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Abstract—Fast growing large-scale systems enable scientific
applications to run at a much larger scale and accordingly pro-
duce gigantic volumes of simulation output. Such data imposes
a grand challenge to post-processing tasks such as visualization
and data analysis, because these tasks are often performed at
a host machine that is remotely located and equipped with
much less memory and storage resources. During the simulation
runs, it is also desirable for scientists to be able to interactively
monitor and steer the progress of simulation. This requires
scientific data to be represented in an efficient form for initial
exploration and computation steering. In this paper, we propose
DynaM a software framework that can represent scientific data
in a multiresolution form, and dynamically organize data blocks
into an optimized layout for efficient scientific analysis. DynaM
supports a convolution-based multiresolution data representation
for abstracting scientific data for visualization at a wide spectrum
of resolution. To support the efficient generation and retrieval of
different data granularities from such representation, a dynamic
data organization in DynaM is enabled to cater distinct peculiar-
ities of different size data blocks for efficient and balanced I/O
performance. Our experimental results demonstrate that DynaM
can efficiently represent large scientific dataset and speed up
the visualization of multidimensional scientific data. An up to
29 times speedup is achieved on Jaguar supercomputer at Oak
Ridge National Laboratory.

I. INTRODUCTION

Leadership computers have enabled scientific applications

to run at a much larger scale and produce more simulation

outputs. The dataset is typically in the order of terabytes or

even petabytes. On the other hand, post-processing of such

output is often performed on a remote host, which has much

less resources such as memory and storage. Data analysis

often needs to be performed in pieces because of storage

and memory limitation, which is very inefficient. In addition,

interactive monitoring and steering of simulation has gained a

lot of attention. This technique helps scientists to monitor the

simulation execution for early error detection, but has high

requirement on I/O speed. To meet such demands, how to

move data efficiently for scientific analysis and visualization

has become a critical challenge. To ensure scientific data can

be quickly retrieved and effectively analyzed, two questions

need to be answered: (1) how to represent gigantic multidi-

mensional scientific datasets in a reduced form that still allows

scientists a faithful judgment of the progress and correctness

of the long-running simulation codes? and (2) how to organize

such data so that efficient I/O performance can be delivered

to applications on large scale systems?

Multiresolution has been a widely adopted technique in

image processing to progressively render large images. The

basic idea is to capture the characteristics of image pixels

into different levels of resolution. The coarsest level has the

smallest size and contains the least information. The image

size and details increase with higher resolutions. Example

includes Google Map, JPEG 2000 Standard, etc. Such strategy

suits well for the offline visualization of data on small com-

puter systems. However, multiresolution techniques need to be

well studied before it can be applied for the needs of online

monitoring of simulation outputs for computation steering.

Data points in a multidimensional scientific dataset carry

important information for scientific exploration. It is desirable

for such information to be maintained for a fair judgment of

simulation quality, even at the coarser granularity and reduced

accuracy.

More importantly, a multiresolution data presentation needs

to be well supported by underlying storage system to ensure

a fast I/O. When dealing with I/O on large scale system, a

data organization that matches well with the storage system

is the key to the optimal I/O performance. The challenge

for a fast data retrieval mainly comes from the discrepancy

of the unconventional access pattern of scientific application,

and the physical limitation of storage system. As multidi-

mensional array is the common data structure for scientific

data, mapping from n-dimensional logical space to 1-D storage

space resulting noncontiguous placement of data points on

slow-varying (slow) dimensions. An imbalanced performance

is often observed for queries on a subset of data on dif-

ferent dimensions, such as reading a 2-D plane from a 3-

D array. Such phenomenon is often referred as “dimension

dependency” [36], where the read performance depends on

the dimensions involved in a query, rather than just the data
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(a) Full Resolution (b) Down-sampling (c) Convolution

Fig. 1: Comparison of Multiresolution Data at a Level-5 Resolution

size of the query.

A collection of research has been carried out for better ap-

proaches on efficiently storing and indexing multidimensional

array. Among them, a strategy called chunking has become

a standard for multidimensional array storage. This approach

partitions an array into many smaller units called chunks.

While chunking is able to alleviate dimension dependency, it

still has constraints in supporting a multiresolutional structure.

The most critical challenge is that different data granularities

from different level of resolution lead to data blocks of signifi-

cantly different sizes, which in turns poses a serious challenge

for the underlying storage system to support it with good I/O

performance: 1) because data size decreases exponentially with

the reducing of resolution, a large amount of small data chunks

are generated at coarser levels of resolution. Such small data

segments in the logical file causes inefficient data retrieval for

most access patterns; 2) when data chunk is large, reading

on slow dimension involves significant overhead because data

points are laid out sequentially within each chunk. Therefore,

a data organization strategy that can dynamically cater the

storing requirements for different level of resolution is desired.

To this end, we propose DynaM, a software architecture

that enables Dynamic representation of Multiresolution data.

DynaM supports a convolution-based multiresolution data

representation for abstracting scientific data for visualization

at a wide spectrum of resolution. An Optimized-chunk algo-

rithm [41] supported dynamic data organization is used to cater

distinct peculiarities of different size data blocks for efficient

and balanced I/O performance.

We have designed and implemented DynaM as a part of

the ADaptive I/O System (ADIOS) framework [1]. Our exper-

imental evaluation on the Jaguar supercomputer at Oak Ridge

National Laboratory demonstrates that DynaM can present

scientific data dynamically at any necessary granularity of

resolution. Figure 1 shows an output of a 2-D slice from a

DynaM-based S3D [6] simulation, compared to the same slice

produced with a conventional down-sampling strategy. With

only 1
256 of the original size, DynaM is able to enable data

visualization with better quality. We also observe that DynaM

helps enable efficient read operations even for challenging

scientific access patterns.

The rest of the paper is organized as follows. We introduce

the design of DynaM in Section II. Section III validates our

strategy through a comprehensive set of experimental results.

A survey of literature review is provided in Section IV. Finally,

we conclude the paper in Section V.

II. DESIGN OF THE DYNAM SOFTWARE ARCHITECTURE

In view of the needs of multiresolution data representation

and accordingly efficient I/O support on large-scale systems,

we choose to design DynaM as a part of ADIOS (Adaptable

I/O System) [1], an I/O middleware developed by National

Laboratory. ADIOS has been demonstrated as an efficient

I/O library that provides significant performance benefits for

a number of petascale scientific applications [2], [18], [20],

[45], [27]. It uses a default file format called BP (Binary

Packed). In this format, ADIOS applies the chunking strategy

for storing multidimensional datasets. DynaM retains many

salient features of ADIOS, while it focuses on multiresolution

representation of multidimensional datasets and accelerates

data retrieval for data visualization and analysis. Figure 2

shows the software architecture of DynaM.

Scientific Application 

Adaptable I/O System (ADIOS) 

Parallel File Systems 

DynaM 
Multiresolution Representation 

Dynamic Data Organization 
SFC-based 
Reordering 

Hierarchical Spatial 
Aggregation 

Imbalanced 
Subchunking 

Downsampling 

p
Convolution 

p
Wavelets …. 

Fig. 2: Software Architecture of DynaM

DynaM is composed of two major components: Multires-
olution Representation and Dynamic Data Organization. The

multiresolution component focuses on enabling different mul-

tiresolution algorithms for data representation. The dynamic

organization component is designed based on our earlier

study in [41], [39]. It focuses on enabling different data
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organization strategies to cater distinct peculiarities of data

blocks at each level of resolution under the govern of an

Optimized Chunking policy. The data organization strategies

inside this component are Hierarchical Spatial Aggregation,

Imbalanced Subchunking, as well as the default SFC (Space

Filling Curve)-based distribution of data chunks among storage

devices.

A. Multiresolution Data Representation

Current multiresolution techniques can be categorized into

two categories. The first category of strategies is sampling

based, in which data points with different subsampling dis-

tances are selected to construct a level of resolution. The

finer level consists of more data points to produce the details.

Such down-sampling algorithms are normally fast because of

its simplicity. The main issue is that some of data points

are inevitably lost during down-sampling, which may carry

important information. In addition, a discontinuity, a.k.a, er-

ror, is commonly found at the boarder between computation

processes in scientific simulation. An example is shown in

Figure 3, where the blue solid line shows the full resolution

carries a anomaly. The red dashed line shows a coarser level of

data points through down-sampling of the original data points.

with this strategy, the spike in the full resolution is completely

missed. A more sophisticated multiresolution technique is

needed to achieve a better approximation of the original curve,

as shown by the green dotted line. This approximation is

achieved through convolution, which is described later in

this section. There are many approximation strategies through

mathematical transformations, such as Fourier Transform, or

Wavelet Transform, etc. Among them, wavelet-based transfor-

mation has attracted a lot of attention since its application

in JPEG2000 standard. Wavelet-based algorithm is able to

produce a good representation of the original data with limited

data size combining with compression. The major concern

with this kind of technique is that they are computationally

expensive, which leads to longer I/O time. While scientific

applications running on large-scale systems normally have

restricted requirements on I/O.
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Fig. 3: Data Sampling Strategies

We introduce a multiresolution data representation based

on convolution to accommodate the demands of both quality

and efficiency in representing scientific data. Convolution is

a mathematical calculation that takes two function f and g,

produces a third function that is typically viewed as similar

to one of the original functions. It has been widely used

on many applications such as signal and image processing,

etc. The fundamental idea is that each pixel of an image is

updated by a new value that is calculated based on itself and

all the immediate neighboring pixels. The contribution of each

pixel in the calculation is defined by the convolution kernel

used. Different effects can be achieved by using different

convolution kernels. Common convolution kernel include as

Gaussian kernel, mean kernel, Laplacian kernel, etc. Kernels

can also be customized by users for special purpose. Figure 4

gives an example of 2D convolution using mean kernel. By

taking an average of itself with the neighboring 8 pixels, the

value in the middle is updated to 7.
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Fig. 4: 2D Convolution Using Mean Kernel

Convolution demonstrates the possibility of using one value

to represent the characteristics of its neighboring region. Thus

we adopt this idea for our multiresolution representation of

scientific data. The only issue is the process of border points

need to be specifically treated. Conventional convolution does

not have specified operation for border points. In image

processing, it is normally handled by padding the border

region using adjacent values to construct a region which is

operable by convolution kernel. Such operation involves more

memory access and calculation. Thus in our algorithm, we

apply 1D, 2D or 3D convolution for different types of data

points whichever is possible.

In Figure 5(a), we show an example of how two levels of

resolution are generated from the full resolution (Level-3) for

a 2D 7*7 array. According to our algorithm, the corner points

keep their original values. A 1D convolution is performed for

all edge points; 2D convolution is performed for the rest of

data points. Except one coarse level (level 2) is calculated

using the original data points in full resolution, the rest of

coarse levels, Level-1 in our example, are calculated based on

the previous level of resolution. The reason of this recursive

design is to limit the overhead to data generation. Because data

points at lower resolution are sparsely located, which requires

a larger convolution kernel to cover the intermediate region.

And the complexity of calculation increases with the increas-

ing size of convolution kernel size. By applying convolution

repeatedly on the previous level of resolution, each level can

be quickly generated without causing significant overhead for

write. Meanwhile, the characteristics of the original data is

able to be passed along even to the coarsest level of resolution.

In the chunking organization, each process is assigned a data

chunk after domain decomposition. Each process performs

convolution on its own data chunk, and stores each level of
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Fig. 5: Generation of Multiresolution and Output

resolution as an increment to its original data, as shown in

Figure 5(b). The corresponding metadata is also generated at

each process to identify different levels of resolution. From a

global view, the combination of one level of resolution from

all the processes naturally constructs the correspondent level

of resolution for the entire data space. A subset of data can be

dynamically constructed as well. It also maintains the benefit

of using chunking layout for storing multidimensional arrays.

Since storage is getting larger and cheaper quickly, storing

redundant data becomes quite common on large-scale systems.

Many studies have shown that, by storing a little more, much

performance gain can be achieved, such as [3], which has

been successfully demonstrated by ADIOS [23] itself. In fact,

the data overhead is also very limited in such design. With a

decreasing level of resolution, the data size reduces down to 1
2n

of the previous level, where n is the number of dimensions.

For a 3D array with five level of resolution, the amount of

data overhead is about 14%, which does not necessarily reflect

the same level of write performance degradation. The coarsest

level of resolution only has the size of 1
4096 of the original

data. A much faster read can be expected.

B. Dynamic Data Organization

Multiresolution representation allows visualization and anal-

ysis at different granularities for scientific datasets. With

multiresolution data, scientists can decrease the amount of

data movement for coarser analysis, thereby increasing the

throughput and productivity of data analysis. However, fast

data visualization and analysis is not guaranteed on large-

scale systems without a data organization that matches well

with the underlying storage subsystem. Thus, we adopt the

dynamic data organization based on our earlier work [41], [39]

to ensure efficient I/O for multiresolution datasets. The crux

of such strategy is an Optimized Chunking Size (OCS) [41],

which is defined as OCS = BWio×(CC+Ts), where BWi/o

is the I/O bandwidth of one storage node, Ts is the time unit

for each seek operation, and CC is the communication cost

unit. The detail of this algorithm can be found in [41]. OCS

denotes the size of data chunks that can achieve a good balance

between data transfer efficiency and processing overhead.

On top of that, Hierarchical Spatial Aggregation (HSA) and

Imbalanced Subchunking (SUB) are used to organize data into

a size that is close to OCS. A high-level description is provided

here. For a n-dimensional array, the organization policy can

be described as:

• If chunk size is smaller than OCS, use Hierarchical

Spatial Aggregation to consolidate small chunks;

• If chunk size is larger than OCS, use Imbalanced Sub-

chunking to decompose large chunks;

• If chunk size satisfies defined OCS, use Space Filling

Curve for chunk-level reordering.

Under such policy, a data chunk at each process has three paths

to be stored on the file system as shown in Figure 6. Below

we present the design of multiresolutional data representation

with such dynamic data organization. The detail of algorithms

can be found in [41].

Multiresolution 
Generation 

Data Chunk of 
One Process 
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chunk size? 

Hierarchical Spatial 
Aggregation 

Imbalanced 
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Space Filling Curve 
Reordering 

Data Output 

Filling

a Ou

hical Spatial Imbalan
g

S ve

Too small Too Large 

nerat
resol

Fig. 6: Flow of Multidimensional Data with Dynamic Data

Organization

1) Multiresolution with Hierarchical Spatial Aggregation:
By using multiresolution technique, the data size decreases

exponentially with the decreasing of resolution. At the coarsest

levels of resolution, a significant amount of small data blocks

are generated. For example, if every chunk has 64MB of data

with 4 level of resolution (full resolution is included), the

coarsest level is only 128KB. For an application running with

8,000 processes, the entire data space is divided into 8,000

small segments distributing within the output file. A significant

amount of seeks and memory operations are required for

common access patterns such as planar reads, correspondingly

leads to limited read performance. Aggregation is commonly

used to converge small pieces of data. However, simply con-

catenating small chunks does not solve the problem this case.

Because the number of disk and memory operations remains

the same for reading. Thus, we designed a Hierarchical Spatial

Aggregation strategy which aggregates data chunks in a way

that their spatial localities are reserved. Figure 7(a) shows such

an example of aggregating from 4 processes in a 2D space.
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Each process first generates first performs convolution to gen-

erate its first level of resolution data. Then for every spatially

adjacent 4 process, one process is selected as the aggregator.

It aggregates data from neighboring 3 client processes and

construct a larger data chunk. If aggregated chunk size still

does not fall into the decision window for output, a second

level of aggregation will be performed among the first level

aggregator. After aggregation, because an aggregator has all

the data of neighboring processes, there is no need for all the

clients to perform convolution on its data for the next level of

resolution. Otherwise, another round of aggregation may be

invoked since data size may fall below the optimized chunk

size. Therefore, only the aggregator performs convolution

on aggregated data to generate the next level of resolution.

Even though such strategy leads to more computation at the

aggregator, the computation is much cheaper than memory

operation on high end computers. If the generated data size is

below the optimized chunk size, another round of HSA will

be performed but only among aggregators.

P4 P5 

P0 P1 
P0 P0 

Step1:  
each process 

performs 
convolution 

Step2: 
aggregate to 

P0 

Step3:  
P0 performs 
convolution 

Output Level 1 
(2x2 in P0) 

Output Level 2  
(4x4 in P0) 

Temporary Level 2  
(2x2 in 4 Processes) 

P0 P1 

P4 P5 

Level 3 
(Original Data 8x8 2D array) 

(a) Spatial Aggregation

Fig. 7: Hierarchical Spatial Aggregation

To avoid over aggregating data chunks, only the chunk

size is less than OCS
2n will be aggregated. For example, in

a 3-D space, a minimum of aggregation is performed on 7

neighboring processes, leading to an upper bound chunk size
OCS
8 .
2) Imbalanced Subchunking: Chunking has shown its ca-

pability to alleviate the dimension dependency problem for

reading. However, because data points are laid out sequentially

within a chunk, dimension dependency can be significant again

when a data chunk is large. With chunking, a common practice

for a range query on a slow dimension is to read in a lot

of redundant data from the start to the end point of request

to avoid the frequent seek operations among noncontiguous

data points. Even though such strategy is more preferable

than frequent seeks on parallel file system, its performance

can suffer when the chunk is too large, meaning significant

amount of redundant data to retrieve. As optimized chunk

size provides the good balance between the size of data

transfer and the processing overhead, each large data chunk

can be decomposed into subchunks with the size of OCS to

further alleviate dimension dependency. Chunking large arrays

is important when efficient I/O is desired in applications that

access data with a high degree of locality.

To maximize the reduction for redundant data retrieval on

the slowest dimension, we enable an imbalanced subchunking

based on our early study in [41]. Such strategy performs

a domain decomposition on all the dimensions except the

slowest dimension. Figure 8 shows an example of such strategy

for a 2D and a 3D data chunk, respectively. The shaded region

represents the amount of data needs to be read in for a request

on the slowest dimension. As we can see, only a fraction of

data are retrieved after subchunking instead of the entire data

chunk with the original data layout. However, the performance

on the fast dimension is expected to degrade due to the break

of contiguity. The rational behind sacrificing the performance

on the fast dimension to compensate the slow dimension(s)

is that reading the contiguous data is normally very fast on

high-end systems. For example, reading in 200MB contiguous

data on Jaguar supercomputer only takes less than 1 second.

Introducing a limited number of seeks into fast dimension does

not significantly hurt the user experience, but improve the read

performance on slow dimension(s) dramatically.

j 

k 

(a) 2D

i 

j 
k 

(b) 3D

Fig. 8: Imbalanced Subchunking

3) Data Organization based on Space Filling Curve: After

the Optimized Chunks are constructed, a Hilbert Space Filling

Curve ordering is used to rearrange the placement of data

chunks on storage, as shown in Figure 9. The rational of

such strategy is based on our earlier work [40], in which

we studied how the read performance on a subset of data

from a multidimensional array can be impacted by access

patterns and data placement. Because scientific applications

have unconventional access patterns, chunking based data

organization faces a reduced read concurrency issue when

data chunks are placed sequentially on storage targets. When

a subset of data elements is requested, the data may be

concentrated on one or few storage targets even if they are

not logically contiguous in the data array. Thus reading such

data can not employ the aggregated bandwidth from all storage

devices. This leads to a phenomenon called imbalanced per-
formance across dimensions. In DynaM, we inherit the Hilbert

Space Filling Curve [13] based ordering from our earlier

work and rearrange the placement of optimized chunks on

storage devices. By doing so, data concurrency is no longer

constrained by the access pattern. Reading on any dimension

can leverage the close-to-maximum aggregated bandwidth.

III. EXPERIMENTAL RESULTS

We have implemented and evaluated DynaM on the Jaguar
supercomputer at Oak Ridge National Laboratory (ORNL).

Jaguar is currently the third fastest supercomputer in the

world [22]. Jaguar is equipped with Spider (an installation
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Fig. 9: Comparison of Linear Placement and Hilbert Curve

Reordering of 16 Chunks on 4 Storage Nodes

of Lustre) for the storage subsystem, with a demonstrated

bandwidth of 240 GB/s. Spider has three partitions named

Widow 1, Widow 2 and Widow 3, respectively. Each partition

contains 336 storage targets (OSTs). In our experiments, we

used its Widow 2 partition.

S3D [6] combustion simulation code from Sandia National

Laboratories is used in our experiments. S3D is a high-

fidelity, massively parallel solver for turbulent reacting flows.

It employs a 3-D domain decomposition to parallelize the

simulation space. Two representative test cases: small (S),

large (L) and their chunk size (Elements/Data Size) are shown

in Table I with level of resolutions we used in our evaluation.

Three levels of resolution are generated for Case S and four

levels for Case L. With these settings, the chunk size is reduced

to 32KB and 256KB respectively at the coarsest level, Level-1.

The I/O bandwidth of Spider is approximately 250MB/Sec per

OST, the average seek time is 8ms, and the communication

cost is about 19ms. Thus, the OCS is calculated as 2.5MB

using our Optimized Chunking algorithm [41]. Based on the

previous practices of the ADIOS team at Jaguar, the stripe size

is set as the size of ADIOS process group. This can maximize

data concurrency and reduce false sharing on the Lustre file

system, and reduces internal and external interferences [19].

TABLE I: Test Cases and Resolution

Level-4 Level-3 Level-2 Level-1
(Original Data)

S 643/2MB 323/256KB 163/32KB

L 2563/128MB 128316MB 643/2MB 323/256KB

The performance evaluation of DynaM is mainly focused

on the data representation and I/O performance. Planar read

is mostly used in I/O test cases as it is a common yet very

challenging access pattern. We measure the read performance

between three types of data organization strategies: Logically

Contiguous (LC), the original ADIOS with Hilbert curve or-

dering at the chunk-level (ORG), and DynaM(DM). A separate

test program is created to evaluate the I/O performance of

logically contiguous data layout. Each test case is run 10 times

for every data point. The median of top five numbers is chosen

as the result.

A. Data Representation of Multiresolution

We apply both convolution and down-sampling on a real

S3D simulation output and compare the visualization image

of a 2-D slice from a 3-D data array. The results are shown

in Figure 1. A mean kernel is used for the convolution of

DynaM in this case. As we can see, most of the boarders

is diminished when using down-sampling. Even though the

data generated by S3D is smooth in this case, DynaM still

has relatively accurate representation of the original image by

using only 1
256 of the original data.

In image processing, different convolution kernels can be

used for different results of output. There are common convo-

lution kernels such as Mean kernel, Gaussian kernel, Laplacian

kernel, etc. These kernels can be further customized by users

for special purposes. As an example, we compare the output

at Level-1 resolution by using the mean kernel with sizes

of 3, 5, 7 and the Gaussian kernel with the size 3. The

numbers represent the number of elements participating in

the calculation on each dimension. The results are shown in

Figure 10. The Mean kernel produces clearer presentation of

the original image than The Gaussian kernel with the same

size of kernel. This is expected because the Gaussian kernel

is normally used to add blurring to an image. Because a

bigger kernel size means that more neighboring points are

gathered, correspondingly we find a more abstract output of

the original image with larger size of convolution kernels.

Note that different application may have different requirements

and data characteristics. One type of convolution kernels does

not guarantee the best output for all the applications. DynaM

allows user to specify the type and the size of convolution

kernels with a flexible interface.

B. Data Generation

One of the design considerations of DynaM is to contain the

performance impact of data generation. To evaluate the data

generation overhead, three levels of resolution are generated

for Case S and four levels for Case L by using convolu-

tion. Based on 2.5MB OCS size, a two-level HSA will be

performed starting from level-2 resolution for Case S, and a

one-level HSA at level-1 for Case L. Moreover, Imbalanced

Subchunking is applied to its original data in Case L. The cost

of convolution is directly impacted by convolution kernel size.

We also include this parameter into evaluation. The write time

of using 4,096 processes along with the time breakdown is

shown in Figure 11(a). The number following DM represents

the convolution kernel size.

As we can see, the increase of the total write time is mostly

determined by the convolution kernel size. Only limited write

overhead is introduced for both cases until the kernel size

reaches 7 in Case L. In this case, every convolution operates

on a 73 3-D volume, which is computational expensive and

has deeper impact when the data size is large. Other operations

such as subchunking, aggregation do not cause significant

delays to the write time. We then fix the convolution kernel

size at 3 and evaluate the weak scaling of DynaM. As shown

in Figure 11(b) and 11(c), very limited overhead is brought
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(a) Mean Size=3 (b) Mean Size=5 (c) Mean Size=7 (d) Gaussian Size=3

Fig. 10: Comparison of Different Convolution Kernels on the Coarsest Resolution
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Fig. 11: Data Generation Overhead

to data generation in all cases. In the following experiments,

we fix the convolution kernel size at 3. The data is always

generated with 3 levels or resolution for Case S, and 4 level

of resolution for Case L.

C. Planar Read Performance of DynaM

The evaluation of multiresolution data retrieval is mainly

focused on the comparison of data organization between

DynaM, which uses chunking, and logically contiguous (LC).

Logically contiguous layout stores each level of resolution as a

contiguous segment within the logical file. A 2-D plane is read

from each dimension of a 3-D variable (k is the fastest 281

dimension, and i is the slowest dimension), a common practice

in scientific analysis. The number of readers varies from 32 to

512, so to follow the tradition that application scientist often

spend only 10% of the writers to read. The total read time of

planar reads on three dimensions for both Case S and L are

shown in Figure 12. Note the number following the name of

each data organization represents the level of resolution.

As shown the figure, LC demonstrates a severe imbalanced

performance is observed across dimensions in all test cases.

While it achieves fast read on the fastest dimension, the jk

dimension, the performance of LC suffers either the frequent

0 

1 

2 

3 

4 

5 

6 

7 

8 

D
M

-1
 

LC
-1

 
D

M
-2

 
LC

-2
 

D
M

-1
 

LC
-1

 
D

M
-2

 
LC

-2
 

D
M

-1
 

LC
-1

 
D

M
-2

 
LC

-2
 

D
M

-1
 

LC
-1

 
D

M
-2

 
LC

-2
 

D
M

-1
 

LC
-1

 
D

M
-2

 
LC

-2
 

32 64 128 256 512 

R
ea

d 
Ti

m
e(

se
c)

 

Number of Readers 

ij 
ik 
jk 

(a) Case S

0 

20 

40 

60 

80 

100 

120 

DM LC DM LC DM LC DM LC DM LC 
32 64 128 256 512 

R
ea

d 
Ti

m
e(

se
c)

 

Number of Readers 

ij 
ik 
jk 

(b) Case L:Level-3

0 

5 

10 

15 

20 

25 

D
M

-2
 

LC
-2

 
D

M
-1

 
LC

-1
 

D
M

-2
 

LC
-2

 
D

M
-1

 
LC

-1
 

D
M

-2
 

LC
-2

 
D

M
-1

 
LC

-1
 

D
M

-2
 

LC
-2

 
D

M
-1

 
LC

-1
 

D
M

-2
 

LC
-2

 
LC

-1
 

D
M

-1
 

R
ea

d 
Ti

m
e(

se
c)

 

Number of Readers 

ij 
ik 
jk 

(c) Case L:Level-2 and Level-1

Fig. 12: Planar Read Performance on Different Resolution (1

is the coarsest resolution)

seek operations, or lack of concurrency from the storage
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system. DynaM delivers a consistently good performance in

all cases by using its dynamic data organization. At the coarse

levels, such as Level-1 and -2 of case S and Level-1 of

Case L, the Hierarchical Spatial Aggregation is able decrease

the seek operations between small chunks to speedup read.

At the finer level, such as Level-3 of Caes L, Imbalanced

Subchunking is able provide an efficient read performance

by reducing the redundant data retrieval. The concurrency

of the underlying storage system is also well utilized by

using Hilbert Curve ordering for chunk placement, so that

close-to-maximum aggregated bandwidth is guaranteed from

storage. Together, much improved and balanced performance

is observed using DynaM compared to LC. An up to 29 times

speedup is achieved.

D. Resolution Rendering Performance of DynaM

Finally we evaluate the resolution rendering performance of

DynaM. Table II shows the time to read the entire variable

at the coarsest level for Case S and Case L by using the

number of readers from 64 to 1,024. With the reduced data

size, the entire variable can be read out by DynaM within 1

second for both cases, a maximum of 17 times faster compared

to the peak performance of LC. At the same time, DynaM

demonstrates good scalability due to its flexibility of data

organization using any of the three possible paths.

TABLE II: Read Time of The Coarsest Level Using Different

Number of Processes (Sec)

64 128 256 512 1024

S
DM 0.54 0.25 0.27 0.26 0.32
LC 1.43 1.22 1.57 3.36 5.49

L
DM 0.58 0.30 0.15 0.22 0.17
LC 3.39 2.51 6.16 11.50 15.97

IV. RELATED WORK

Multiresolution techniques have been widely studied in

image processing and visualization domain. The fundamental

idea is to abstract a much larger dataset with into limited size

of data. Among all the algorithms, Wavelet [7] is a technique

to abstract the signal of an image or a dataset into a small

subregion and store the filtered signal residuals in the other

hierarchical regions, leaving the space for high compression

ratio. It was first introduced by Mallat in [21]. Since its

successful application in JPEG2000 [38], [37], Wavelet has

been widely used in large image and large volume data

compression and visualization. Poulakidas et al [28] proposed

a wavelet based image compression algorithm for fast image

subregion retrieval. Ihm [14] et al introduced a 3-D wavelet

algorithm for large volume data rendering and achieved a very

good compression ratio. In [12], Guthe et al investigated

interactively rendering of very large data sets on standard

PC hardware. The data was compressed using a hierarchical

Wavelet Transform and decompressed on-the-flay while ren-

dering. Yu et al [44] et al proposed a wavelet-based time-space

partition (WTSP) tree algorithm to achieve high compression

ratio for large datasets on time domain. [8] proposed a toolkit

named VAPOR which applied wavelet transform on scientific

data for multiresolutional purpose. In general, most of the

wavelet-based algorithms require a preprocessing step for data

preparation and are computationally expensive. For scientific

applications which have restrict I/O performance requirement,

data representation is not the only concern. Pascucci et

al proposed IDX [26] for visualization of scientific data

through downsampling along Z-order Space Filling Curve.

They showed good read and write performance [15]. However,

the issue with this work along with other downsampling-based

algorithms is, the points of interest may be lost during the

subsampling.

On the other side, improving I/O performance on large scale

systems has been one of the major research topics in HPC [42],

[17], [16]. Many researches have been focused on achieving

such a goal by investigating different data organizations for

multidimensional scientific data. Same interest is shared in

other domains, particularly in database domain, where multidi-

mensional array is commonly used for data storage. For exam-

ple, log-based data organization is exploited for databases [11]

and various file systems [30], [35], [43]. Sarawagi et al. [31]

categorized the strategies for efficient organization of large

multidimensional arrays into four classes, namely chunking,

reordering, redundancy, and partitioning. While chunking has

been commonly recognized as an efficient data layout for

multidimensional arrays because of its capability of alleviating

dimension dependency [36]. A line of work indicated in order

to ensure good I/O performance, reorganizing data chunks

is necessary. Many multidimensional array declustering al-

gorithms [25], [29], [4], [5] were proposed to improve

common access patterns of a multidimensional array. Our

previous work [40] applied similar approach and showed an

improved read performance for scientific applications running

on large scale systems. Schlosser et al [33] explored the

chunk placement strategy at the disk level. Much more efficient

access was observed by putting data chunks on the adjacent

disk blocks. Deshpande et al [9] examined how chunking

the large dataset and caching the chunks with a modified

LRU algorithm can speedup reading. However, the future

access pattern for scientific application varies and may not

be known a priori. A data layout should accommodate any

access pattern. Fan et al. [10] proposed a latin cube strategy to

put neighboring elements into one shared memory module to

improve I/O performance. Chunking can be further combined

with partitioning, a.k.a subchunking, which further decom-

poses the data chunk. In [31], Sarawagi and Stonebraker

gave an initial guidance of what the proper way for chunking

would be. Then Sawires et al [32] proposed a multilevel

chunking strategy to further improve the performance for

range queries on a multidimensional array. Otoo et al [24]

mathematically calculated the optimal size of subchunks from

a combination of system parameters. However, the study was

based on very limited resource, and did not reflect the reality

on modern petascale systems. A group of researchers proposed

SciDB [3] as a data management system particularly intended
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for applications involving large scale array processing. They

used an overlapping chunks to speed up queries on the subset

of data. The performance was gained by more requirement for

storage without introducing more complexity to applications.

In [34], Sorouch et al proposed ArrayStore, a two-level

regular and irregular data chunking layout to speedup queries

in database system.

In this work, we show a design of elastic data layout

that supports multidimensional data presentation so that large

data volume can be presented with limited data size. The

performance of such layout is ensured through an Optimized

Chunking strategy.

V. CONCLUSION

We have designed and developed DynaM, a software frame-

work that can represent scientific data in a multiresolution

form and organize data blocks efficiently as a chimera of three

distinct strategies. DynaM provides a flexible interface for

supporting different multiresolution algorithms for scientific

data representation. Particularly, we introduce a new algorithm

which applies the convolution function to a reduced number

of data points. So scientific data can be well represented even

with a reduced data size. To be able to retrieve the multires-

olutional data efficient for scientific analysis, we presented a

dynamic data organization which is built upon our earlier work

in data organization [41], [40]. Governed under an Optimized

Chunking policy, the Hierarchical Spatial Aggregation and Im-

balanced Subchunking strategies construct the multiresolution

data into chunks suitable to exploit the best I/O performance

of underlying file system. In the end, data chunks are placed

on the storage through Space Filling Curve ordering to achieve

close-to-maximum data concurrency.

We evaluate DynaM on Jaguar Supercomputer at Oak Ridge

National Laboratory. It is able to generate a satisfactory

representation of the original data even at the coarsest level of

resolution. Our experimental results demonstrate that DynaM-

based visualization of S3D simulation data can achieve a good

rendering of the original dataset. Moreover, the read perfor-

mance can be improved by as much as 29 times compared to

the original logically contiguous data organization.

One future direction will be studying the different convolu-

tion kernel for different applications. Eventually we want to

build an adaptive multiresolution framework which is able to

use different algorithms on data based its own characteristic.

Another ongoing research effort is in examining the combi-

nation of the multi-precision and multi-resolution for further

data reduction for efficient scientific data analysis.
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