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Abstract—The growth of computing power on large-scale
systems requires commensurate high-bandwidth I/O systems.
Many parallel file systems are designed to provide fast sustainable
I/O in response to applications’ soaring requirements. To meet
this need, a novel system is imperative to temporarily buffer the
bursty I/O and gradually flush datasets to long-term parallel file
systems. In this paper, we introduce the design of BurstMem,
a high-performance burst buffer system. BurstMem provides
a storage framework with efficient storage and communica-
tion management strategies. Our experiments demonstrate that
BurstMem is able to speed up the I/O performance of scientific
applications by up to 8.5× on leadership computer systems.

I. INTRODUCTION

The astonishing growth of top 500 supercomputers suggests
that, around the time frame of 2018-2020, the computation
power of “leadership-class” systems is likely to surpass 1
ExaFlop/sec (1018 flops/sec). This unprecedented speed re-
quires a commensurate I/O bandwidth of nearly 60 TB/s to
enable the timely storage of application checkpoint data [13].
Unfortunately, the I/O systems have not been able to keep
up with such computation power. For I/O intensive scientific
applications, the I/O time still accounts for a high percentage
of their life cycle. For example, a study on a massively parallel
electromagnetic solver system (NekCEM) shows 60% of the
overall application execution time is spent on checkpointing
on Blue Gene/P systems [14].

For a long time, research has been concentrated on design-
ing Parallel File Systems (PFS) for aggregated I/O bandwidth.
Several PFSs are deployed on current leadership-class com-
puters, such as PVFS [28], GPFS [29] and Lustre [9]. More
recently, research has been centered on the development of an
I/O forwarding layer [5] and data staging [4]. These strategies
are effective in bridging the gaps between computation and
I/O performance. However, none offers sufficient support to
application checkpointing, a bursty I/O behavior dominating
75%-80% of current HPC I/O workloads [26, 1].

Recently, the idea of burst buffer has been proposed to
cope with the exploding data pressure from scientific appli-
cations. Many consider this as a promising solution to the
I/O crisis on HPC systems. The main strategy is to leverage
an external storage system with tiers of high-speed storage
devices between compute nodes and PFS [21]. Despite the
attractive benefits of burst buffer, most existing studies focus
on modeling and simulation of burst buffer [21, 33]. Design
and implementation are rarely documented. In such simulation

studies, burst buffers are generally simulated as a write-back
cache without providing any details on buffer management.

In this paper, we systematically design a burst buffer sys-
tem named BurstMem. It provides a simple interface that
allows applications to quickly dump checkpoint data, and
asynchronously flush the data to PFS without interfering with
application computation. With a set of storage management
strategies, it efficiently leverages the capacity and bandwidth
of storage devices and reduces the overall I/O time. In addi-
tion, BurstMem is designed with a novel tree-based indexing
technique that can support fast data flush in two phases.
Finally, BurstMem is implemented with a portable and fast
communication layer that enables its portability to systems
with diverse network configurations [6].

We implement BurstMem by customizing and extending the
functionality of a cutting-edge caching system named Mem-
cached. It is a lightweight, distributed DRAM-based caching
system. Though not designed for scientific applications, it
includes all the features for distributed buffer management.
Its fast storage solution and great extensibility for complex
applications distinguish it from many other distributed storage
systems (e.g. MongoDB [11], HBase [15]), as a decent can-
didate for burst buffer services. We customize Memcached by
modifying its data placement strategy, communication layer
and memory management module. Furthermore, we design
BurstMem with a mechanism of coordinated data shuffling
and flushing to PFS. In summary, we make the following
contributions in this paper:

• We have examined the storage management issues in
Memcached. Based on our analysis we introduce a log-
structured storage management scheme with a novel tree-
based indexing technique. This allows us to efficiently
utilize storage resources.

• We have applied a coordinated shuffling scheme for
efficient data flushing, and designed a portable commu-
nication layer that supports high-speed data transfer.

• A systematic evaluation of BurstMem is conducted using
both synthetic benchmarks and a real-world application.
Our results demonstrate that on average BurstMem can
improve the I/O performance by as much as 8.5×.

II. BACKGROUND AND MOTIVATION

In this section, we first provide an overview of Memcached
software architecture and the I/O characteristics of scientific
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applications, and then motivate the design of burst buffer
framework on top of Memcached for scientific applications.

A. Memcached

Memcached is an open-source, distributed caching system
deployed to address the web-scale performance and scalability
challenges. Two of its key components (client and server)
function as a distributed key-value store that mutually resolve
web servers’ caching requirements. Fig. 1 shows the general
architecture along with its main components. The Memcached
client can interact with a number of servers for its data store
and data retrieval purposes. As a distributed caching system,
Memcached incorporates several key architectural aspects in-
dispensable to the design of burst buffer system. First, the
Memcached client adopts a two-stage hashing mechanism
for balanced data placement. Second, the Memcached server
offers a lossy key-value store that involves all the major
functionality of a local storage system, such as space, data
and metadata management.
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Client 
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Fig. 1: Component diagram of Memcached

1) Two-stage Hashing: Memcached applies a two-stage
hashing mechanism to store or retrieve a certain key-value
pair (KVP). In the first stage, the key is hashed to the server
responsible for storing the KVP. Once the KVP is stored on
the server, it is further hashed to an entry in the server’s local
hash table that records the address of this KVP.

2) A Lossy Key-Value Store with Disconnected Servers:
Memcached server is designed as a simple but powerful in-
memory key-value store. A server pre-allocates many groups
of 1MB slabs, each slab contains serveral chunks. Chunks
that belong to the same group are of equal size, but they
are different among different groups. Each group possesses
a unique ID ranked from 0 to 42. The chunk size for different
group increases with a factor of 1.25 with Group IDs. For
instance, Group 1 contains chunks sized 96B, Group 2 contains
chunks sized 96B*1.25, and so on. Thus, Group 42 contains
chunks sized 96B ∗ 1.2541 = 1048576B, which is exactly
1MB. So each slab only contains one chunk in Group 42.
To insert a KVP, Memcached server selects a chunk from the
group with the closest chunk size and copy it to such chunk,
the chunk address is then recorded on the hash table. Upon
a conflict, a chained list of entries are provided to hold the
address of multiple KVPs.

B. Challenges from Scientific Applications

For its simple, scalable and powerful design and perfor-
mance, Memcached has been used by many web applications
that require fast cache storage for their temporary data. The
requests of these applications are generally distributed, arriving
in a random order, with very little synchronization.

While scientific applications also generate large volumes of
data, their data patterns are significantly different from the web
applications. Particularly, they possess a number of distinct
characteristics described below that warrant a new perspective
on how to leverage the strengths of Memcached.

• Lock-step I/O from many synchronized clients: Sci-
entific applications typically consist of many parallel
processes who enter their I/O phase in a lock-step man-
ner. These processes have frequent and well coordinated
sychronization which means that processes need to ex-
change data with their neighbors. Their I/O operations
are also closely synchronized.

• Bursty and non-overlapping I/O: Scientific applications
usually have well-defined execution phases. For example,
they alternate between computation and I/O phases. This
characteristic provides the fundamental requirement for
designing burst buffer. The file extent that each process
writes on does not overlap. In each I/O phase, a process
does not rewrite the content already written.

• Frequent writes and few reads: Scientific applications
periodically create snapshots (via checkpointing) of their
intermediate results and datasets. They are typically
write-intensive but read only sparingly. In-memory vari-
ables such as arrays and meshes are written at each
snapshot. Checkpoint data is only read during application
restart. Given these characteristics, we design burst buffer
mainly for application write throughput. This is different
from many other existing buffering systems such as Pre-
datA [34], DataSpaces [12] in ADIOS [31] that focus on
in-situ data sharing and analysis for scientific simulation.

The distinct features of scientific applications lead us to
rethink the design of Memcached. In this paper, we carry out
a study on the design of the burst buffer system on top of
Memcached framework. While preserving many features of
Memcached architecture, we modify Memcached from three
critical aspects: storage management, coordination with the
PFS, and the communication efficiency, respectively.

III. BURSTMEM: A BURST BUFFER FRAMEWORK ON TOP
OF MEMCACHED

In this section, we first present an architectural overview of
the proposed burst buffer system called BurstMem. Then we
elaborate on internal details of system components.

A. Software Architecture of BurstMem

Fig. 2 shows the software architecture of BurstMem and its
relationship with other system components in a typical HPC
environment. As a data buffering system, BurstMem is located
between the processing elements and the backend persistent
storage hosted by the PFS. It connects to all application
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Fig. 2: Software architecture of a burst buffer system

processes via a high-speed interconnect, temporarily buffers
bursty datasets from these processes, gradually flushing the
datasets to the PFS.

BurstMem is composed of two main components: Burst-
Mem Managers (BMans) and BurstMem Stores (BStores).
Each BMan is designed with a BStore as an internal Mem-
cached server. All BMans form a parallel set of burst buffer
daemons to intercept application data. Each BMan keeps track
of the address and health status of neighboring BMans. These
BMans are in charge of the bulk of responsibilities for system
maintenance and resource management. They coordinate all
the BStores for fast data buffering, balanced data distribution
and long-term persistent storage.

Using BurstMem, scientific applications can follow a new
checkpoint flow. After each phase of computation, it coordi-
nates with BMan for checkpointing, BMans absorb and store
all the checkpoint dataset to BStore. The application then
returns to the computation of next phase, leaving the ensuing
data flushing operation to BStore. In this way, data flushing is
overlapped with computation.

BurstMem is built on top of Memcached, it exposes to appli-
cation a simple checkpoint API, which invokes a customized
light-weight Memcached client library for data shipping. Once
BMan receives the KVP, it leverages BStore for storage
management. BStore follows the same data processing flow as
Memcached server’s storage management. It allocates memory
for the accepted KVP, records its location so that the KVP can
be retrieved in the future.

IV. INTERNAL DESIGN

The goal of BurstMem is to efficiently absorb large amounts
of write requests, and provide high-throughput service to
migrate the data into the PFS. First, we review how BurstMem
copes with bursty writes, then describe our strategy to flush
the data from BurstMem to the underlying PFS.

A. Log-Structured Data Organization with AVL indexing

We introduce a Log-Structured data organization with
Adelson-Velskii and Landis (AVL) tree [18] based indexing
(LSA) to absorb the large amount of bursty write requests.
LSA resolves three major issues in Memcached that prevent it
from achieving efficient write. First, the original Memcached
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Fig. 3: Data structures for absorbing writes

preallocates fix-sized memory chunks to accommodate the
incoming write requests. However, this results in underuti-
lized memory resources when a write request is not aligned
with the memory chunk, and additional memory allocation is
needed each time the chunks with a given size are used up.
Second, contemporary HPC platforms are embracing tiered
storage with both DRAM and SSD, Memcached is oblivious
to this architecture. Third, the hash-based indexing used by
Memcached is unable to support range queries, a requirement
for bulk data flushing and HPC application restart.

The key idea of LSA is to compact the received write
requests following an append-only manner to avoid memory
waste, as shown in Fig. 3 (a). When used memory reaches a
high watermark, we append in-memory data to SSD.

As illustrated in Fig. 3(a), we design a hierarchical data
store to log the concrete file data (value) from write requests.
A large (by default 4GB) DRAM block is maintained for logs
at the first level, a separate intermediate file is reserved for logs
on SSD. The address space of data store covers the storage
from both the DRAM and SSD.

Upon its arrival in BMan, each write request is converted
into a KVP. The key records the information that uniquely
identifies the request, including the current checkpointing
timestamp, the name of its targeted checkpoint file, and the
offset (i.e. position of the write request on the checkpoint
file) as well as the length of the value. The value points to
the concrete data (e.g. a segment of a plain file) in the write
request to be stored into data store and then flushed to the
checkpoint file, as shown in Fig. 3(a). When BStore receives a
write request, it separates the key from the value and appends
the value to the end of the data store. By doing so, BStore
eliminates the random access caused by following a strict order
of checkpoint file offsets, and maximizes the write throughput.

In order to facilitate data retrieval (e.g. application restart)
from the data store, all the keys for each KVP are organized
in a stacked AVL-tree structure that records the metadata of
absorbed write requests. An AVL-tree [18] is a self-balancing
binary search tree that supports lookup, insertion and deletion
with O(logN) complexity for both average and worst cases,
thus achieving better performance than binary search trees. It
also delivers an ordered node sequence that allows in-order
traversal. Although inheriting many AVL’s virtues, our design
differs greatly from the conventional AVL tree, exhibiting a



stacked structure. It consists of three categories of layers:
timestamp, filename, and offset, as shown in Fig. 3(b). Each
write request is first indexed by the timestamp, then the
filename, and finally by the offset pointing to its position in the
checkpoint file to be stored on the PFS. A pointer recording
the address of each write request in the data store is maintained
together with the offset index. The intuition behind such design
is to accelerate retrieval and traversal for the data in a specific
range. Take checkpointing as an example, flushing the dataset
that belongs to a single timestamp is important. Our stacked
AVL tree allows to locate such dataset in a single range search
operation. After pinpointing the index of such timestamp, each
filename subtree under such index is traversed, restoring the
order of each checkpoint file through an in-order traversal of
all its offset metadata. Taken together, such tree index supports
diverse query patterns. For example, retrieving all the data
under timestamp 1, from timestamp 1 to 3, or under timestamp
1 belonging to filename 1, etc. These query patterns are not
supported by hash-based indexing in Memcached.

However, one major issue faced by LSA is to determine
when to conduct the garbage collection necessary to reclaim
the used space in data store and to trim the stacked AVL tree.
We address such issue by leveraging a key characteristic of
checkpointing. After completing a checkpointing operation,
the data belonging to a specific timestamp can be discarded
since they have been flushed to the underlying file system.
Thus we first mark the timestamp node on the AVL tree as
unused. A process is invoked periodically in the background
to traverse the tree for those unused timestamps and compact
the in-memory data store to reclaim the memory space used
by values of such timestamp. When all values within the
timestamp have been recycled, we trim the timestamp subtree
off our stacked AVL tree. In addition, we leave the log on
the SSD untouched. Only when the size of the log on SSD is
close to a threshold, and all the data within the log has been
transfered into the PFS, do we discard the log in its entirety
and generate a new log to absorb the data from memory.

B. Coordinated Shuffling for Data Flushing

BurstMem is responsible for flushing the data into the PFS.
In the current design, data flushing takes place after check-
pointing. We also allow clients to trigger the data flushing
explicitly. There are two general checkpointing patterns in
scientific applications, N − N and N − 1 checkpointing.
In N-N checkpointing every process writes to a separate
file. In N-1 checkpointing, all processes write to a single
shared file. BurstMem supports both patterns. Under the N-N
pattern, each client’s checkpoint data is hosted by one BStore.
These BStores can flush data into different checkpoint files
without interfering each other. In contrast, under N-1 check-
point pattern, the shared checkpoint file spreads across many
BStores. Naively flushing data content into a shared file can
incur significant lock overhead, leading to drastically degraded
throughput. Coordinated shuffling is applied to address such
issue for the N-1 case.

Before elaborating the coordinated shuffling, we briefly
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Fig. 4: Coordinated shuffling for N-1 data flushing

describe the cause of lock overhead. Many PFSs use dis-
tributed locks to guarantee data consistency. Taking Lustre
as an example, locking is performed at the granularity of
Lustre stripes (by default 1 MB). When there is a need to
write a stripe for data flushing, a BStore needs to first acquire
the lock for that stripe. If another BStore owns the lock,
Lustre has to revoke the prior ownership before granting the
lock ownership to the first BStore. Once the stripe lock is
acquired, the lock and the data are buffered in the Lustre
Object Storage Client side (OSC) inside the BStore. Under the
N-1 case, write requests from multiple BStores may overlap
on the same stripe, causing frequent ownership changes on
the stripe lock. Associated with the change of lock ownership,
data flushing can cause frequent network traffic and delay the
entire process. Therefore, the contiguous, stripe-aligned write
requests is preferred compared to the noncontiguous, stripe-
unaligned write requests since the former can efficiently reduce
the degree of lock contention.

In most of our targeted cases, each BStore possesses sev-
eral noncontiguous, small segments for the shared file, thus
amplifying the lock overhead. Therefore, coordinated shuffling
is designed to reshuffle the segments among BStores so that
each BStore can flush contiguous segments into the PFS with
alleviated lock contention.

As illustrated in Fig. 4, each shared file is logically di-
vided into several contiguous segments. The total number of
segments is equal to the number of BStores. The purpose
of data shuffling is to have each BStore store all the data
that belong to the same segment. Fig. 4 details this process.
BStores 1, 2 and 3 possess data chunks from Client 1, 2
and 3, respectively. These chunks belong to the same shared
file. This file is divided into 3 segments, which is mapped to
the three BStores. Before data shuffling, each BStore stores
noncontiguous data chunks. Data shuffling begins after such
mapping is established. Following this mapping, Chunk 2 is
shuffled from BStore 2 to BStore 1, Chunk 3 is shuffled from
BStore 1 to BStore 2, and so on. Once shuffling operation is
completed, each BStore can then flush the data to the PFS.

Our data flushing scheme is inspired by the idea of
ROMIO [30]. We do not directly use ROMIO library since it



is coupled with MPI environment. Such environment restricts
BurstMem’s potential for future extention on fault tolerance.

C. Enabling Native Communication Performance

Memcached relies on the BSD Sockets interface and uses
the reliable stream (i.e. TCP) to transfer data. Although
Sockets eases the implementation, performance of socket-
based communication cannot fully exploit the advantage of
leadership scale HPC systems, such as Remote Direct Memory
Access (RDMA), or OS-bypass. In addition, its performance
is not optimized and is highly subject to data sizes.

Therefore, we have employed the Common Communication
Interface (CCI) [6] to efficiently leverage the performance
advantage of HPC facilities. It is designed by Oak Ridge
National Laboratory. It exposes the performance of using na-
tive network interfaces to scientific applications. CCI has now
been fully deployed on Titan supercomputer to serve various
scientific applications. In our optimization, we leverage CCI
to accelerate checkpointing from clients to BMans, as well as
data shuffling among BMans.

CCI&Server& CCI&Client&

cci_get_event***
cci_accept*************

established***
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**cci_connect**
**cci_get_event**
**established**
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Fig. 5: CCI-based network communication among BMans

Figure 5 illustrates our implementation of CCI-based net-
work communication. CCI uses client/server semantics to
establish a connection. Checkpointing or data shuffling triggers
a connection request to the peer. In both Server and Client,
CCI abstracts a network device as the Endpoint, which is a
virtualized device containing many resources, such as send and
receive queues, as well as the buffers that are associated with
the queues. Once the connection is established, we leverage
the Remote Memory Access (RMA) feature that enables zero-
copy in CCI to transfer the data over the network.

In our design, we use an event-driven model to improve
the throughput. We poll the CCI Endpoint for new events
(via cci get event). On the client side, one thread is dedicated
to establishing connections with remote servers. Meanwhile,
data-transferring thread uses non-blocking RMA to transfer
the data. RMA is typically one-sided (i.e. only the initiator
is actively involved in the transfer). In order to notify the
completion of a RMA operation, we use the completion
message option that sends a message and generates a receive
event on the remote endpoint. A central thread, which polls
the events from the Endpoint, orchestrates all of above threads.
Similarly, on the server side, a thread detects events from the
Endpoint and dispatches the requests, e.g. connection requests

or completion events of RMA, to the corresponding threads
for further processing.

V. EXPERIMENT EVALUATION

A. Methodology

Testbed: All experiments are conducted on the Titan super-
computer [3] hosted at Oak Ridge National Laboratory. Each
node is equipped with a 16-core 2.2GHZ AMD Opteron 6274
(Interlagos) processor, 32 GB of RAM, and a connection to
the Cray custom high-speed interconnect. Two nodes share 1
Gemini high-speed interconnect router. Since there is no I/O
server deployed for I/O buffering, we use a separate set of
compute nodes for BurstMem. Out of the 256 allocated to the
experiment, 128 of the compute nodes are used as clients that
write data into the BurstMem. The other 128 compute nodes
are allocated as the BurstMem servers. In every experiment,
we place one process on one physical node.

Titan is connected to Spider II, a center-wide Lustre-based
file system. It features 30 PB of disk space, offering 1 TB/s
aggregated bandwidth organized in two non-overlapping iden-
tical file systems, each providing 500 GB/s I/O performance.
The default stripe size of each created file is 1 MB. The default
stripe count is 4.

In all the experiments, we have pinned 16 MB DRAM buffer
for each RMA channel among two communication entities.

Benchmarks: To evaluate the performance of BurstMem,
we have employed a synthetic workload using IOR [23] and
also a real-world scientific application called S3D [10]. We
report the average of 5 test run results.

IOR is a flexible synthetic benchmarking tool that is able to
emulate diverse I/O access patterns. It was initially designed
for measuring the I/O performance of parallel file system
(PFS). We add BurstMem support to IOR by redirecting all
writes from the processes to BurstMem instead of the PFS.
This new version of IOR is referred to as BB-IOR. To emulate
bursty I/O behavior as described in Section II-B, we set
interTestDelay to 20 seconds between any two I/O phases, and
iterate 10 times. For comparison, we also redirect the writes
to Memcached, refered to as MemCache-IOR.

To evaluate the performance of real applications, we have
integrated BurstMem into S3D, which we refer to as BB-
S3D. S3D is a parallel turbulent combustion application using
a direct numerical simulation solver developed at Sandia
National Laboratories. It solves fully compressible Navier-
Stokes, total energy, mass continuity equations coupled with
detailed chemistry. The problem domain is a conventional
3-D structured Cartesian mesh. All the MPI processes are
partitioned along the X-Y-Z dimensions. S3D exhibits bursty
patterns during the execution. Its checkpointing phase alter-
nates with computation regularly. Each checkpointing phase
outputs four global arrays representing the variables of mass,
velocity, pressure and temperature.

B. Ingress Bandwidth

We first investigate the ingress bandwidth that BurstMem
can support to absorb the write requests. We use IOR bench-



 0

 20

 40

 60

 80

 100

 1  2  4  8  16  32  64  128

In
g

re
s

s
 B

a
n

d
w

id
th

 (
G

B
/s

e
c

)

Number of BurstMem Servers

IOR-N-1

IOR-N-N

BB-IOR

MemCache-IOR

Fig. 6: Ingress I/O bandwidth versus number of BurstMem
servers

mark and increase the number of BurstMem servers from 1 to
128. In each test, we use the same number of IOR clients as
that of BurstMem servers to stress the system. We use 1MB
(default stripe size) transfer unit to alleviate the lock contention
issue in the Lustre file system. We have IOR-N-1 and IOR-N-
N respectively represent the N-1 and N-N pattern as mentioned
in Section IV-B for original IOR. In the IOR-N-1 case, we set
the stripe count as the number of clients. For fair comparison,
we set the stripe count as 1 for IOR-N-N case so that same
number of Object Storage Targets (OST) are utilized as the
number of clients. On average, each IOR client writes 4 GB
data.

Figure 6 compares the ingress bandwidth IOR receives
with and without BurstMem support, as well as MemCache-
IOR. Overall, BurstMem delivers significantly higher ingress
bandwidth than the other three alternatives. As seen in Fig-
ure 6, BB-IOR is able to achieve 278.2%, 246.9% and 174.5%
improvement on average, when compared to the IOR-N-1,
MemCache-IOR and IOR-N-N respectively. Such improve-
ment is consistent across different number of BurstMem
servers.

BB-IOR achieves substantial improvement over the original
IOR by buffering the write requests instead of writing directly
to Lustre file system. Such performance improvement is what
we expect. However, as also shown in Figure 6, simply using
Memcached as the buffering system cannot maximize the
ingress bandwidth. BurstMem effectively outperforms Mem-
cached with LSA described in IV-A and CCI support in
IV-C. Specifically, BurstMem benefits from Gemini’s native
transport using CCI and avoids frequent memory allocation
using LSA.

To further examine the ingress bandwidth under different
workloads, we reduce the number of BurstMem servers to
4, which equals the default stripe count. We also set stripe
count as 4 and have all the clients write on one shared
file for the original IOR. In both BB-IOR and the original
IOR, we increase the number of IOR clients from 4 to 128,
thereby increasing the workload per BurstMem server and
OST. Figure 7 illustrates the performance comparison with
respect to increasing number of IOR clients. On average, BB-
IOR outperforms the original IOR and MemCache-IOR by

508.62% and 408.30%, respectively. We observe an increasing
bandwidth from 4 to 16 IOR clients. This is because when
the number of IOR clients is fewer than 16, the supplied
bandwidth of each BurstMem server is not fully saturated.
Once the number reaches 16, such bandwidth is fully utilized,
and BurstMem is able to provide stable ingress bandwidth
regardless of the workloads.
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C. Egress Bandwidth

Efficiently flushing data to the PFS to spare space for
future writes is another essential feature for BurstMem. In this
section, we measure the performance of egress bandwidth and
evaluate the effectiveness of coordinated shuffling introduced
in Section IV-B. To emulate the common I/O access pattern in
scientific applications, we interleave the writes from multiple
IOR clients and use 16 KB transfer size, one of the dominant
transfer sizes for scientific applications [17]. Similar to ingress
bandwidth evaluation, we set the number of IOR clients equal
to that of BurstMem servers and have each client output 4 GB
of data to a shared file. Because Memcached does not support
flushing, the comparison does not include Memcached.

Figure 8 shows the performance of egress bandwidth. Cu-
mulative egress bandwidth of BB-IOR increases from 0.83
GB/s at 4 processes to 6.09 GB/s at 128 processes. BB-
IOR is able to achieve 2× to 19× higher bandwidth when
compared to the original IOR whose performance is consis-
tently below 0.4 GB/s for all cases. Such low performance is
mainly due to large overhead from lock contention caused by
unaligned writes. Coordinated shuffling rearranges unaligned
write requests into sequential, stripe-aligned writes, thereby
significantly improving the overall egress bandwidth.

In Figure 9, we show the time spent on shuffling and
flushing. The shuffling operation can incur over 30% overhead.
However, it enables flushing to achieve better performance due
to large, sequential writes to PFS in a stripe-aligned manner
and delivers orders of magnitude better performance at massive
scale. Hence, extra overhead on data shuffling is worth the
trade-off given the significant benefit it delivers.

D. Scalability

Scalability is a critical factor for BurstMem. We want to
ensure that BurstMem is able to provide increasing bandwidth
when given more resources; such as more BurstMem nodes
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and additional CPU cores on each node. In this section, we
evaluate the scalability of BurstMem from two perspectives,
horizontal scalability (scale-out), vertical scalability (scale-
up). We continue using IOR as the benchmark tool for our
evaluation. In the horizontal scaling experiment, we increase
the number of BurstMem servers and measure the cumulative
bandwidth delivered by BurstMem. In the vertical scalability
experiment, we increase the number of threads in each indi-
vidual BurstMem server.

1) Horizontal Scaling: We evaluate the Horizontal scal-
ability by fixing the number of clients as 128, and increase
the number of BurstMem servers from 4 to 128. The I/O
request size is set to 1 MB, each client writes 512 MB of
data, featuring 64 GB of input data in total for each iteration.

Figure 10 (a) shows the performance results of horizon-
tal scaling. As shown in the figure, cumulative bandwidth
improves linearly from 9.9 GB/s with 4 BurstMem servers
to 62.04 GB/s with 32 BurstMem servers. However, the
increasing rate declines when going from 64 to 128 BurstMem
servers. This is because the supplied bandwidth of each Burst-
Mem server can efficiently absorb I/O requests from more than
2 clients. When the number of BurstMem servers is fewer
than a quarter of the clients (32), they are mostly saturated.
However, further increasing the number of BurstMem servers
from that point (32 servers) leads to underutilized bandwidth
provided by BurstMem system, and the bandwidth gradually
becomes client-bound.

In summary, the linear horizontal scalability is achievable
when ingress bandwidth is bounded by BurstMem. In addition,

there are some other factors that can affect cumulative band-
width, including varying end-to-end network bandwidth on
Titan due to locality, and the contention of network resources.
These factors cause the cumulative bandwidth to be lower than
the theoretical maximum bandwidth.
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2) Vertical Scaling: We evaluate BurstMem’s vertical scal-
ability by scaling the number of threads in each BurstMem
server from 1 to 15, one thread per core. The remaining
one core is used to run system daemons. We measure the
bandwidth that can be supplied by each individual BurstMem.
On average, each BurstMem serves 16 clients. Each client
sends 512 MB data to the server, featuring 8 GB input data
for each BurstMem server. Figure 10 (b) shows the bandwidth
increasing from 2.49 GB/s at one thread to 6.11 GB/s at 15
threads. There is a sharp increase at 15 processes because
each compute node contains 2 NUMA nodes, and each NUMA
node contains 8 cores. Titan schedules the first 8 threads to the
first NUMA node and the last 7 threads to the second NUMA
node. When we use 15 threads, we include the capability
from another NUMA node; such as memory bandwidth and
computing power.

E. Case Study: S3D, A Real-World Scientific Application
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Fig. 11: S3D application I/O performance evaluation with
BurstMem

During the experiments with S3D, we keep the size of X, Y,
Z dimensions as 50, 50, 50 respectively and have each process
write about 2 GB checkpoint data. We have compared the
cumulative bandwidth of BurstMem-enabled S3D (BB-S3D)
with that of the original S3D implementation.

Figure 11 shows the I/O performance comparison between
BB-S3D and S3D. The bandwidth of BB-S3D increases lin-
early from 1.27 GB/s at 1 process to 80.49 GB/s at 125
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processes. This yields a performance improvement of up to
10× over the original S3D when the number of MPI processes
is 125.

We have observed that the original S3D bandwidth is lower
than that of the original IOR. This is because, in IOR tests,
we set the transfer size as the stripe size, which optimizes the
performance under Lustre file system. In contrast, the transfer
units of Fortran I/O in S3D varies from 0.95 MB, 2.86 MB
to 10.49 MB). This is less favored by Lustre.

VI. RELATED WORK

Improving I/O performance on large-scale HPC systems has
gained broad attention over the past decades.

A number of studies have introduced new I/O middleware
libraries. MPI-IO [30], PnetCDF [19, 22], HDF5 [2] boost
I/O performance using parallel I/O that involves a massive
number of participating processes. PLFS [8] introduces an
extra I/O layer that converts the noncontiguous, interspersed
I/O into contiguous, sequential I/O. All these studies aim to
optimize I/O on the parallel file system (PFS). Therefore, their
performance is still restricted by the bandwidth of PFS.

I/O forwarding [5] is another key technique applied on
Blue Gene/P systems. It leverages two I/O forwarding com-
ponents, named CIOD [24] and ZOID [16], both of which use
synchronous I/O forwarding. Venkatram et al. [32] replaces
synchronous I/O forwarding with asynchronous staging, thus
enhancing an application’s overall performance. However,
such techniques only applies to the Blue Gene/P architecture.

Orthogonal to this work, asynchronous data staging is
proposed by many other researchers. Such work generally
falls into two categories: local staging [27, 20] and remote
staging [25, 4]. In the former case, an application uses local
storage of compute nodes as staging area. However, the
performance can be highly affected by computation jitters, as
any perturbation caused by asynchronously copying data from
local storage to parallel file system can cascade through the
tightly-coupled computation [7]. Remote staging buffers I/O
in additional partitions of compute nodes. Although remote
staging is immune to computation jitters, it is confined by
available resources of compute nodes, such as the supplied
bandwidth and storage capacity.

Burst buffer in HPC is relatively recent idea. Currently,
most work on burst buffer stays at theoretical stage. Liu et
al. [21] designed a simulator of burst buffer for the IBM
Blue Gene/P architecture. Bing et al. [33] characterized output
burst absorption on Jaguar and made an important step toward
quantitative models of storage system performance behaviors.
Different from them, our work focuses on designing and
implementing a prototype burst buffer system and analyzing
its performance benefit.

VII. CONCLUSION

In this paper, we have designed a high-performance burst
buffer system on top of Memcached. Through in-depth anal-
ysis, we have identified that Memcached has many issues to
be directly used as burst buffer, such as the lack of efficient

storage management to absorb large amounts of bursty writes
and the incapability to exploit modern high-speed network
interconnects. Based on our analysis, we introduce several
techniques to enhance Memcached as the BurstMem system
for bursty I/O in scientific applications. Our techniques include
a log-structured data organization with stacked AVL indexing
for fast I/O absorption and low-latency, semantic-rich data
retrieval, coordinated data shuffling for efficient data flushing,
and CCI-based communication for high-speed data transfer.
Our experiments on the Titan supercomputer with synthetic
benchmark and real-world applications demonstrate that Burst-
Mem can efficiently provide high-performance I/O services to
current HPC scientific applications with good scalability.

Our future work will focus on optimizing BurstMem’s data
flushing operation by reducing the amount of data being
shuffled, and providing fault tolerance to BurstMem. We will
also extend BurstMem’s support for more file formats such as
NetCDF and HDF5.
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