8th ACM European Conference
on Computer Systems, EuroSys ’13, (New York, NY, USA), pp. 29–42,
ACM, 2013.

[21] B. Li, S. Tata, and Y. Sismanis, “Sparkler: supporting large-scale matrix
factorization,” in Proceedings of the 16th International Conference on
Extending Database Technology, EDBT ’13, (New York, NY, USA),
pp. 625–636, ACM, 2013.

[22] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments,”
in Proceedings of the 8th USENIX conference on Operating systems
design and implementation, OSDI’08, (Berkeley, CA, USA), pp. 29–42,
USENIX Association, 2008.

[23] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: attack of the clones,” in Proceedings of the 10th
USENIX conference on Networked Systems Design and Implementation,
nsdi’13, (Berkeley, CA, USA), pp. 185–198, USENIX Association,
2013.

[24] R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha, P. Sarkar,
M. Shah, and R. Tewari, “Cloud analytics: do we really need to reinvent
the storage stack?,” in Proceedings of the 2009 conference on Hot topics
in cloud computing, HotCloud’09, (Berkeley, CA, USA), USENIX
Association, 2009.

[25] M. Carlos, M.-E. Esteban, K. Amandeep, J. N. Alex, S. A. Brandt, and
W. Sage, “Ceph as a scalable alternative to the hadoop distributed file
system,” ;login’ 10, USENIX Association, 2010.

[26] “Accelerating and Simplifying Apache Hadoop with Panasas Ac-
tiveStor.” https://www.panasas.com/sites/default/files/uploads/docs/hadoop

wp lr 1096.pdf.
[27] C. Evangelinos and C. N. Hill, “Cloud computing for parallel scien-

tific hpc applications: Feasibility of running coupled atmosphere-ocean
climate models on amazons ec2,” in In The 1st Workshop on Cloud
Computing and its Applications (CCA), 2008.

[28] A. Gupta and D. Milojicic, “Evaluation of hpc applications on cloud,”
Open Cirrus Summit, vol. 0, pp. 22–26, 2011.

[29] A. Marathe, R. Harris, D. K. Lowenthal, B. R. de Supinski, B. Rountree,
M. Schulz, and X. Yuan, “A comparative study of high-performance
computing on the cloud,” in Proceedings of the 22nd international
symposium on High-performance parallel and distributed computing,
HPDC ’13, (New York, NY, USA), pp. 239–250, ACM, 2013.

808

