
Cluster Comput (2014) 17:475–486
DOI 10.1007/s10586-013-0265-8

neCODEC: nearline data compression for scientific applications

Yuan Tian · Cong Xu · Weikuan Yu · Jeffrey S. Vetter ·
Scott Klasky · Honggao Liu · Saad Biaz

Received: 13 April 2012 / Accepted: 4 April 2013 / Published online: 24 April 2013
© Springer Science+Business Media New York 2013

Abstract Advances on multicore technologies lead to pro-
cessors with tens and soon hundreds of cores in a sin-
gle socket, resulting in an ever growing gap between com-
puting power and available memory and I/O bandwidths
for data handling. It would be beneficial if some of the
computing power can be transformed into gains of I/O
efficiency, thereby reducing this speed disparity between
computing and I/O. In this paper, we design and imple-
ment a NEarline data COmpression and DECompression
(neCODEC) scheme for data-intensive parallel applications.
Several salient techniques are introduced in neCODEC, in-
cluding asynchronous compression threads, elastic file rep-
resentation, distributed metadata handling, and balanced
subfile distribution. Our performance evaluation indicates

Y. Tian · C. Xu · W. Yu (�) · S. Biaz
Auburn University, Auburn University, AL 36849, USA
e-mail: wkyu@auburn.edu

Y. Tian
e-mail: tianyua@auburn.edu

C. Xu
e-mail: congxu@auburn.edu

S. Biaz
e-mail: biazsaa@auburn.edu

J.S. Vetter · S. Klasky
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

J.S. Vetter
e-mail: vetter@ornl.gov

S. Klasky
e-mail: klasky@ornl.gov

H. Liu
High Performance Computing, Louisiana State University,
Baton Rouge, LA 70808, USA
e-mail: honggao@cct.lsu.edu

that neCODEC can improve the performance of a variety of
data-intensive microbenchmarks and scientific applications.
Particularly, neCODEC is capable of increasing the effective
bandwidth of S3D, a combustion simulation code, by more
than 5 times.

Keywords MPI-IO · Lustre · Data compression

1 Introduction

Multicore processors have greatly expanded the aggregated
computing power on large-scale systems. Scientific applica-
tions on these systems often have a great deal of redundancy
in their data sets. For example, the checkpoint data from dif-
ferent time steps may contain substantial similarity. In our
experience, we have observed that datasets from a real S3D
simulation have compression ratios ranging from 1.5 to 876
via the gzip utility. Data with such internal redundancy is
being transmitted as applications go through many phases of
data collection, transport, analysis and visualization. A good
portion of network I/O bandwidth is squandered during dif-
ferent phases of application execution, while many of CPU
cores spend their time waiting on the data movement to be
completed.

As a part of the Message Passing Interface (MPI) [8],
MPI-IO [25, 27] provides a unified and portable I/O inter-
face for scientific applications. Together with scientific data
representation models such as HDF5 [28] and NetCDF-4 [1,
9, 13], MPI-IO forms the main backbone of the parallel I/O
software stack on large-scale systems. It offers a crucial av-
enue for access to the underlying storage. Numerous tech-
niques have been investigated and implemented to improve
the scalability of MPI-IO data operations, such as extended
two-phase IO [24], data sieving [26], and data shipping [19].

mailto:wkyu@auburn.edu
mailto:tianyua@auburn.edu
mailto:congxu@auburn.edu
mailto:biazsaa@auburn.edu
mailto:vetter@ornl.gov
mailto:klasky@ornl.gov
mailto:honggao@cct.lsu.edu


476 Cluster Comput (2014) 17:475–486

With the growing gap between the speed of multicore
processors and that of I/O devices, it would be desirable if
this disparity can be mitigated by leveraging the computing
power to compress and consolidate data, thus saving the net-
work bandwidth and relieving the data pressure on I/O de-
vices. Along this line of considerations, scientists often un-
dertake cumbersome post-processing steps to reduce the size
of their simulation data. The back-end archival and storage
system for a supercomputer can also be used to identify and
purge redundant data through special hardware and software
offerings. Both these approaches are typically performed in
an offline manner, i.e., outside the normal execution of sci-
entific applications. They can neither benefit the I/O effi-
ciency at runtime, nor reduce the consumption of network
bandwidth for applications. Other parallel I/O techniques,
such as HDF5 [28] and NetCDF-4 [1, 9], support data com-
pression. But the compression is carried out in an isolated
manner by individual processes. Worse yet, data compres-
sion (while computationally intensive) is performed inline
with respect to the productive computation, degrading the
overall performance of applications. Thus it is critical for
the I/O software stack to have a solution that can take advan-
tage of the computing power from multicore and many-core
processors, achieve asynchronous data compression, and re-
duce the consumption of network bandwidth when storing
data to back-end storage devices.

In this paper, we introduce a NEarline data COmpres-
sion and DECompression (neCODEC) scheme for scientific
applications. NeCODEC is designed to enable data com-
pression at the MPI-IO level. It aims to provide a portable
utility for many applications. Several techniques are intro-
duced in neCODEC, including a nearline thread, elastic file
representation, distributed metadata handling, and balanced
subfile distribution. First, neCODEC is designed with a ser-
vice thread for nearline data compression. It avoids burden-
ing the main thread of applications with the onus of com-
putationally intensive compression tasks. Secondly, to or-
ganize compressed data for efficient storage and easy re-
trieval, neCODEC is designed with an elastic file represen-
tation. A neCODEC file is composed of an elastic number
of data files (a.k.a. subfiles), and a metafile that stores index
records to data blocks in the subfiles. Thirdly, to provide
scalable management of metadata records, distributed meta-
data handling is provided in neCODEC. Lastly, neCODEC
supports balanced subfile distribution on parallel file sys-
tems such as Lustre [6]. With a balanced distribution of sub-
files, neCODEC ensures that bandwidth from all storage de-
vices can be effectively leveraged.

By realizing these techniques, we have developed a pro-
totype of neCODEC. We evaluate its performance on the
QueenBee cluster from Louisiana Optical Network Initia-
tive. Our experiments demonstrate that neCODEC can im-
prove the performance of data-intensive microbenchmarks

Fig. 1 Example execution with three time steps

and scientific applications. Particularly, it is capable of in-
creasing the effective bandwidth of S3D, a combustion sim-
ulation code, by more than 5 times.

The rest of the paper is organized as follows. In Sect. 2,
we introduce the motivation of this paper and give an
overview of related work. Sections 3 and 4 describe the
design and implementation of neCODEC, respectively. We
then provide our experimental results in Sect. 5. Finally, we
conclude the paper in Sect. 6.

2 Motivation and related work

2.1 Execution phases of scientific applications

The execution of a scientific application typically consists of
two main activity phases: computation and I/O. In the com-
putation phase, applications perform numerical calculation
from mathematical models that are construed from problems
in various scientific disciplines. During or after the compu-
tation, data will be written out for checkpointing/restart or
post-processing purposes. One pair of execution of com-
putation and I/O phases is normally referred as one time
step. An application normally includes one or multiple time
steps. The execution of computation and I/O within a tradi-
tional simulation runtime is normally sequential. Each par-
allel process performs computation followed by I/O. After
that, it moves on to the next time step. The upper half of
Fig. 1 shows an example of the sequential execution of three
time steps for one process.

With the increasing gap between computing power and
storage speed, I/O bottleneck has become a critical issue
for further speeding up scientific applications. One of the
research efforts in solving the I/O issues focuses on utiliz-
ing the asynchronous I/O technology. A successful exam-
ple of such endeavor is staging technology [3, 34], where
output data are transferred into a staging area consisting of
multiple designated compute nodes. Once data are moved
into such area, computing processes resume the computation
tasks while the I/O operations can be performed in the back-
ground simultaneously. By pipelining the computation with



Cluster Comput (2014) 17:475–486 477

I/O, a reduced turnaround time for applications is achieved.
However, not only staging requires extra compute nodes for
data storage, it also requires multiple data copies and move-
ment over the network. The network contention could nega-
tively impact performance on large-scale systems, particular
when systems are busy. At high level, our work exploits the
staging technology by creating an in node staging area. Such
design removes the network communication and requires no
extra memory copy, meanwhile enables a pipelined compu-
tation and I/O workflow. Note that for the system that has
many cores per node may not be the ideal candidate for such
design, as the workload becomes too heavy for one dedi-
cated service thread. For this kind of platforms, dedicating
a staging area becomes more reasonable than in node stag-
ing. However, comparing two different staging strategies is
not the focus of this work. We aim to present a strategy that
can be beneficial for scientific simulations running on many
current large-scale systems.

Another line of thought is to reduce the I/O cost by re-
ducing the amount of output data. Compression is a com-
mon technique for data reduction. It fits well in the consid-
eration that to take advantage the CPU cycles which other-
wise will be wasted waiting on the I/O operations to com-
plete. The lower half of Fig. 1 shows an example of integra-
tion of I/O pipeline and compression technologies for three
time steps. On top of I/O pipelining, I/O cost can be fur-
ther reduced after compression, leading to further reduced
simulation turnaround time. As we can see, a compression
algorithm becomes essential in such design. The overall per-
formance could be degraded by a compression algorithm
with low compression ratio (calculated as the size of orig-
inal data divided by the size of compressed data) because it
not only introduces overhead to computation, it also does not
save I/O cost. However, an efficient compression algorithm
with high compression ratio is able to decrease the I/O over-
head for both writing and reading. However, investigating
high-performance compression algorithm for scientific data
is not the focus of this work. Our goal is to demonstrate the
feasibility of integrating I/O pipeline and compression tech-
nology, and introduce an efficient design that enables them
for scientific applications. In addition, we integrate the com-
pression algorithm as a pluggable module, allowing further
investigation on other compression algorithms.

2.2 Related work

Many studies have been performed to improve I/O through
data compression. Park et al. [18] developed a CZIP com-
pression scheme in a file system. It is based on the Content-
based naming (CBN) technique to eliminate redundant
chunks. Vilayannur et al. [29] employed the content-ad-
dressable concept into the design and implementation of a
file system, CAPFS (Content Addressable Parallel File Sys-
tem). However, potential gains of data compression can be

greater at the MPI-IO level for scientific applications be-
cause it reduces the requirements on both network band-
width and storage capacity. Our work represents an attempt
in this direction.

Other efforts have been undertaken to improve the per-
formance of parallel I/O. MPI-IO/GPFS [19] and MPI-
IO/BlueGene [22] have introduced MPI-IO optimizations
that are designed to take advantage of the specific features
of General Parallel File System (GPFS) and BlueGene [4].
Tatebe et al. [23] have exploited the concepts of local file
view to maximize the use of local I/O bandwidth in the de-
sign of a distributed file system for the Grid environment.
Klasky et al. [10] and Ma et al. [17] have investigated the I/O
performance benefits of multithreading. But none of them
have taken into account transforming redundant computing
power into gains of I/O efficiency. Abbasi et al. [3] and
Zheng et al. [34] have shown the work of expediting sci-
entific applications by I/O staging. Our work distributes the
staging to each compute node to speed up I/O without im-
pacting the computation.

There are a number of recent attempts to optimize paral-
lel I/O on large-scale systems. Yu et al. [31, 33] have carried
out a series of optimization studies on the Cray XT plat-
forms. Yu et al. [32] also show the benefit of hierarchical
file striping in allowing data access to multiple subfiles in-
stead of a single shared file. A similar approach has been
explored by Liao et al. [14] in the Parallel-NetCDF project.
This paper builds on top of the earlier work of hierarchi-
cal striping to provide elastic and evenly distributed subfiles.
It organizes individual data files (subfiles) in a hierarchical
and elastic manner so that compressed data chunks can be
striped to all storage devices, without causing the overhead
of wide striping.

A recent effort has attempted to improve parallel I/O
through an ADaptable IO System (ADIOS) [15, 16]. ADIOS
has successfully showcased that data buffering and asyn-
chronous I/O could bring significant benefits to scientific ap-
plications. Our neCODEC effort is orthogonal and comple-
mentary to ADIOS. It enables data compression and caching
with a separate thread in a nearline manner without burden-
ing the main thread for scientific computation.

3 Nearline data compression

To reduce data redundancy in scientific applications, we pro-
pose a new framework neCODEC for nearline data com-
pression and decompression. We first describe software
components of neCODEC and then discuss the design of
neCODEC in detail, focusing on elastic file representation,
data segmentation and compression, balanced subfile distri-
bution, and distributed metadata handling.



478 Cluster Comput (2014) 17:475–486

Fig. 2 Software components of neCODEC

3.1 Software components of neCODEC

Figure 2 shows the components of neCODEC. neCODEC is
targeted for systems that consist of a set of compute nodes,
all connected through an interconnection network to a set
of storage nodes. neCODEC requires no software modifi-
cation at the storage side. For data originally to be stored
as a file, neCODEC will create a metafile and several data
files (subfiles). neCODEC creates a dedicated service thread
per node to support nearline (asynchronous) data compres-
sion. The service thread is spawned by the first process
on a node. Main efforts in neCODEC will be focused on
offloading all I/O related data processing from MPI pro-
cesses to this service thread in an efficient manner. As shown
in Fig. 2(a), application data are first divided into chunks
among MPI processes. Then all MPI processes pass their
chunks to the service thread on the same node for compres-
sion. Figure 2(b) shows the service threads on two com-
pute nodes and their interaction with MPI processes through
shared memory. In a round-robin manner, the service thread
checks the ready flag of each process deployed in shared
memory. Once one data segment in some MPI process is
ready, the service thread detects that and begins compres-

Fig. 3 The format for a neCODEC File

Fig. 4 The format for a metafile

sion according to the segment information provided by the
MPI process.

3.2 Elastic file representation

File representation of neCODEC is a conceptually simple
design. It divides application data into small chunks, and
then compresses them using a configurable algorithm, cur-
rently zlib. Alternative algorithms such as bzip2 or other
lossless compression algorithms for scientific data can be
plugged into neCODEC.

Figure 3 shows the overall file format of one metafile
and two subfiles. The metafile carries the original file name
which is “perf”. The subfile name is a combination of
the original file name and a subfile index. It is formatted
as: .OriginalName_xxx. “xxx” stands for the subfile index.
Thus two subfiles are named .perf_001 and .perf_002, re-
spectively. Subfiles are dynamically created based on the
growth of the original file. For each chunk, a record is cre-
ated to store its attributes such as subfile location, size, and
offsets. This record is then inserted into the metafile. The
compressed data chunk is stored into a subfile.

As shown in Fig. 4, a neCODEC metafile consists of two
types of records. It starts with a fixed-size header record, fol-
lowed by an array of metadata records, one per data chunk.
We describe their formats in detail below.

3.2.1 Format of header

A metafile consists many fixed-size records. The first record
is called a metafile header. It is padded to the same size as the



Cluster Comput (2014) 17:475–486 479

other regular metadata records. The header enables quick ac-
cess to general information about the file. Currently, it con-
tains three fields:

• Magic Number—A predefined number used to identify
the neCODEC file format.

• File Size—The size of the original file.
• Max Index—The biggest index number of all metadata

records.

3.2.2 Format of metadata records

Metadata records contain many attributes of compressed
data chunks in separated subfiles. The length of each record
is 64 bytes. The fields include:

• Segment Index—The global index of the chunk in the
original file. It is calculated by the chunk offset in the
original file (Original Offset) divided by the chunk size.

• Segment Length—The actual length of the chunk after
compression.

• Offset—The beginning offset of a compressed chunk in-
side its subfile.

• Original Offset—The beginning offset of a chunk in the
original file (without compression).

• Subfile Index—The index of the subfile that contains the
compressed chunk.

• Miscellaneous Attributes—A one-byte field that stores
two attributes. The first bit is a flag that is set when the
data chunk is compressed. The remaining 7 bits are used
to store the version number. These attributes are described
further in Sect. 3.3.

• Padding—This is currently unused. It may be used in fu-
ture to store a hashed digest for the data chunk.

3.3 Data segmentation and compression

Figure 5(a) shows data segmentation and compression in
neCODEC. Application data are divided into fixed-size data
chunks. The actual chunk size is adjustable during run-time
(by using MPI hints). Each data chunk is compressed before
it is stored into a subfile. A metadata record is generated
for each compressed data chunk, and then stored into the
metafile. When the data buffer cannot be divided into chunks
evenly, the flanking regions will be written into the subfile
directly without compression. To read the data back, a pro-
cess first retrieves the metadata record. Then it locates the
corresponding subfile, offset, and length for the data chunk.
Data are then read from the subfile, decompressed, and re-
turned to the application.

Uncompressed partial chunks caused by unaligned flank-
ing regions require special handling. Particularly, when the
remaining data arrives, the partial chunk needs to be com-
bined with new data to form a new chunk. We adopt a virtual

Fig. 5 Data compression during write

file appending approach as shown in Fig. 5(b). Every chunk
in the file is tagged with a version number and a flag that
indicates whether it is compressed. When a new chunk is
formed, its metadata record is updated accordingly. To dis-
tinguish two versions of a data chunk with the same offset,
a version number is stored inside the metadata record. This
allows us to purge the stale chunks at a later point of time.
A similar approach is adopted when a file segment is to be
overwritten. An updated chunk will be marked with an in-
creasing version number. When the file size grows to a cer-
tain level, a chunk purging operation can be performed to
remove old chunks. These old chunks are found by travers-
ing metadata records.

3.3.1 Balanced subfile distribution

Subfiles are dynamically created based on the growth of
data. Any subfile can be selected to host incoming data
chunks, thereby enabling elastic file growth. In addition,
on the Lustre file system, a balanced distribution is en-
abled for subfiles to leverage aggregated bandwidth from
all storage devices. The striping pattern of a subfile con-
sists of three parameters: stripe size, stripe width, and stripe
index. Based on our earlier study [32], we organize sub-
files in a hierarchical manner so that all subfiles are evenly
distributed and striped to all storage devices, without caus-
ing the overhead of wide striping. Figure 2 gives an ex-
ample of the distribution of subfiles. All subfiles have a
stripe width 2, with the first subfile located at the first stor-
age device. Stripe indices of other subfiles are set accord-
ingly.



480 Cluster Comput (2014) 17:475–486

3.4 Distributed metadata handling

In neCODEC, every node creates one service thread which
writes metadata records to a shared metafile. When there are
a large number of processes performing I/O, it is critical to
enable an efficient approach for metadata access. To meet
this requirement, we develop a distributed metadata han-
dling scheme. The entire metadata for a file are fully dis-
tributed to all service threads. All service threads allocate a
block of memory as the metadata buffer for storing transient
metadata records. When the buffer usage reaches a threshold
percentage, e.g., 80 %, the service thread will flush all exist-
ing metadata records into the on-disk metafile. In the mean-
time, new records can still be inserted into the other 20 %
of the buffer. In this scheme, all metadata are stored as large
and sequential blocks to the disk, allowing efficient disk ac-
cess. For a read request, a service thread will first search
for metadata records from its metadata buffer. If it is not
found, the service thread will retrieve a number of contigu-
ous metadata records, along with the required ones. Such
design allows easy integration with data staging or prefetch-
ing techniques. With reasonable locality, this scheme com-
bines multiple metadata records into one and avoids the cost
of frequent metadata access. Note that, in this exploratory
research, we focus on studying the benefits of compression
and strictly divide the content of a file among MPI processes.
Each service thread is managing a distinct set of metadata
records. The consistency issue among metadata buffers from
different threads is then avoided through this rigid distribu-
tion. In the future, we plan to investigate the feasibility of
dynamic partitioning methods.

4 Implementation

We have implemented a prototype of neCODEC by modi-
fying the MPI-IO implementation of MPICH2. In this pro-
totype, several other implementation details are worth men-
tioning here. First, the majority of the code is introduced as
an extension to the ADIO implementation of Lustre file sys-
tem. Second, the service thread is created by the first MPI
process, and it is not created until the first call to open (cre-
ate) a file. This thread stays alert for upcoming I/O requests
from any process on the same node. It will not exit until the
MPI_Finalize() is called. Third, data cached in the service
thread will be flushed either when the corresponding file is
closed by the application, or when an explicit file synchro-
nization request is made.

Because disk access is expensive, we support data
caching in neCODEC to minimize the frequency of disk
access. Two shared memory buffers are allocated for each
process. One is a metadata buffer (currently 2MB), whose
usage is described in Sect. 3.4. Another is the cache for com-
pressed data chunks. Similar to the metadata cache, the data

chunks will be flushed to the disk file when they have taken
up more than 50 % of the total data cache.

5 Performance evaluation

Our experiments were conducted on the QueenBee cluster
from Louisiana Optical Network Initiative (LONI). Queen-
Bee consists of 668 nodes. Each node is equipped with dual-
socket quad-core Intel Xeon 64-bit 2.33 GHz processors,
512 KB cache, 8 GB physical memory (1 GB per core). All
nodes run Red Hat Enterprise Linux 4 operating system. The
storage system is a 58 TB Lustre file system with 16 Lustre
OSTs. In this paper, we focus on the performance of write
operations, while read performance is also evaluated to ex-
amine the performance impact of metadata handling.

5.1 Independent I/O

For independent I/O performance measurements, we use
perf.c from the ROMIO [20] distribution. This program per-
forms concurrent writes to a shared file. Each process writes
a contiguous 24 MB data at disjoint offsets based on its rank
in the program. We fill in the test data with random alpha-
numerical characters. Our measurement indicates that such
data has a compression ratio of 2.3. Compression ratio is
defined as the ratio between the size of the original data and
the size after compression (via zlib). This generates a max-
imum of 3 GB data size with 128 processes. The average
time taken for each iteration is recorded. Because neCODEC
uses a dedicated asynchronous service thread to perform
I/O, data chunks are buffered in the service thread when
MPI_File_Write() returns. The service thread later flushes
data chunks when the buffered data reaches a threshold or
when the file is closed. So we calculate the write time as the
sum of MPI_File_Write() time and the actual I/O time in-
side the service thread. Because neCODEC uses a dedicated
I/O thread, which may impact performance when MPI pro-
cess layout varies, we examine the write performance with
different process arrangement.

Each node on QueenBee is equipped with 8 compute
cores. When a program is launched to use all 8 cores, the
service thread of neCODEC will compete with the regular
MPI processes for compute cores. To examine the effect of
using one service thread, neCODEC is tested with different
numbers (7 and 8) of cores (processes) per node. The “orig-
inal” case for ROMIO is always run with 8 processes per
node as theoretically its performance is not influenced by
the MPI process arrangement.

Figure 6 shows the performance comparison between
ROMIO and neCODEC. Lustre enables client data cache in
the kernel. To mitigate caching effects, we calculate the I/O
time of ROMIO by forcing a file sync operation after the



Cluster Comput (2014) 17:475–486 481

Fig. 6 Independent I/O performance

write operation. For complete comparison, we also include
the performance of independent I/O operations without file
sync. As shown in Fig. 6, ROMIO outperforms neCODEC
in most cases with caching effects. However, the scalability
issue is also observed. Hierarchical striping helps neCODEC
achieves good scalability and eventually surpasses the origi-
nal ROMIO (no sync) on 128 processes. When file sync op-
erations are used to reduce caching effects, neCODEC out-
performs the original ROMIO in all cases, with either 7 or 8
processes per node. When neCODEC is run with 8-process
per node, the performance is constrained by the competi-
tion for CPU between service thread and processes. With 7-
process per node, neCODEC benefits greatly from the dedi-
cated core for compression and delivers significantly higher
bandwidth. Compared to ROMIO (with sync), neCODEC
achieves a bandwidth improvement up to 3 times with 128
processes.

Taken together, the performance evaluation of indepen-
dent I/O tests, we conclude that neCODEC is able to im-
prove I/O bandwidth for highly compressible data by lever-
aging a portion of the CPU power. A dedicated compute core
will help neCODEC significantly. So one compute core is re-
served on each compute node in the following experiments
unless otherwise indicated.

5.2 Performance of MPI-Tile-IO

MPI-Tile-IO [21] tests the performance of tiled access to a
two-dimensional dense matrix, simulating the type of work-
load that exists in some visualization applications and nu-
merical applications. In our experiments, each process ren-
ders a 1×1 array of displays, each with 2048×1536 pixels.
The size of each element is 8 bytes, leading to a file size of
24 ∗ N MB, where N is the number of processes.

Figure 7(a) shows the performance improvement of
neCODEC compared to ROMIO. We observe that
neCODEC outperforms the original ROMIO in all cases.
A maximum of 3 times improvement is achieved with
25 processes, while 1.6 times bandwidth improvement is

Fig. 7 MPI-Tile-IO write performance

achieved with 144 processes. Moreover, neCODEC presents
a good overall scalability.

We further examine the time breakdown of MPI-Tile-IO.
In the case of neCODEC, the file open time includes the
time to spawn the service thread; the write time is a com-
bination of MPI_File_Write() and the write() system call
operation inside the service thread; and the close time in-
cludes the time to flush cached data and metadata records to
the disk. Figure 7(b) shows the comparison of timing break-
down between ROMIO and neCODEC. Spawning service
threads does not significantly increase the file open time.
However, when a file is closed, much time is spent by the
main thread to synchronize with the service thread, which
has to flush cached data and metadata into storage. However,
compressed data leads to much reduced time in writing the
file. The savings from the file write time actually outweighs
the overheads from file open and close calls. Therefore, this
results in better I/O performance for neCODEC compared
to ROMIO.

Figure 8 shows the read performance of MPI-Tile-IO
when the data are initially in the disk. In this case, each
process has to retrieve the metadata before reading data
from disk. We observe that, due to the overhead of meta-



482 Cluster Comput (2014) 17:475–486

Fig. 8 MPI-Tile-IO read performance

data retrieving, neCODEC performs worse than the original
ROMIO except when there are 144 processes. neCODEC is
able to support good read performance at scale. It exhibits
good performance benefits, and presents a viable I/O tech-
nique for data-intensive applications. Other techniques such
as data staging may be further exploited to avoid the meta-
data overhead as part of future research.

5.3 Performance of NAS BT-IO

NAS BT-IO [30] is developed at NASA Ames Research
Center based on NAS BT (Block-Tridiagonal) parallel
benchmark. The entire dataset undergoes diagonal multi-
partitioning and is distributed among a square number of
MPI processes. Its data structures are represented as struc-
tured MPI datatypes and written to a file periodically, typ-
ically every 5 timesteps. There are several different BT-IO
implementations, which vary on how its file I/O is carried
out among all the processes. In our experiments, we use an
implementation that performs I/O using MPI-IO collective
I/O routines, so called full mode BT-IO. In this mode, BT-
IO performs 40 iterations of collective writes, followed by a
verification phase which performs 40 iterations of collective
reads. We run BT-IO with 9 to 144 processes and two differ-
ent classes. BT-IO Class A generates 400 MB and Class B
1697.93 MB.

Figure 9(a) shows the write performance of BT-IO.
NeCODEC is still able to improve the effective I/O band-
width for BT-IO even when the data are not highly com-
pressible. Bandwidth improvements of 37 % and 18 % are
observed for Class A and Class B, respectively. The peak
bandwidth of Class A is achieved at 16 processes. This is be-
cause the Class A data size is relatively small. More writers
lead to finer grained data elements for each process. Hence
many smaller I/O requests are generated to Lustre, degrad-
ing the I/O performance. A similar trend is observed for the
performance of Class B. For both classes, neCODEC ex-
hibits better performance compared to the original ROMIO.

Fig. 9 Write/read performance of BT-IO

The read performance of BT-IO is shown in Fig. 9(b).
As BT-IO performs read immediately after write, neCODEC
is able to retrieve its metadata from cache. Accordingly we
observe better performance for neCODEC. A maximum of
49 % improvement is achieved for Class B. For Class A, the
performance gain is smaller.

As neCODEC introduces computation overhead for each
process to compress data, it is also important to evalu-
ate the overall performance impact to application. For this
purpose, we measure the total execution time of BT-IO,
which includes both computation and I/O. The results for
Class A and Class B are shown in Fig. 10. As can be
seen, neCODEC demonstrates shorter execution time com-
paring to the original ROMIO, particularly at larger pro-
cess counts. The performance benefit is less significant for
Class A due to smaller workload. Such result validates
the rational of our design. Overall, neCODEC is able to
achieve a 35 % improvement comparing to the original
ROMIO.



Cluster Comput (2014) 17:475–486 483

Fig. 10 Total execution time of BT-IO

5.4 S3D Combustion simulation application

S3D [5] is a combustion simulation application using di-
rect numerical simulation (DNS) solver developed at Sandia
National Laboratories. It solves fully compressible Navier-
Stokes, total energy, species and mass continuity coupled
with detailed chemistry. This code traditionally runs on a
large number of processors, on many of the largest super-
computers in the Department of Energy and at the National
Science Foundation centers. One of the more taxing parts
of the simulation is spent in the I/O, and our group has per-
formed lots of research to expedite this process [3, 15, 16,
34].

Typically the data that is produced in the simulation
includes three-dimensional Cartesian mesh points of four
global arrays, (mass, velocity, pressure, and temperature),
along with many chemical species. We learn from our inter-
action with S3D scientists that datasets are usually written
as either small (203) or medium (503), or large (1003) data
points per MPI process. In our performance evaluation we
use the medium data size, which produces about 15.3 MB
of data per process per checkpoint. Therefore, with 125 pro-
cesses in our experiments, the total amount of data is 1.9 GB
per output. We measure the time for ten checkpoints, and
show the results in Fig. 11. In order to make the experiment
comparable to “real” S3D data, we validate our runs with
the early time steps of the S3D simulation. The datasets are
confirmed to be highly compressible.

We observe significant performance improvements with
neCODEC compared to the original ROMIO in all cases.
With 64 processes, neCODEC achieves about 3.8 GB/s
bandwidth, which is more than 4.4 times improvement of
the original ROMIO. The bandwidth drops at 125 processes.
We suspect that it can be partly attributed to the increasing
number of metadata records and the metadata management
overhead. Thus we further evaluate the performance of S3D
with different chunk sizes.

Fig. 11 S3D performance

Fig. 12 The performance of S3D with varying chunk sizes

5.4.1 Tuning neCODEC chunk size for S3D

To further examine the impact of data management over-
head, we measure the performance of S3D with different
chunk sizes. Figure 12 shows the performance of ROMIO
and neCODEC with different chunk sizes. As shown in the
figure, the chunk size of 32 KB leads to the best bandwidth,
an improvement of 5 times compared to ROMIO on 64 pro-
cesses, and 4.5 times on 125 processes. Compared to the
chunk size of 16 KB, 32 KB leads to better compression ra-
tio, and less number of data chunks, therefore more efficient
metadata handling. The 64 KB chunk size performs slightly
lower than 32 KB. This is because that an even larger chunk
size at 64 KB slows down compression, therefore degrading
the overall performance.

6 Conclusions

In this paper, we have explored the feasibility to design an
I/O compression framework to leverage a portion of the
computing power to compress and consolidate scientific
datasets, and mitigate the speed disparity between multi-
core processors and I/O devices. To this aim, we have de-
signed NEarline data COmpression and DECompression



484 Cluster Comput (2014) 17:475–486

(neCODEC) to deliver efficient I/O for data-intensive scien-
tific applications. A prototype implementation of neCODEC
has been accomplished. Inside neCODEC, a number of
salient techniques are implemented accordingly, including a
nearline service thread, elastic file representation, balanced
subfile distribution, and distributed metadata handling. The
performance of neCODEC is evaluated using a set of
data-intensive microbenchmarks and scientific applications.
Our experimental results demonstrate that neCODEC can
achieve an overall performance improvement for scientific
datasets with different compositions and varying compres-
sion ratios. For a combustion simulation application, S3D,
we show that neCODEC increases its effective bandwidth
by more than 5 times.

In the future, we intend to study the scalability of
neCODEC, particularly how it can be integrated with
ADIOS [15, 16] to exploit the data redundancy of scien-
tific applications on petascale systems hosted at Leader-
ship Computing Facilities. Such integration also provides
us an opportunity to evaluate neCODEC with other high
performance lossless or lossy compression algorithms, such
as ISABELA [7, 11, 12]. In addition, we plan to investi-
gate how to optimize the read performance of neCODEC
so that it can benefit applications with predominantly read
access. Furthermore, we plan to research the applicability
of neCODEC to other large-scale computing environments
such as BlueGene systems with other parallel file systems
such as PVFS [2] and GPFS [22].

Acknowledgements This work is funded in part by National Science
Foundation awards CNS-0917137 and CNS-1059376. This research is
sponsored in part by the Office of Advanced Scientific Computing Re-
search; U.S. Department of Energy. This research is conducted with
high performance computational resources provided by the Louisiana
Optical Network Initiative (http://www.loni.org). We are very grateful
for the technical support from the LONI team.

References

1. NetCDF-4. http://www.unidata.ucar.edu/software/netcdf
2. The parallel virtual file system, version 2. http://www.pvfs.

org/pvfs2
3. Abbasi, H., Eisenhauer, G., Wolf, M., Schwan, K.: Datastager:

scalable data staging services for petascale applications. In: HPDC
’09, New York, NY, USA (2009)

4. Adiga, N., Almasi, G., Almasi, G., et al.: An overview of
the BlueGene/l supercomputer. In: Proceedings of the 2002
ACM/IEEE Conference on Supercomputing (Supercomputing
’02), Los Alamitos, CA, USA, pp. 1–22 (2002)

5. Chen, J.H., et al.: Terascale direct numerical simulations of tur-
bulent combustion using S3D. Comput Sci. Discov. 2(1), 015001
(2009). http://stacks.iop.org/1749-4699/2/015001

6. Cluster File System, Inc.: Lustre: a scalable, high performance file
system. http://www.lustre.org/docs.html

7. Gong, Z., Lakshminarasimhan, S., Jenkins, J., Kolla, H., Ethier,
S., Chen, J., Ross, R., Klasky, S., Samatova, N.: Multi-level lay-
out optimization for efficient spatio-temporal queries on Isabela-
compressed data. In: 2012 IEEE 26th International, Parallel and

Distributed Processing Symposium (IPDPS), pp. 873–884. IEEE
Press, New York (2012)

8. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance,
portable implementation of the MPI message passing interface
standard. Parallel Comput. 22(6), 789–828 (1996)

9. Jenter, H.L., Signell, R.P.: NetCDF: a public-domain-software so-
lution to data-access problems for numerical modelers (1992)

10. Klasky, S., Ethier, S., Lin, Z., Martins, K., McCune, D., Samtaney,
R.: Grid -based parallel data streaming implemented for the gy-
rokinetic toroidal code. In: Proceedings of the 2003 ACM/IEEE
Conference on Supercomputing (SC’03), p. 24, Washington,
DC, USA, (2003). http://portal.acm.org/citation.cfm?id=1048935.
1050175

11. Lakshminarasimhan, S., Shah, N., Ethier, S., Klasky, S., Latham,
R., Ross, R., Samatova, N.: Compressing the incompressible with
Isabela: in-situ reduction of spatio-temporal data. In: Euro-Par
2011 Parallel Processing, pp. 366–379 (2011)

12. Lakshminarasimhan, S., Shah, N., Ethier, S., Ku, S., Chang, C.,
Klasky, S., Latham, R., Ross, R., Samatova, N.: Isabela for effec-
tive in situ compression of scientific data. Concurr. Comput. 25,
524–540 (2013)

13. Li, J., Liao, W., Choudhary, A., Ross, R., Thakur, R., Gropp, W.,
Latham, R.: Parallel netCDF: a high performance scientific I/O
interface. In: Proceedings of the Supercomputing ’03 (2003)

14. Liao, W.k., Choudhary, A.: Dynamically adapting file domain
partitioning methods for collective I/O based on underlying par-
allel file system locking protocols. In: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing (SC’08), Piscataway,
NJ, USA, pp. 1–12 (2008)

15. Lofstead, J., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flex-
ible I/O and integration for scientific codes through the adaptable
I/O system (adios). In: 6th International Workshop on Challenges
of Large Applications in Distributed Environments, Boston, MA
(2008)

16. Lofstead, J., Zheng, F., Klasky, S., Schwan, K.: Adaptable, meta-
data rich IO methods for portable high performance IO. In: Paral-
lel and Distributed Processing International Symposium, pp. 1–10
(2009)

17. Ma, X., Winslett, M., Lee, J., Yu, S.: Improving MPI–IO output
performance with active buffering plus threads. In: Proceedings of
International Parallel and Distributed Processing Symposium, p.
10 (2003). doi:10.1109/IPDPS.2003.1213165

18. Park, K., Ihm, S., Bowman, M., Pai, V.S.: Supporting practi-
cal content-addressable caching with czip compression. In: 2007
USENIX Annual Technical Conference on Proceedings of the
USENIX Annual Technical Conference (ATC’07), Berkeley, CA,
USA, pp. 1–14 (2007)

19. Prost, J.P., Treumann, R., Hedges, R., Jia, B., Koniges, A.: MPI-
IO/GPFS, an optimized implementation of MPI-IO on top of
GPFS. In: Proceedings of Supercomputing’01 (2001)

20. Thakur, R., Ross, R., Latham, R., Lusk, R., Gropp, B.: Romio:
a high-performance, portable MPI-IO implementation (2012).
http://www.mcs.anl.gov/research/projects/romio/

21. Ross, R.: Parallel I/O benchmarking consortium. http://www-
unix.mcs.anl.gov/rross/pio-benchmark/html/

22. Schmuck, F., Haskin, R.: GPFS: a shared-disk file system for large
computing clusters. In: FAST’02, pp. 231–244. USENIX, Berke-
ley (2002)

23. Tatebe, O., Morita, Y., Matsuoka, S., Soda, N., Sekiguchi, S.: Grid
datafarm architecture for petascale data intensive computing. In:
Proceedings of the 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRID’02), Washington, DC,
USA, p. 102 (2002)

24. Thakur, R., Choudhary, A.: An extended two-phase method for
accessing sections of out-of-core arrays. Sci. Program. 5(4), 301–
317 (1996)

http://www.loni.org
http://www.unidata.ucar.edu/software/netcdf
http://www.pvfs.org/pvfs2
http://www.pvfs.org/pvfs2
http://stacks.iop.org/1749-4699/2/015001
http://www.lustre.org/docs.html
http://portal.acm.org/citation.cfm?id=1048935.1050175
http://portal.acm.org/citation.cfm?id=1048935.1050175
http://dx.doi.org/10.1109/IPDPS.2003.1213165
http://www.mcs.anl.gov/research/projects/romio/
http://www-unix.mcs.anl.gov/rross/pio-benchmark/html/
http://www-unix.mcs.anl.gov/rross/pio-benchmark/html/


Cluster Comput (2014) 17:475–486 485

25. Thakur, R., Gropp, W., Lusk, E.: An abstract-device interface
for implementing portable paralle-I/O interfaces. In: Proceed-
ings of the Sixth Symposium on the Frontiers of Massively
Parallel Computation (Frontiers ’96) (1996). http://www.mcs.
anl.gov/home/thakur/adio.ps

26. Thakur, R., Gropp, W., Lusk, E.: Data sieving and collective I/O in
ROMIO. In: Proceedings of the Seventh Symposium on the Fron-
tiers of Massively Parallel Computation, pp. 182–189 (1999)

27. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI–IO
portably and with high performance. In: Proceedings of the 6th
Workshop on I/O in Parallel and Distributed Systems, pp. 23–32.
ACM Press, New York (1999)

28. The National Center for SuperComputing. HDF5 home page.
http://hdf.ncsa.uiuc.com/HPD5/

29. Vilayannur, M., Nath, P., Sivasubramaniam, A.: Providing tunable
consistency for a parallel file store. In: Proceedings of the 4th Con-
ference on USENIX Conference on File and Storage Technologies
(FAST’05), Berkeley, CA, USA, pp. 2 (2005)

30. Wong, P., Van der Wijngaart, R.F.: NAS parallel benchmarks I/O,
version 2.4. Tech. rep. NAS-03-002, Computer Sciences Corpora-
tion, NASA Advanced Supercomputing (NAS) Division

31. Yu, W., Vetter, J.: ParColl: partitioned collective I/O on the
cray XT. In: International Conference on Parallel Processing
(ICPP’08), Portland, OR (2008)

32. Yu, W., Vetter, J., Canon, R., Jiang, S.: Exploiting lustre file join-
ing for effective collective I/O. In: 7th Int’l Conference on Cluster
Computing and Grid (CCGrid’07), Rio de Janeiro, Brazil (2007)

33. Yu, W., Vetter, J., Oral, H.: Performance characterization and
optimization of parallel I/O on the cray XT. In: 22nd IEEE
International Parallel and Distributed Processing Symposium
(IPDPS’08), Miami, FL (2008)

34. Zheng, F., et al.: Predata—preparatory data analytics on peta-scale
machines. In: IPDPS, Atlanta, GA (2010)

Yuan Tian Yuan Tian is a Postdoc-
toral Research with Joint Institute of
Computational Science of Univer-
sity of Tennessee. Yuan Tian holds
a Ph.D. in Computer Science from
Auburn University. She earned her
master’s degree in Computer Sci-
ence in 2009 from Auburn Uni-
versity and her bachelor’s degree
from Chengdu University of Tech-
nology, Chengdu, China in 2002.
She also worked as software engi-
neer in both China and Japan. Her
current research focus is data man-
agement and workflow systems for
large-scale scientific applications.

Cong Xu is a Ph.D. student of Par-
allel Architecture and System Lab-
oratory (PASL) in the Department
of Computer Science at Auburn
University. Xu earned his master’s
degree in Computer Science from
Auburn University in 2012. His re-
search interests include High Per-
formance Computing, Parallel Pro-
cessing, and Data Analytics.

Weikuan Yu is currently an As-
sociate Professor in the Depart-
ment of Computer Science and Soft-
ware Engineering at Auburn Uni-
versity. Prior to joining Auburn, he
served as a Research Scientist for
two and a half years at Oak Ridge
National Laboratory (ORNL) until
January 2009. Yu is also a Joint Fac-
ulty at ORNL. He earned his PhD
in Computer Science from the Ohio
State University in 2006. Yu also
holds a master’s degree in Develop-
mental Biology from the Ohio State
University and a Bachelor degree

in Genetics from Wuhan University, China. At Auburn University,
Yu leads the Parallel Architecture and System Laboratory (PASL) for
research and development on big data analytics, parallel and distribut-
ing computing, storage and file systems, as well as interdisciplinary
topics on computational biology. Yu is a member of AAAS, ACM,
and IEEE.

Jeffrey S. Vetter Jeffrey S. Vetter
is a computer scientist in the Com-
puter Science and Mathematics Di-
vision (CSM) of Oak Ridge Na-
tional Laboratory (ORNL), where
he leads the Future Technologies
Group and directs the Experimen-
tal Computing Laboratory. Dr. Vet-
ter is also a Joint Professor in the
College of Computing at the Geor-
gia Institute of Technology, where
he earlier earned his PhD. He joined
ORNL in 2003, after four years at
Lawrence Livermore National Lab-
oratory. Vetter’s interests span sev-

eral areas of highend computing—encompassing architectures, system
software, and tools for performance and correctness analysis of appli-
cations.

Scott Klasky Scott A. Klasky is the
group leader for Scientific Data in
the Computer Science and Math-
ematics Research Division at the
Oak Ridge National Laboratory.
He holds a Ph.D. in Physics from
the University of Texas at Austin
(1994), and has previously worked
at the University of Texas at Austin,
Syracuse University, and the Prince-
ton Plasma Physics Laboratory. Dr.
Klasky is a world expert in scien-
tific computing and scientific data
management, co-authoring over 150
papers. He is also the leader of the

ADIOS project, http://www.olcf.ornl.gov/center-projects/adios/.

http://www.mcs.anl.gov/home/thakur/adio.ps
http://www.mcs.anl.gov/home/thakur/adio.ps
http://hdf.ncsa.uiuc.com/HPD5/
http://www.olcf.ornl.gov/center-projects/adios/


486 Cluster Comput (2014) 17:475–486

Honggao Liu Honggao Liu is the
Deputy Director of Center for Com-
putation and Technology (CCT) at
Louisiana State University (LSU).
He was the Director of High Per-
formance Computing (HPC) at LSU
and Louisiana Optical Network Ini-
tiative (LONI) from 2008–2011.
Liu was the Principal Investigator
on the LSU/LONI’s NSF funded
TeraGrid effort. Liu has overseen
all HPC activities and led the HPC
development efforts at LSU and
LONI, and has been instrumental in
establishing HPC at LSU as a na-

tionally recognized facility. Liu conducted research on multiphase re-
active polymer flow in porous media and reservoir simulations during
1997–2002. He received his Ph.D. in Chemical Engineering from LSU
in 2002 and holds a B.S. in Chemical Engineering from Xi’an Jiao-
tong University and two M.S. degrees in Chemical Engineering from
Tianjin University and from LSU.

Saad Biaz SaadBiaz received a
Ph.D. in Computer Science in 1999
from Texas A&M University and
a Ph.D. in Electrical Engineering
in 1989 from the University Henri
Poincaré in Nancy (France). He is
presently an Associate Professor
of Computer Science and Software
Engineering at Auburn University.
He has held faculty positions at the
EcoleSupérieure de Technologie de
Fès and Al Akhawayn University
in Ifrane (Morocco). His current re-
search is in the areas of distributed
systems, wireless networking, mo-

bile computing, and particularly on autonomous flight of Unmanned
Aircraft Systems. His research is funded by the U.S. National Science
Foundation. SaadBiaz is a recipient in 1995 of the Excellence Fulbright
Scholarship. Saad has served on the committees of several conferences
and as editor for several journals. For more information, please visit
http://www.eng.auburn.edu/users/sbiaz.

http://www.eng.auburn.edu/users/sbiaz

	neCODEC: nearline data compression for scientific applications
	Abstract
	Introduction
	Motivation and related work
	Execution phases of scientific applications
	Related work

	Nearline data compression
	Software components of neCODEC
	Elastic file representation
	Format of header
	Format of metadata records

	Data segmentation and compression
	Balanced subfile distribution

	Distributed metadata handling

	Implementation
	Performance evaluation
	Independent I/O
	Performance of MPI-Tile-IO
	Performance of NAS BT-IO
	S3D Combustion simulation application
	Tuning neCODEC chunk size for S3D


	Conclusions
	Acknowledgements
	References


