
JVM-Bypass for Efficient Hadoop Shuffling
Yandong Wang Cong Xu Xiaobing Li Weikuan Yu

Department of Computer Science, Auburn University, AL 36849, USA
{wangyd,congxu,xbli,wkyu}@auburn.edu

Abstract—Hadoop employs Java-based network transport
stack on top of the Java Virtual Machine (JVM) for its data shuf-
fling and merging purposes. Our examination reveals that JVM
introduces a significant amount of overhead to data processing
capability of the native interface. Furthermore, JVM constrains
the use of high-performance networking mechanisms such as
RDMA (Remote Direct Memory Access) which has established
itself as an effective data movement technology in many network-
ing environments because of its low-latency, high bandwidth, low
CPU utilization, and energy efficiency. In this paper, we introduce
a plug-in library called JVM-Bypass Shuffling (JBS) for Hadoop
data shuffling. JBS helps Hadoop data shuffling by avoiding Java-
based transport protocols, removing the overhead and limitations
of the JVM. In addition, we design JBS as a portable library
that can leverage both TCP/IP and RDMA on different network
systems such as InfiniBand and 1/10 Gigabit Ethernet. We have
designed and implemented JBS as part of Hadoop acceleration.
It has been transferred to Mellanox as the software product UDA
(Unstructured Data Accelerator) and used to enable our studies
on a variety of merging algorithms. Our performance evaluation
demonstrates that JBS can effectively reduce the execution time
of Hadoop jobs by up to 66.3% and lower the CPU utilization
by 48.1%.

I. INTRODUCTION

Nowadays, a growing number of organizations center their
business around the collection and analysis of enormous data
sets. MapReduce is a popular programming model [7] that
provides a simple and scalable parallel data processing frame-
work for large-scale off-the-shelf clusters. Hadoop [1], as an
open-source implementation of MapReduce, has been widely
adopted by leading companies, such as Yahoo! and Facebook,
for big data analytics. Two kinds of tasks, MapTasks and
ReduceTasks, are employed in the MapReduce programming
model for data processing. A data shuffling phase is required to
move the intermediate data generated by the MapTasks to the
ReduceTasks as their input. However, such data shuffling can
cause a great volume of network traffic, imposing a serious
constraint on the efficiency of data analytics applications.
The performance issue of data shuffling has been identified
by many previous works [7], [21], [5], [25]. However, few
studies have been carried out to optimize the intermediate data
transfer.

Hadoop currently relies on a stack of transport protocols
in the Java Virtual Machine (JVM), including Java HTTP
and network libraries. However, JVM introduces significant
overhead in managing Java objects. For example, for every
8-byte double object, it requires another 16 bytes for data rep-
resentation, an overhead of 67% [20]. Such inflated memory

consumption quickly shrinks the available memory to Hadoop,
and prolongs Java garbage collection for reclaiming memory.
This JVM issue has also been documented by [4], [15].

Contemporary high speed networks, such as
InfiniBand [13], provide Remote Direct Memory Access
(RDMA) [24] that is capable of up to 56Gbps bandwidth,
sub-microsecond latency and low CPU utilization. RDMA
is also available through the RoCE (RDMA over Converged
Ethernet) protocol [10] on 10 Gigabit Ethernet (10GigE).
The performance advantage of RDMA advocates it as a
compelling solution to speed up Hadoop intermediate data
shuffling. Unfortunately, the existing Hadoop is designed to
rely on the legacy TCP/IP protocol to transfer intermediate
data and is incapable of utilizing RDMA. Such a limit
prevents Hadoop from relishing high bandwidth and low
latency from InfiniBand and 10GigE networks.

In order to address the JVM overhead issue and the need
of portable network support, we have examined the software
architecture of Hadoop for data shuffling. Accordingly we
propose a solution, called JVM-Bypass Shuffling (JBS), for
Hadoop to avoid the overhead of JVM in data shuffling
and enable fast data movement on both RDMA and TCP/IP
protocols. JBS has actually been in use as part of our Hadoop
Acceleration project. An initial version of it was released
by Mellanox as the UDA (Unstructured Data Accelerator)
software product [19]. It was also used to enable the network-
levitated merge algorithm [29] and its followup hierarchical
merge algorithm [22]. Compared to our earlier works on merge
algorithms, this paper describes the design and implementation
details of JVM-bypass and its portability on both TCP/IP and
RDMA networks.

Overall, we have made four contributions in this research:
• We have examined the performance of Hadoop data

shuffling and revealed that JVM can impose significant
overhead on high-speed networks.

• We have designed and implemented JVM-Bypass Shuf-
fling to avoid JVM in the critical path of Hadoop inter-
mediate data shuffling.

• We have designed JBS as a portable plug-in library
that can enable Hadoop to leverage both the traditional
TCP/IP protocol and the advanced RDMA protocol.

• We have carried out a systematic performance evaluation
of JBS on different networks. Our results demonstrate
that JBS improves the execution time of Hadoop jobs by
up to 66.3% and reduces the CPU utilization by 48.1%.

The remainder of the paper is organized as follows. We

introduce the motivation and describe the existing issues in
Hadoop in Section II. We then present the design and imple-
mentation of JVM-Bypass Shuffling in Section III and Sec-
tion IV. The experimental results are provided in Section V.
Finally, we provide a review of related work in Section VI
and then conclude the paper in Section VII.

II. MOTIVATION

In this section, we present an overview of Hadoop interme-
diate data shuffling and then describe in detail the problems
associated with its current design.

A. Hadoop Intermediate Data Shuffling

MOF1!
MOF2!

MOF1!
MOF2!

MapTask(

Map!

MOF1!
MOF2!

HIpServlet!
Staging!MOF!

ReduceTask(

Staging!MOF!

Staging!MOF!

Local!!Disk!
Access!

Reduce!

TCP/IP!

MOFCopiers!

HIpServlet!

HIpServlet!

Sort/Merge!

Job(Tracker(

Task(Tracker(

Task(Tracker(

DFS!

Fig. 1: Details of Intermediate Data Shuffling

Hadoop exposes two simple interfaces: map and reduce,
to application users but hides processing complexities, such
as data distribution, task parallelization, fault tolerance, etc.
Its runtime system consists of four major components: Job-
Tracker, TaskTracker, MapTask, and ReduceTask. These com-
ponents are shown in Figure 1. JobTracker assigns one Task-
Tracker per slave node and orchestrates TaskTrackers to launch
MapTasks and ReduceTasks for job execution. A MapTask
reads an input split from Hadoop Distributed File System
(HDFS) [27], runs the map function, and stores intermediate
data as a Map Output File (MOF) to local disks. A MOF is
divided into multiple segments, each of which is for a specific
ReduceTask. Each ReduceTask fetches the segments from all
the MOFs, sorts/merges them, and then reduces the merged
results. The output generated by a ReduceTask is stored back
to the HDFS as a part of the final result.

Hadoop has been highly optimized to reduce the amount
of network traffic when reading input data for MapTasks
and writing output from ReduceTasks. For instance, delay
scheduling [31] helps improve the data locality and reduce
data movement in the network. According to [31], up to 98%
of MapTasks can be launched with inputs on local disks. In

addition, ReduceTasks usually generate and store the final
outputs to the disks local to themselves in the HDFS.

However, Hadoop intermediate data shuffling still causes
a large volume of network traffic. Every ReduceTask fetches
data segments from all map outputs, resulting in a network
traffic pattern from all MapTasks to all ReduceTasks, which
grows in the order of O(N2) assuming that MapTasks and
ReduceTasks are both a factor of N total tasks. As reported
by [23] from Yahoo!, the intermediate data shuffling from 5%
of large jobs can consume more than 98% network bandwidth
in a production cluster, and worse yet, Hadoop performance
degrades non-linearly with the increase of intermediate data
size. As pointed out by [6], network bandwidth oversubscrip-
tion can quickly saturate the network links of those machines
that participate in the reduce phase. This intermediate data
shuffling essentially becomes the dominant source of network
traffic and performance bottleneck in Hadoop.

B. Issues of Java Virtual Machine

Figure 1 also shows the flow of data shuffling in Hadoop.
An HttpServer is embedded inside each TaskTracker, and this
server spawns multiple HttpServlets to answer incoming fetch
requests for segment data. On the other side of the data
shuffling, within each ReduceTask, multiple MOFCopiers are
running concurrently to gather all segments.

Inside HttpServlets and MOFCopiers, Hadoop employs Java
streams to simultaneously access and move data. However,
such kind of Java I/O can perform 40%∼60% worse than that
written in native C, as pointed by [26], [8]. In order to shed a
light on the overhead imposed by Java Virtual Machine(JVM)
on Hadoop data shuffling, we have examined data movement
between HttpServlets and MOFCopiers using both Java and
native C languages. Figure 2(a) shows the performance of disk
I/O using Java and native C. Currently Hadoop HttpServlets
use traditional Java FileInputStreams to retrieve content from
Map output. The results in Figure 2(a) show that, on average,
using Java-based HttpServlets to read MOFs can be 3.1×
worse than using native C language.

Figure 2(b) shows the time to shuffle data between one
HttpServlet and one MOFCopier. On 1 Gigabit Ethernet
(1GigE), the constraining effect of JVM is hidden because
of the limited network bandwidth. On InfiniBand, Java-based
data shuffling leads to a performance degradation of as much
as 3.4×, compared to native C. Furthermore, Figure 2(c) shows
that on the InfiniBand cluster, when one ReduceTask (with
multiple MOFCopiers) is fetching segments simultaneously
from multiple nodes, JVM imposes above 2.5× overhead.
Again, this overhead is hidden when the network bandwidth
is bottlenecked on 1GigE.

III. JVM-BYPASS SHUFFLING OF INTERMEDIATE DATA

In this section, we firstly describe the software architecture
of JVM-Bypass Shuffling and then several salient features of
its internal design.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16A
v
e
ra

g
e
 M

O
F

 R
e
a
d

 T
im

e
 (

m
il
li
s
e
c
o

n
d

s
)

Number of Concurrent HttpServlets

Java	(stream read)

Native C	(read)

Native C	(mmap)

(a) Disk I/O

 1

 10

 100

 1000

 10000

 1 2 4 8 16 32 64 128 256

S
e
g

m
e
n

t
S

h
u

ff
le

 T
im

e
 (

m
il
li
s
e
c
o

n
d

s
)

Segment Size (MB)

Java	(1GigE)
Native C	(1GigE)
Java	(InfiniBand)
Native C	(InfiniBand)

(b) One HttpServlet to One MOFCopier

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

S
e
g

m
e
n

ts
 S

h
u

ff
le

 T
im

e
 (

m
il
li
s
e
c
o

n
d

s
)

Number of Nodes

Java	(1GigE)
Native C	(1GigE)
Java	(InfiniBand)
Native C	(InfiniBand)

(c) N Nodes to One ReduceTask

Fig. 2: Simulation Results of Intermediate Data Shuffling

A. Architecture of JVM-Bypass Shuffling

To address the issues we have discussed in Section II,
we design a shuffling scheme called JVM-Bypass Shuffling
for moving Hadoop intermediate data. Figure 3 shows the
changes in the software architecture from the original Hadoop
to JBS. The main objective of JBS is to avoid JVM’s heavy
overhead caused by its deep stack of transport protocols
without changing the user programming interfaces such as
the user-defined map and reduce functions. Instead of going
through a stack of Java HTTP and socket libraries (shown at
the bottom left of Figure 3), JBS is designed to bypass the
JVM from the critical path of the intermediate data shuffling.

Data Analytics Applications

Ethernet InfiniBand/Ethernet

Sockets

TCP/IP

HTTP
Servlet

HTTP
GET

MOFSupplier

MapTask ReduceTask
TaskTracker

RDMA Verbs, TCP/IP

NetMerger

Java(

C(

JVM-Bypass

JVM-Bypass Shuffling
(JBS) C(

Fig. 3: Software Architecture of JBS

Additionally, to expand the network portability of Hadoop
and compensate its lack of RDMA support, we have designed
JBS as a portable layer on top of any network transport
protocol. As shown in the figure, both RDMA and TCP/IP
protocols are integrated as the underlying network mechanisms
for data transfer in JBS. As a result, the JBS library is designed
to avoid the overhead of JVM on data shuffling and accelerate
Hadoop on two most popular commodity cluster networks
including Ethernet (1Gigabit Ethernet and 10Gigabit Ethernet)
and InfiniBand.

JBS as a Transparent Plugin Library – While the main
objective of JBS is to bypass JVM, it is also important to
design it as a transparent plugin library to Hadoop. In doing
so, not only Hadoop programs can leverage JBS without any
change, but also JBS can work with other Hadoop internal
components as a plugin module. To this end, two components,
namely MOFSupplier and NetMerger, are introduced to un-
dertake the movement of intermediate data for Hadoop. These
two components are standalone native C processes. They are
launched by the local TaskTracker, with which they communi-
cate via loopback sockets. These two components replace the
HttpServlets in the TaskTracker and the MOFCopiers in the
ReduceTasks, respectively, thereby bypassing the need of JVM
when moving data between MOFSupplier and NetMerger. As
a plugin module [2] for Hadoop MapReduce, JBS is invoked
based on a runtime user parameter. When it is not loaded, it
does not change the execution of the original Hadoop.

B. Pipelined Segment Prefetching

In the original Hadoop, for each fetch request, the
HttpServlet finds the MOF and its corresponding Index file
from disk devices. It then retrieves the location of the targeted
segment in the MOF based on the Index file. Note that an
IndexCache is usually maintained to cache the entries from the
Index file and speed up the identification of MOF segments.
From the MOF, a segment is read via disk I/O and then
transmitted through network I/O. As shown in Figure 4, disk
read and network transmit (Xmit) are completely serialized
in the HttpServlet. No effort is made to correlate and batch
multiple requests to improve the locality of disk accesses. As a
result, each request can experience a long delay in the queue,
degrading the performance of data shuffling.

To improve the efficiency of serving intermediate data, we
design the MOFSupplier with a pipelined prefetching scheme.
Besides providing an IndexCache for quick identification of
MOF segments, we also design a DataCache to prefetch MOF
segments for request processing. As shown at the bottom of
the Figure 5, with dedicated memory space as the DataCache,
requests are grouped based on their targeted MOF, and those in
the same group are ordered based on their intended segments.
Segments for several requests are prefetched to the DataCache.

Re
q	 Index	

Cache	
Read	 Xmit	 Read	 Xmit	

Fig. 4: Serialized Request Processing in HttpServlet

MOF-‐1	

……	

MOF-‐N	

DataCache	

Re
q	 G

ro
up

in
g

Re
q	

Re
q	

Re
q	

Re
q	

Re
q	

Re
q	

Re
q	

Re
q	

Re
q	

Re
q	

Read	

Xmit	 Xmit	 Xmit	

Read	 Read	

Fig. 5: Pipelined Segment Prefetching in MOFSupplier

All groups are served by the disk prefetch server in a round-
robin manner. When a batch of segments are ready in the
DataCache, they are transmitted over by asynchronous network
operations. With the DataCache as the buffer, fetch requests
are served in a batched and pipelined manner, thereby increas-
ing the locality of disk accesses and reducing the average delay
of requests.

C. Consolidated and Balanced Data Fetching

As mentioned earlier, a Hadoop ReduceTask employs mul-
tiple MOFCopier threads to concurrently fetch independent
segment data to local file system. Several merging threads are
running in the background to merge available segments. When
faced with large data sets, both MOFCopier and merging
threads spill data to local disks. As part of our Hadoop Accel-
eration project, the NetMerger for JBS is designed to undertake
the shuffling (a.k.a fetching) and merging of intermediate data.
The details of the network-levitated merging algorithm used
by NetMerger to conduct the segments merging has been
described in our previous paper [29]. Here we provide more
details on the arrangement of network requests to fetch data
from remote MOFs.

We design the NetMerger as a component that can consoli-
date network fetching requests from all ReduceTasks on a sin-
gle node. As mentioned in Section III-A, only one NetMerger
is created by TaskTracker on the single node. Thus all seg-
ments needed by multiple ReduceTasks on the same node will
be served by the NetMerger. Within this shared NetMerger,
we consolidate and group all requests based on their targeted
remote nodes. Requests to the same node are ordered based
on their time of arrival. Using this organization, we are able
to consolidate a number of network connections, which is no
longer the total amount of MOFCopiers from all ReduceTasks.
This consolidation also reduces the resource requirements
from creating and sustaining many network channels and their
associated memory to buffer data. In addition, across different
groups, we adopt a simple round-robin mechanism to balance

the injection of fetching requests to different nodes, mitigating
the impact of burst requests from an aggressive ReduceTask.

IV. IMPLEMENTATION

We have implemented JBS as a portable library for different
network environments including the traditional TCP/IP proto-
col, the RDMA protocol and the latest RoCE (RDMA over
Converged Ethernet) protocol. The implementation of JBS is
same for both RDMA and RoCE, except that their activation
is different. In this paper, we refer to RDMA as the protocol
activated on InfiniBand and RoCE as the protocol activated on
10Gigabit Ethernet.

The TCP/IP protocol and the RDMA-like (RDMA and
RoCE) protocols are very different in their ways of estab-
lishing network connections. Accordingly, we provide some
implementation details for their respective connection estab-
lishment.

A. Connection Establishment for RDMA and RoCE

RDMAServer!

established(*(

rdma_listen(*(

alloc(conn(*(
rdma_accept(*(

RDMAClient!
*(alloc(conn(
*(rdma_connect(

*(established(

ConnecMon!request!!

Accept!Reply!

QP!QP! Connec8on(

Fig. 6: Connection Establishment for RDMA and RoCE

Figure 6 illustrates our implementation of connection es-
tablishment on RDMA and RoCE. A pair of RDMAServer
and RDMAClient are designed to handle RDMA connec-
tion establishment. An additional thread managing network
events is created for both RDMAServer and RDMAClient.
The first fetching request triggers a RDMAClient to initiate
the process of connection establishment with the remote
RDMAServer. In the case of a RDMAClient, it allocates a
new connection (a.k.a Queue Pair) and sends a connection
request via rdma connect() to the RDMAServer. The network
thread listening for incoming requests on the RDMAServer
receives this connection request and handles a series of events
that are detected on the associated RDMA event channel.
This RDMAServer then allocates a new RDMA connection.
Via rdma accept(), it accepts and confirms the connection
request to the RDMAClient. The successful completion of
the accept() call will be detected via an established event by
network threads at both RDMAServer and RDMAClient. This
completes the establishment of a queue pair (QP), i.e., a new
RDMA connection.

Currently we use only the Reliable Connection (RC) service
provided by RDMA-capable interconnects. Since the cost of

setting up RDMA connection is relatively high, we keep newly
created connections for reuse by default. We allow a maximum
of 512 active connections. When this threshold is reached,
connections are torn down based on the LRU (Least Recently
Used) order.

B. TCP/IP-Based Communication

To support the TCP/IP protocol, JBS employs conventional
TCP/IP sockets to establish connections. It makes use of
an event-driven model and multiple threads to achieve good
parallelism and communication throughput. On the client side,
one thread is dedicated to prepare connection requests to
different nodes and monitor their status. The actual connection
requests are made by the client’s data threads to the remote
servers. On the server side, one thread is listening for client
connection requests. It accepts a client’s connection request
after validating its legitimacy. Both client and server use the
epoll interface to monitor and detect events from concurrent
connections, and rely on their data threads to perform the
network communication for data transfer.

Similar to the case of RDMA, a client’s first TCP/IP fetch
request triggers the creation of a TCP connection to a remote
node. A connection is torn down when the total of connections
exceed the threshold of 512.

V. PERFORMANCE EVALUATION

All experiments are conducted on two clusters. Each clus-
ter features 23 compute nodes. All compute nodes in both
clusters are identical, each with four 2.67GHz hex-core Intel
Xeon X5650 CPUs, two Western Digital SATA 500GB hard
drives and 24GB memory. In the Ethernet environment, all
compute nodes are interconnected by 1/10 Gigabit Ethernet.
In the InfiniBand environment, all nodes are equipped with
Mellanox ConnectX-2 QDR HCAs and connected to a 108-
port InfiniBand QDR switch.

JBS can be adapted to various Hadoop versions. In our
evaluation, we use the stable version Hadoop 0.20.3. During
the experiments, one node is dedicated as both the NameNode
of HDFS and the JobTracker of Hadoop MapReduce. On each
of the 22 slave nodes, we run 4 MapTasks and 2 ReduceTasks.
The HDFS block size is chosen as 256MB to balance the
parallelism and performance of MapTasks.

We run a group of benchmarks which include Terasort,
WordCount, Grep from standard Hadoop package and Self-
Join, AdjacencyList, InvertedIndex, SequenceCount bench-
marks from Tarazu benchmark suite [3]. Tarazu benchmarks
represent typical jobs in production clusters. Since JBS specif-
ically aims to improve I/O during the intermediate data
shuffling, among different benchmarks, we focus on the data-
intensive Terasort, whose size of intermediate data is equal to
its input size.

Many names are used in this section to describe the test
cases, for example, Hadoop on SDP means we run original
Hadoop on InfiniBand through Socket Direct Protocol. To
avoid confusion, we list the protocol and network environment
used for each test case in Table I.

TABLE I: Test Case Description

Test Cases Transport Protocol Network
Hadoop on 1GigE TCP/IP 1GigE
Hadoop on 10GigE TCP/IP 10GigE
Hadoop on IPoIB IPoIB InfiniBand
Hadoop on SDP SDP InfiniBand
JBS on 10GigE TCP/IP 10GigE
JBS on IPoIB IPoIB InfiniBand
JBS on RoCE RoCE 10GigE
JBS on RDMA RDMA InfiniBand

A. Benefits of JVM-Bypass

We start our experiments by examining the efficiency of
JBS for intermediate data of different sizes. We run Tersort
jobs of different input sizes on both InfiniBand and Ethernet
clusters. For each data size, we conduct 3 experiments and
report the average job execution time.

Figure 7 shows the experimental results. In the InfiniBand
environment, compared to Hadoop on IPoIB and Hadoop on
SDP, JBS on IPoIB reduces job execution time by 14.1% and
14.8%, respectively, on average. During these experiments, we
notice that the performance of Hadoop on IPoIB is very close
to that of Hadoop on SDP. Therefore, in the following sections,
we use mostly Hadoop on IPoIB as the reference case to show
the benefits of JBS in the InfiniBand environment.

In the Ethernet environment, JBS on 1GigE and JBS on
10GigE reduce the job execution times by 20.9% and 19.3%
on average, compared to Hadoop on 1GigE and Hadoop on
10GigE, respectively.

In both environments, we observe that Hadoop on high-
speed networks can speed up jobs with small sizes of in-
termediate data (≤ 64GB). For instance, when the data size
is 32GB, compared to Hadoop on 1GigE, Hadoop on IPoIB
and Hadoop on 10GigE achieve improvements of 55.2% and
51.5%, respectively, on average. This is because the movement
of small size data is less dependent on disks and most of them
reside in disk cache or system buffers. Thus high-performance
networks can exhibit better benefits for data shuffling.

Nevertheless, even with high-speed networks, Hadoop is
still constrained from exploiting the full performance po-
tentials of network hardware by the presence of JVM. In
contrast, JBS eliminates the overhead of JVM, and improves
the jobs with small size intermediate data. For 32GB input,
JBS reduces the execution time by 11.1% and 12.7% on
average, compared to Hadoop on IPoIB and Hadoop on
10GigE, respectively. For jobs with even smaller data sets, the
costs of task initialization and destruction become dominant,
JBS does not exhibit benefits.

Furthermore, as shown in Figure 7, the cases using high-
performance networks (Hadoop on IPoIB and Hadoop on
10GigE) without JBS, compared to the Hadoop on 1GigE.
do not provide noticeable improvements for large data sets (≥
128GB) due to disk I/O bottleneck caused by large data sets.
JBS alleviates these issues through its batched and pipelined
prefetching. Therefore, with a data size of 256GB, JBS on
IPoIB and JBS on 10GigE improve the performance by 21.7%

 0

 500

 1000

 1500

 2000

 16 32 64 128 256

T
e
ra

s
o

rt
 J

o
b

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Input Data Size (GB)

Hadoop on IPoIB

Hadoop on SDP

JBS on IPoIB

(a) InfiniBand Environment

 0

 500

 1000

 1500

 2000

 16 32 64 128 256

T
e
ra

s
o

rt
 J

o
b

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Input Data Size (GB)

Hadoop on 1GigE

Hadoop on 10GigE

JBS on 1GigE

JBS on 10GigE

(b) Ethernet Environment

Fig. 7: Benefits of JVM-Bypass

and 26.5%, respectively on average, compared to Hadoop on
IPoIB and Hadoop and 10GigE.

Another interesting observation as shown in Figure 7(b) is
that when data size grows close to 256GB, JBS performs
similarly on 1GigE and 10GigE. This is because that the
overhead incurred by large amount of memory copies for
TCP/IP transportation becomes a severe bottleneck. Therefore,
in the next section, we explore the benefit provided by RDMA
protocol.

B. Benefits of RDMA

To evaluate the benefit of RDMA, we compare the per-
formance of JBS on RDMA and JBS on RoCE to that of
JBS on IPoIB and JBS on 10GigE. Figure 8 shows the
experiment results. In the InfiniBand environment, JBS on
RDMA outperforms JBS on IPoIB by 25.8% on average. In
the Ethernet environment, compared to JBS on 10GigE, JBS
on RoCE speeds up the job executions by 15.3% on average.
Note that in both environments, running JBS on RDMA and
RoCE achieve better performance for all data sizes.

 0

 300

 600

 900

 1200

 1500

 16 32 64 128 256

T
e
ra

s
o

rt
 J

o
b

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Input Data Size (GB)

JBS on 10GigE

JBS on IPoIB

JBS on RoCE

JBS on RDMA

Fig. 8: Benefits of RDMA

The reason that JBS delivers better performance with
RDMA protocol is two-fold. Firstly, RDMA has significant
performance advantages over TCP/IP because of its higher
bandwidth and lower latency. Secondly, RDMA also reduces
the number of memory copies for the movement of interme-
diate data.

C. Scalability

High scalability is a critical feature that leads Hadoop to its
success. JBS aims to preserve this feature. In this section, we
evaluate the scalability of JBS by two scaling patterns: Strong
Scaling and Weak Scaling. In the case of strong scaling, we use
a fixed-size data (256GB) as Terasort input while increasing
the number of compute nodes. In the case of weak scaling, we
use a fixed-size data (6GB) for each ReduceTask of a Terasort
job, so the total input size increases linearly when we increase
the number of nodes, reaching 264GB when 22 slave nodes
are used.

Figure 9(a) shows the results of the strong scaling experi-
ments on the InfiniBand cluster. On average, JBS on RDMA
and JBS on IPoIB outperform Hadoop on IPoIB by 49.5%
and 20.9%, respectively. It achieves a linear reduction of the
execution time with an increasing number of slave nodes.
Figure 9(b) shows the results of the weak scaling experiments.
JBS on RDMA and JBS on IPoIB reduce the execution time
by 43.6% and 21.1%, respectively on average, compared to
Hadoop on IPoIB. As also shown in the Figure, JBS maintains
stable improvement ratios with a varying number of slave
nodes.

Figures 9(c) and (d) show the results of scaling experi-
ments in the Ethernet environment. JBS accomplishes similar
performance improvement as in the InfiniBand environment.
Compared to Hadoop on 10GigE, JBS on RoCE reduces the
execution time by up to 41.9% for strong scaling tests and
up to 40.4% for weak scaling tests on average. Compared to
Hadoop on 10GigE, JBS on 10GigE reduces the execution
time by 17.6% and 23.8%, respectively on average, for strong

 0

 1000

 2000

 3000

 4000

 5000

 12 14 16 18 20 22

T
e
ra

s
o

rt
 J

o
b

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Number of Slave Nodes

Hadoop on IPoIB

JBS on IPoIB

JBS on RDMA

(a) Strong Scaling in the InfiniBand Environment

 0

 500

 1000

 1500

 2000

 2500

 3000

 12 14 16 18 20 22

T
e
ra

s
o

rt
 J

o
b

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Number of Slave Nodes

Hadoop on IPoIB

JBS on IPoIB

JBS on RDMA

(b) Weak Scaling in the InfiniBand Environment

 0

 1000

 2000

 3000

 4000

 5000

 12 14 16 18 20 22

T
e
ra

s
o

rt
 J

o
b

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Number of Slave Nodes

Hadoop on 10GigE

JBS on 10GigE

JBS on RoCE

(c) Strong Scaling in the Ethernet Environment

 0

 500

 1000

 1500

 2000

 2500

 3000

 12 14 16 18 20 22

T
e
ra

s
o

rt
 J

o
b

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Number of Slave Nodes

Hadoop on 10GigE

JBS on 10GigE

JBS on RoCE

(d) Weak Scaling in the Ethernet Environment

Fig. 9: Scalability Evaluation

and weak scaling tests. Taken together, our results demon-
strates that JBS is capable of providing better scalability than
Hadoop in terms of the job execution time regardless of the
underlying networks and protocols.

D. CPU Utilization

CPU utilization is another important performance metric.
In this section, we measure the CPU utilization of JBS by
using Terasort benchmark with 128GB input data. Low CPU
utilization during data shuffling can spare more CPU cycles
for Hadoop applications. On each node, we run sar in the
background to collect CPU statistics and trace the output every
5 seconds. In the results, we report the average CPU utilization
across all 22 slave nodes.

Figures 10(a) and (b) show the results of comparing CPU
utilization between Hadoop and JBS in the InfiniBand environ-
ment. For fair comparison, we only consider CPU utilization
in the same execution period. By eliminating the overhead of
JVM and reducing the disk I/O, JBS on IPoIB greatly lowers
the CPU utilization by 48.1% compared to Hadoop on IPoIB.
In addition, even though the SDP protocol provides Java
stream sockets to take advantage of RDMA through the socket

interface, Hadoop on SDP can only reduce CPU utilization by
15.8%, compared to Hadoop on IPoIB. In contrast, JBS on
RDMA significantly reduces the CPU utilization by 44.8%,
compared to Hadoop on SDP. Note that, besides the RDMA
benefit of low CPU utilization, another major factor that
contributes to low utilization is the use of less number of
threads in JBS. Unlike the original Hadoop in which each
ReduceTask spawns more than 8 JVM threads for the purpose
of data shuffling, JBS only requires 3 native C threads for the
same.

Figure 10(c) shows the CPU utilization of JBS in the
Ethernet environment. Compared to Hadoop on 10GigE, JBS
on RoCE and JBS on 10GigE reduce the CPU utilization by
46.4% and 33.9%, respectively on average. In addition, JBS on
RoCE reduces CPU utilization by about 18.7% due to RoCE’s
low CPU utilization and less memory copies.

Taken together, these results adequately demonstrate that
JBS not only reduces the job execution time, but also achieves
much lower CPU utilization.

E. Impact of JBS Transport Buffer Size
The size of the buffer for network transportation has critical

impact on the performance. Large buffer size can better utilize

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

C
P

U
 U

ti
li
z
a
ti

o
n

 (
%

)

Time (sec)

Hadoop on IPoIB

JBS on IPoIB

(a) InfiniBand Environment (TCP/IP Protocol)

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

C
P

U
 U

ti
li
z
a
ti

o
n

 (
%

)

Time (sec)

Hadoop on SDP

JBS on RDMA

(b) InfiniBand Environment (RDMA Protocol)

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

C
P

U
 U

ti
li
z
a
ti

o
n

 (
%

)

Time (sec)

Hadoop on 10GigE

JBS on 10GigE

JBS on RoCE

(c) Ethernet Environment

Fig. 10: CPU Utilization

the bandwidth and reduce overheads due to less number of
fetch requests for each segment, but it also results in less
number of available buffers to be shared by data threads,
causing more resource contention. To understand the impact
of the buffer size, we measure the execution time of Terasort
with 128GB input while changing the buffer size.

Figure 11 shows the results. For JBS on RDMA and JBS
on RoCE, the execution time goes down with an increasing
transport buffer size, and gradually levels off from 128KB and
beyond. Compared to the 8KB buffer size, the 256KB buffer
size improves the performance of JBS on RDMA by 53%.
This performance difference is more significant for JBS on
IPoIB. When the buffer size increases from 8KB to 128KB,
execution time is reduced by up to 70.3%. However, when
the size reaches 512KB, the performance is slightly degraded.
This is because the use of very large buffers increases the
contention between communication threads, and reduces the
pipelining effects of many buffers.

Overall this evaluation demonstrates that a large buffer size
up to 128KB can effectively improve job execution time. For
this reason, we choose the default transport buffer size as
128KB for the JBS library.

 400

 800

 1200

 1600

 8 16 32 64 128 256 512

T
e
ra

s
o

rt
 J

o
b

 E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
)

RDMA Buffer Size (KB)

JBS on IPoIB

JBS on RDMA

JBS on RoCE

Fig. 11: Impact of Different RDMA Buffer Sizes

F. Effectiveness on Different Benchmarks

To assess the optimization effectiveness of JBS to other
Hadoop applications, we have evaluated JBS with Tarazu
benchmark suite in addition to Terasort. The input for those
benchmarks are 30GB, using either wikipedia data or database
data. Figures 12 (a) and (b) present the job execution times
in both InfiniBand and Ethernet environments. Overall, these
benchmarks can be categorized into two types.

For the first type of benchmarks including SelfJoin, Inverte-
dIndex, SequenceCount, and AdjacencyList, each MapTask
generates a lot of intermediate data to be shuffled to Reduc-
eTasks. Because of its strength in accelerating the shuffling
phase of Hadoop, JBS is geared to provide good performance
benefits for these applications.

In the InfiniBand environment, we observe that JBS on
RDMA achieves an average of 41% reduction in the execution
time for these four benchmarks, and reaches up to 66.3%
improvement for AdjacencyList. JBS on IPoIB reduces the
execution times of these benchmarks by 26.9% on average. In
the Ethernet environment, compared to Hadoop on 10GigE,
JBS on RoCE reduces the execution times by 36.1% on
average for these benchmarks. JBS on 10GigE only reduces
the execution times by 29.8% on averaged compared to the
same.

In contrast, for the second type of benchmarks, WordCount
and Grep, only a small amount of intermediate data is gener-
ated. As a result, JBS does not gain performance improvement
for these two benchmarks.

VI. RELATED WORK

Leveraging high performance interconnects to move data
in the Hadoop ecosystem has attracted numerous research
interests from many organizations. Huang et al. [11] designed
an RDMA-based HBase over InfiniBand. In addition, they also
mentioned the disadvantages of using Java Socket Interfaces.
Jose et al.[17], [16] implemented a scalable memcache through
taking advantage of performance benefits provided by high-
speed interconnects. Sur et al. [28] studied the potential
benefit of running HDFS over InfiniBand. Furthermore, Islam
et al. [14] enhances the HDFS using RDMA over InfiniBand
via JNI interfaces. However, although Hadoop MapReduce

0"

400"

800"

1200"

1600"

Se
lfJo
in"

Inv
ert
ed
Ind
ex
"

Se
qu
en
ce
Co
un
t"

Ad
jac
en
cyL
ist
"

Wo
rdC
ou
nt"

Gr
ep
"

Jo
b"
Ex
ec
uE

on
"T
im

e"
(s
ec
)"

Hadoop"on"IPoIB"

JBS"on"IPoIB"

JBS"on"RDMA"

(a) InfiniBand Environment

0"

400"

800"

1200"

1600"

Se
lfJo
in"

Inv
ert
ed
Ind
ex
"

Se
qu
en
ce
Co
un
t"

Ad
jac
en
cyL
ist
"

Wo
rdC
ou
nt"

Gr
ep
"

Jo
b"
Ex
ec
uE

on
"T
im

e"
(s
ec
)"

Hadoop"on"10GigE"

JBS"on"10GigE"

JBS"on"RoCE"

(b) Ethernet Environment

Fig. 12: Performance of Different Benchmarks

is a fundamental basis of Hadoop ecosystem, there is lack
of research on how to efficiently leverage high performance
interconnects in Hadoop MapReduce.

Solving the intermediate data shuffling bottleneck is another
interesting research topic about Hadoop. Camdoop [6] is
designed to decrease the network traffic caused by intermediate
data shuffling through applying a hierarchical aggregation
during the data forwarding. However, Camdoop is only effec-
tive in special network topology, such as 3D torus network,
and its performance degrades sharply in common network
topologies adopted by data centers. MapReduce online [5]
attempts to directly send the intermediate data from MapTasks
to ReduceTasks to avoid touching disks on the MapTasks sides.
In order to do so, it requires large number of sustained TCP/IP
connections between MapTasks and ReduceTasks. However,
it severely restricts the scalability of Hadoop MapReduce. In
addition, when the data size is large and network cannot keep
up with the MapTask processing speed, intermediate data still
needs to be spilled to disks. Furthermore, it fails to identify
the I/O bottleneck problem in HttpServlet and MOFCopier.
So for the above reasons, MapReduce online has to fall back
onto the original Hadoop execution mode. Different from
MapReduce online, JBS completely re-designs both server and
client sides and eliminates the JVM overhead associated with
the data shuffling. Seo et al. [25] improved the performance
of MapReduce by reducing redundant I/O in the software
architecture. But it did not study the I/O issues caused by
the data shuffling between MapTasks and ReduceTasks. [12]
replaces HDFS with high-performance Lustre file system, and
stores intermediate data in Lustre. However there is no efficient
performance improvement reported.

Leveraging RDMA from high speed networks for high-
performance data movement has been very popular in various
programming models and storage paradigms. [9] studied the
pros and cons of using RDMA capabilities. Liu et al. [18]
designed RDMA-based MPI over InfiniBand. Yu et al. [30]
implemented a scalable connection management strategy for

high-performance interconnects. Our work is based on these
mature studies of RDMA technology.

VII. CONCLUSIONS

In this paper, we have comprehensively analyzed the per-
formance of Hadoop running on InfiniBand and 1/10 Gigabit
Ethernet. Our experiment results reveal that simply switching
to the high-performance interconnects cannot effectively boost
the performance of Hadoop. To investigate the cause, We
identify the overhead imposed by JVM on Hadoop inter-
mediate data shuffling. We have designed and implemented
JVM-Bypass Shuffling (JBS) to avoid JVM in the critical
path of Hadoop data shuffling. Our implementation of JBS
also enables it as a portable library that can leverage both
conventional TCP/IP protocol and high-performance RDMA
protocol in different network environments. Our experimental
evaluation demonstrates that JBS can effectively reduce the
execution time of Hadoop jobs by up to 66.3% and lower
the CPU utilization by 48.1%. Furthermore, with a set of
different application benchmarks, we demonstrate that JBS can
significantly reduce the CPU utilization and job execution time
for Hadoop jobs that generate a large amount of intermediate
data.

Acknowledgments
This work is funded in part by a National Science Foundation
award CNS-1059376. We are very thankful for an Infini-
Band equipment donation from Mellanox Technologies Inc.
to Auburn University.

REFERENCES

[1] Apache Hadoop Project. http://hadoop.apache.org/.
[2] Plugin for Generic Shuffle Service. https://issues.apache.org/jira/

browse/MAPREDUCE-4049.
[3] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar.

Tarazu: optimizing mapreduce on heterogeneous clusters. In Proceed-
ings of the seventeenth international conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS’12,
pages 61–74, New York, NY, USA, 2012. ACM.

[4] Baidu, Inc. Hadoop C++ Enhancement. http://issues.apache.org/jira/
browse/MAPREDUCE-1270.

[5] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears. Mapreduce online. In Proceedings of the 7th USENIX
conference on Networked systems design and implementation, NSDI’10,
pages 21–21, Berkeley, CA, USA, 2010. USENIX Association.

[6] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea. Camdoop:
exploiting in-network aggregation for big data applications. In Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation, NSDI’12, pages 3–3, Berkeley, CA, USA, 2012.
USENIX Association.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. In Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation - Volume 6, OSDI’04,
pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

[8] M. Ding, L. Zheng, Y. Lu, L. Li, S. Guo, and M. Guo. More convenient
more overhead: the performance evaluation of hadoop streaming. In
Proceedings of the 2011 ACM Symposium on Research in Applied
Computation, RACS ’11, pages 307–313, New York, NY, USA, 2011.
ACM.

[9] P. W. Frey and G. Alonso. Minimizing the hidden cost of rdma. In
Proceedings of the 2009 29th IEEE International Conference on Dis-
tributed Computing Systems, ICDCS’09, pages 553–560, Washington,
DC, USA, 2009. IEEE Computer Society.

[10] HPC Wire. RoCE: An Ethernet-InfiniBand Love Story. http://www.
hpcwire.com/blogs/.

[11] J. Huang, X. Ouyang, J. Jose, M. W. ur Rahman, H. Wang, M. Luo,
H. Subramoni, C. Murthy, and D. K. Panda. High-performance design
of hbase with rdma over infiniband. In 26th IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2012, Shanghai, China,
May 21-25, 2012, IPDPS’12, pages 774–785, 2012.

[12] S. M. Inc. Using Lustre with Apache Hadoop. http://wiki.lustre.org.
[13] InfiniBand Trade Association. The InfiniBand Architecture. http://

www.infinibandta.org.
[14] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang,

H. Subramoni, C. Murthy, and D. K. Panda. High performance
rdma-based design of hdfs over infiniband. In Proceedings of 2012
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC’12. ACM, 2012.

[15] R. J.Chanslet. Data availability and durability with the hadoop dis-
tributed file system. ;login’ 12. USENIX Association, 2012.

[16] J. Jose, H. Subramoni, K. Kandalla, M. Wasi-ur Rahman, H. Wang,
S. Narravula, and D. K. Panda. Scalable memcached design for
infiniband clusters using hybrid transports. In Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2012), CCGRID’12, pages 236–243, Washington,
DC, USA, 2012. IEEE Computer Society.

[17] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. W. ur Rahman,
N. S. Islam, X. Ouyang, H. Wang, S. Sur, and D. K. Panda. Memcached
design on high performance rdma capable interconnects. In ICPP, pages
743–752. IEEE, 2011.

[18] J. Liu, J. Wu, and D. K. Panda. High performance rdma-based
mpi implementation over infiniband. International Journal of Parallel
Programming, 32:167–198, 2004.

[19] Mellanox. Mellanox Announces Availability of UDA 2.0 for Big
Data Analytic Acceleration. http://ir.mellanox.com/releasedetail.cfm?
ReleaseID=621771, November 2011.

[20] M. Nick and S. Gary. Building memory-efficient java applica-
tion:practices and challenges. PLDI ’09. ACM, 2009.

[21] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker. A comparison of approaches to large-scale data
analysis. In Proceedings of the 35th SIGMOD international conference
on Management of data, SIGMOD ’09, pages 165–178, New York, NY,
USA, 2009. ACM.

[22] X. Que, Y. Wang, C. Xu, and W. Yu. Hierarchical merge for efficient
mapreduce. In Proceedings of 2012 International Workshop on Manage-
ment of Big Data Systems (MBDS), Held In Conjunction with ICAC’12,
San Jose, CA, 2012.

[23] S. Rao. I-files: Handling Intermediate Data In Parallel Dataflow Graphs
(Sailfish).

[24] R. Recio, P. Culley, D. Garcia, and J. Hilland. An rdma protocol
specification (version 1.0), October 2002.

[25] S. Seo, I. Jang, K. Woo, I. Kim, J.-S. Kim, and S. Maeng. HPMR:

Prefetching and pre-shuffling in shared MapReduce computation envi-
ronment. In CLUSTER, pages 1–8, August 2009.

[26] J. Shafer, S. Rixner, and A. L. Cox. The hadoop distributed filesystem:
Balancing portability and performance. In IEEE International Sympo-
sium on Performance Analysis of Systems and Software, ISPASS 2010,
www.ispass.org, 28-30 March 2010, White Plains, NY, USA, pages 122–
133. IEEE Computer Society, 2010.

[27] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), MSST ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[28] S. Sur, H. Wang, J. Huang, X. Ouyang, and D. K. Panda. Can High-
Performance Interconnects Benefit Hadoop Distributed File System? In
MASVDC-2010 Workshop in conjunction with MICRO, Dec 2010.

[29] Y. Wang, X. Que, W. Yu, D. Goldenberg, and D. Sehgal. Hadoop
acceleration through network levitated merge. In Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pages 57:1–57:10, New York, NY, USA,
2011. ACM.

[30] W. Yu, Q. Gao, and D. K. Panda. Adaptive connection management for
scalable mpi over infiniband. In Proceedings of the 20th international
conference on Parallel and distributed processing, IPDPS’06, pages
102–102, Washington, DC, USA, 2006. IEEE Computer Society.

[31] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica. Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In Proceedings of the 5th European
conference on Computer systems, EuroSys’10, pages 265–278, New
York, NY, USA, 2010. ACM.

