
A Case of System-Wide Power Management for
Scientific Applications

Teng Wang t Weikuan Yu t Zhuo Liut Jay Lofstead+

Auburn Universityt

{zhuoliu,tzw0019,wkyu }@auburn.edu
Sandia National Laboratories+

gfiofst@sandia.gov

Abstract-The advance of high-performance computing sys­
tems towards exascale will be constrained by the systems' energy
consumption levels. Large numbers of processing components,
memory, interconnects, and storage components must all be
considered to achieve exascale performance within a targeted
energy bound. While application-aware power allocation schemes
for computing resources are well studied, a portable and scalable
budget-constrained power management scheme for scientific ap­
plications on exascale systems is still required. Execution activities
within scientific applications can be categorized as CPU-bound,
I/O-bound and communication-bound. Such activities tend to be
clustered into 'phases', offering opportunities to manage their
power consumption separately. Our experiments have demon­
strated that their performance and energy consumption are
affected differently by CPU frequency, an opportunity to fine tune
CPU frequency for a minimal impact on the total execution time
but significant savings on the energy consumption. By exploiting
this opportunity, we present a phase-aware hierarchical power
management framework that can opportunistically deliver good
tradeoffs between system power consumption and application
performance under a power budget. Our hierarchical power
management framework consists of two main techniques: Phase­
Aware CPU Frequency Scaling (PAFS) and opportunistic pro­
visioning for power-constrained performance optimization. We
have performed a systematic evaluation using both simulations
and representative scientific applications on real systems. Our
results show that our techniques can achieve 4.3%-17% better
energy efficiency for large-scale scientific applications.

I. INTRODUCTION

Exascale computing systems are projected to arrive around
2018. Such systems will be roughly 50 times faster than the
current top computer system, e.g., Titan at Oak Ridge National
Laboratory [4]. A real challenge with developing an exascale
system is that its energy consumption must be capped within
a budget, e.g., 20 Megawatts according to a report from the
U.S. Department of Energy [22]. Such power consumption
objectives require exascale systems to be 20 times more energy
efficient than the most efficient system today in terms of
GFLOPSlWatt [2, 10]. To address this issue, lots of efforts
have been undertaken to bring faster and more energy efficient
computing [3], memory [12] and storage [14] hardware to
build large-scale supercomputers.

In addition to developing energy-efficient computing hard­
ware, managing system power within a given budget while
maintammg an acceptable performance goal will become
an increasingly important issue for the applications on the

978-1-4799-0898-1/13/$31.00 ©2013 IEEE

platform. However, there is a lack of a portable and scalable,
energy-efficient computation and data management scheme for
scientific applications running on HPC platforms.

Recently, heuristic feedback-based power management
schemes have been developed to control power within a given
cap while delivering perfonnance [19, 24]. However, these
techniques did not consider different runtime characteristics
of the phases of an application's runtime. A typical scientific
application performs computation over a data set in a periodic
manner. Each period is called a timestep or iteration. Each
time step consists of several phases: computation, data ex­
change (communication) and possibly I/O, each with different
CPU, memory and power usage attributes. Application I/O
phases may consume a large amount of time and energy
for storing restart/checkpoint files and analysis results while
perfonning very little computation. Varying the CPU fre­
quency and voltage based on these distinct needs can reduce
the power consumption while having very little impact on
the overall wall clock performance. While traditional power­
aware techniques focus either on the computation part or
on the I/O and communication part, little research has been
conducted to take all phases into account for managing energy
consumption. For example, in some applications, the I/O and
communication phases may take considerable time with a
relatively low demand on computation power. A poor selection
of CPU frequency may lead to some combination of wasted
CPU cycles, degraded perfonnance, or unnecessary energy
expenditure.

Therefore, in order to achieve a better trade-off between
energy usage and application execution efficiency for a com­
puting system with a power budget, we propose a Hierarchical
Power Management framework (HPM) which consists of
two main techniques: Phase-Aware CPU Frequency Scaling
(PAFS) and opportunistic provisioning for power-constrained
performance optimization. PAFS carefully monitors an appli­
cation's working phase and orchestrates the CPU frequency
and voltage to achieve nearly identical performance with re­
duced energy consumption. Furthermore, built on top of PAFS,
to cap the computing cabinet's power consumption within a
given budget while optimizing its job throughput, we devise
an opporlunistic provisioning technique for power-constrained
performance optimization. The HPM is implemented through
three main components: Job Phase Monitor (JPM), Local
Power Managers (LPM), and Global Power Manager (GPM).

These components monitor each running job's working phase
and dynamically assign a certain power level to each compute
node according to every job's working phase and the global
power budget.

Our contributions are three-fold. (1) We introduce the
PAFS technique that enhances scientific applications' energy­
efficiency without undue increase of wall clock time. (2)
We provide an opportunistic provisioning scheme for power­
constrained optimization, which offers an efficient and
application-transparent power management solution for large­
scale computing systems. (3) We evaluate our techniques
through experiments on both real cluster and simulated large­
scale systems. Results for scientific applications and pro­
duction cluster logs show that our system-wide management
framework can improve system energy efficiency by 4.3%-
17% compared to baseline techniques, which results from both
the wall clock time and energy consumption improvement.

II. RELATED W ORK

Freech et al. comprehensively analyzed the energy-time
tradeoff for a wide range of applications on a power-scalable
cluster [7]. They studied how application performance and
energy use increases with the number of nodes and introduced
metrics to categorize applications on the relationship of time
to CPU frequency. Liu et al. provided a set of tools and
metrics for evaluating energy consumptions and I/O perfor­
mance of storage systems [15, 16]. Sherwood et al. proposed
an automatic tool called SimPoint [20] to exploit program
phase behavior for guiding program analysis, simulation and
optimization. They first conducted an off-line code execution
to create code behavior signatures and used clustering analysis
to group similar parts of program's execution into phases.
The evaluation's granularity was at the basic block level and
focused on single node programs. Huang et al. provided a
subroutine-based positional adaptation [8] for saving energy by
static or dynamic instrumentation. The static instrumentation
required many off-line profiling runs on target platforms
while the dynamic instrumentation caused run-time overhead
at start-up. Different from off-line code analysis and binary
instrumentation, our techniques determine a running job's
working phase by dynamically analyzing its node's working
status and performs a phase-aware and application-transparent
CPU frequency scaling for conserving system energy.

Raghavendra et al. provided a coordinated multilevel power
management [19] for data centers. A control-theoretic core
was introduced in the system model and multiple-level control
channels were built for different power management solu­
tions and requirements. Similarly, Wang et al. introduced a
cluster-level feedback power control for performance opti­
mization [24]. A model predictive control theory was em­
ployed to scale the servers' CPU frequencies to achieve better
performance under a power budget limit. These techniques
worked well for uni-processor systems but did not consider
multi-core nodes with per-core DFS enabled. In addition, the
distinctions between computation phases and I/O phases for
scientific application jobs are not addressed.

Tiwari et al. presented a per-loop frequency selecting tech­
nique [11]. It built up an optimal benchmark-frequency library
from tests on a wide range of benchmarks, then acquired ap­
plication signatures by lightweight static analysis and runtime
tracing. After that, a library was queried to choose an optimal
frequency and frequency scaling procedures were inserted into
compiled executables by binary instrumentation. This scheme
worked well for small systems with a limited number of
applications but was not applicable for large-scale time-critical
batch processing systems.

Lim et al. implemented an MPI runtime system [13] to
dynamically reduce CPU frequencies during communication
phases in MPI programs for better energy-efficiency. Wang
et al. provided scheduling heuristics for frequency scaling
in precedence-constrained parallel tasks [23]. Kappiah et al.
exploited inter-node slackness [9] in MPI programs and re­
duced processor frequency on those less-burdened nodes to
save energy. Differently, our work provides hierarchical power
management at the system level while meeting a power budget
cap at the same time. Also, power gating was exploited for
better core balances in CMPs [17], which is orthogonal to
our DVFS based power management and can complement it
to further reduce power consumptions for CPU cores' idle
periods.

III. PHASE-AwARE CPU FREQUENCY SCALING (PAFS)

Analyzing the behavior of many scientific simulations yields
a broad generalization describing the activities performed by
these applications. Each of these activities can be distilled
down to different phases each performed periodically pro­
gressing the simulation. Using a simple model of these phases
makes changing the CPU frequency a less common and less
intrusive operation while maintaining most of the advantages
of scaling the frequency at finer granularity. In the case of
massively parallel simulations, this reduced granularity is suf­
ficient for achieving most of the energy efficiency gains with
low overhead. This section first explores such phases and the
impact of CPU frequency scaling has on the wall clock time
and the performance of these phases, then the Phase Aware
Frequency Scaling (PAFS) technique is presented to exploit
such different impacts for energy efficiency improvement.

A. Different working phases

Different applications can be categorized to be CPU-bound,
memory-bound or communication-bound. Inside one scientific
application, its running progress can be divided into repetitive
periods of computation, I/O and communication phases. Based
on our experimental observations, different types of appli­
cations and different phases within these applications have
varying sensitivity to CPU frequency changes. For example,
the run time of computation-bound working phases can vary
linearly with CPU frequency while the performance of I/O
and network bounded phases are almost not affected when
scaling down or up CPU frequencies. Some applications may
have working phases that consist of mixture of many short
computation phases and I/O phases that are hard to detect.

Such working phases, termed undistinguished phase, display
a medium performance sensitivity to CPU frequency level.

-g,.j===r=�JI _-F-(--41 __ -l-I _-
� <omp' ... o'-...J

L I.....-.J
g 110 t------'P.::: h.�=----_'==L-.-:::::::Jor==---_________ _

'g, 1/0 Phase
--HighFreq-2.133GHz

E ""t--==,------------==="=:'7;�--'-----� com:.,�::tion I/O Pha5e lowFreq-1.6GHz

8'OO �����
� r-�'OO -.. __

�����;��:��:��8555�a�;S;;2��������S�����������;�

Time Elapse (seconds)

Fig. I: Computation and I/O Phases for Low and High CPU
Frequencies during Application Execution

Fig. I illustrates a typical execution of the NASA GEOS5
climate simulation [1]. It consists of multiple time steps with
each time step divided into two distinct phases. The first
phase is a computation phase during which the application is
performing computation for the climate and geographic sim­
ulation and is CPU-bound. The second phase is an I/O phase
when the application writes simulation status to storage where
CPU frequency is not a bound. The computation phase causes
100% utilization of each CPU core leading to high power
consumption while the I/O phase mainly focuses on network
transfer and memory access leading to the same 100% CPU
utilization but consuming less power. The red and blue curves
show power consumptions for CPU frequency of 2.133 GHz
and 1.6 GHz, respectively. As we can observe, when scaling
the CPU frequency from high to low, the power consumption
can be reduced by about 20% while the execution time may
be prolonged. For different running phases in a time step,
the extend degree of execution time can vary. Specifically, for
the computation phase, the performance degradation ratio is
proportional to the reduction ratio of CPU frequency. However,
the I/O phase is only prolonged very slightly. These disparate
impacts motivate us to develop a phase-aware technique for
energy efficient frequency scaling.

260 ,-----;======;=;ld""'le=s""ta""tu=s=""e=,---­
Computation status -e-

1/0 status _ en 240 i
�
c 220
0
a
E 200 :::J <II C 0 180 0
G;
;:

160 0 Q.

140
1600 1733 1867 2000 2133

CPU Frequency (MHz)
Fig. 2: Power consumption of a compute node in different
statues with varying CPU frequency levels

Our compute nodes are equipped with an Intel® Xeon®

E5405 8-core CPU whose cores can be independently clocked
to five frequency levels: 1.6 GHz, 1.733 GHz, 1.866 GHz, 2.0
GHz and 2.133 GHz. As a job can be running in different
working phases, thus each compute node may experience one

of the three types of different statues: serving a job in compu­
tation phase, serving a job in I/O or communication phases
and idle (not serving any application). In different statues,
the compute node will have different resource utilization and
power consumption. We can observe from Fig. 2 for different
working statues of GEOS-5 application how the node's power
consumptions vary with CPU frequency levels.

To keep the model simple, we adopt a linear regression for
node power consumption and its CPU frequency (the model's
residual standard error is 2.436). When CPU cores are idle,
the power consumption changes very slightly (variations less
than 0.4%) with the CPU frequency varying from the lowest
level to the highest level. Therefore, we reasonably assume
the power consumption Pidle is constant for various CPU
frequency levels when the cores are idle.

B. PAFS vs default DVFS schemes

PAFS works by carefully monitoring a running application's
working phase and orchestrates the CPU frequency and voltage
to achieve nearly identical performance with reduced energy
consumption. First, we categorize the job's working phases
into three types: I/O or communication phase, computation
phase and undistinguished phase (consisting of short periods
of I/O, communication or computation work and its execution
time is moderately sensitive to frequency). Then, for the I/O
and computation phases that are not CPU-bound, as the execu­
tion time is not sensitive to CPU frequency, the CPU frequency
is reduced to the lowest level consuming less energy even with
a slight increase on the phase time. For the computation phase,
the higher the frequency, the shorter the execution time and
net energy consumption. Thus we can achieve better energy­
efficiency if the power budget is not more limiting. For the
undistinguished phase, its frequency is scheduled according
to the dynamic power provisioning.

Cpufreq is a popular DVFS tool integrated in many state­
of-the-art computing platforms. It scales each CPU core's
clock frequency and voltage to different levels conserving
power when there is less demand for compute cycles. Cpufreq
provides several representative scaling schemes such as 'on­
demand', 'performance', 'userspace', 'powersave' and 'con­
servative' with each offering different characteristics. 'Onde­
mand' shifts to a minimum frequency when there is no or min­
imal load and shifts to maximum frequency immediately under
high load to minimize elapsed time; 'performance' always
scales the maximum frequency to achieve best performance;
'userspace' offers dynamic, manual control of the frequency;
'powersave' always chooses the minimum frequency; and
'conservative' chooses the minimum frequency if there is no
load and gradually changes the frequency according to load
intensity [21].

Fig. 3 illustrates the behaviors of PAFS and three default
DVFS schemes when there are two processes running on a
quad-core CPU compute node assuming that two-cores are
used for each process. The green squares represent a low
frequency state while the red squares are for high frequency.
When the application switches from a computation phase

• Min Freq � MaXFreq

Computation

• Phase ••
t t t t

I/O Phase • ••
Powersave Performance Ondemand PAFS

Fig. 3: PAFS and ot er DVFS modes in a four-core CPU.

to an I/O (or communication) phase, the 'powersave' and
'performance' modes will keep all cores in lowest power/fre­
quency level and highest power/frequency level respectively.
For 'ondemand', as only two cores are used, it will scale the
active cores in high frequency while scale the idle cores in
low frequency. Different from the modes above, the PAFS we
propose will scale all cores to lower frequency during I/O (or
communication) phases while scale the active cores to high
frequency during computation phases. For undistinguished
phases, CPU frequency is decided with respect to real-time
power budget status. In doing so, the scheme can conserve
significant energy with minimal performance loss.

IV. HIERARCHICAL POW ER MANAGEMENT

In this section, we first present the problem of power
constrained performance optimization. Then the hierarchical
power management framework is proposed to address this
problem. In this framework, a novel opportunistic provisioning
for performance optimization is devised together with the
PAFS to optimize system energy efficiency.

A. Performance Optimization with a Power Cap

Given an arbitrary eight-node computing cabinet, it will re­
ceive scientific computation jobs from the system job manager.
Fig. 4 illustrates the utilization of the cabinet over time. Our
main target is to maximize system's energy efficiency without
exceeding the cabinet's power capping.

Com putatir��
Node 1

Job 1 Idle Job3
Node2

Node3

Node4

NodeS Job2
- - - -

Node6
- l- I- i--

Idle Node?
- - -

Node8 Time

Fig. 4: Jobs in different phases on system nodes
A system cabinet's power consumption is summed up with

each compute node's power consumption. For simplicity in
this initial exploration of this work, we solely focus on the
contribution of the compute node's CPU to energy consump­
tion for the entire machine. Future work will expand this
model to incorporate other factors such as cooling, memory,
network, and storage. A node's power consumption Pnode i is
detennined by its working status, CPU frequency (jreq) and

CPU utilization (u). Different working status has varied linear
coefficients - O;status and (3status in the power model. On one
hand, we should cap the system's total power consumption
Psystem below a given budget Pcap; on the other hand, we
want to minimize the average of all jobs' EDP (Energy
Delay Product) to achieve a best trade-off between energy and
application performance. Thus we can normalize our model
and problem as follows:

Pnodei = j(status, jreq, u)

= (O;status * j req + (3status) * u + Pidle

Psystem = L Pnode i

EDPjobj = Ejobj * tjobj

Minimize Avg EDPjob
Subject to Psystem <= Pcap

B. Hierarchical Power Management Framework

(1)

(2)

(3)

(4)

Fig. 5 illustrates how the power management framework
operates at the system level by showing the global power
management and each of the compute nodes housed in each
cabinet. The PDU (Power Distribution Unit) takes charge of
distributing power to server racks in the system. To implement
system-wide power management for scientific application jobs,
we design a hierarchical framework to manage high per­
formance computing systems' power, which is implemented
through three main components: GPM, LPM and JPM.

Fig. 5: Hierarchical Power Management
1) GPM (Global Power Manager): A system contains a

GPM to manage power for all of the computing racks. It
maintains a sorted list of all running jobs. It periodically
receives jobs' working phase information from each
rack and updates the job list. To cap the total system
power consumption within the given budget, it executes
the power provisioning algorithm as described in Sec­
tion IV-C. Specifically, inside a job, nodes working for
this job will be assigned with the same CPU frequency
level to avoid the performance throttling effects. Real­
time global power consumption measured by the power
meter will be sent to GPM as feedback information.
For an exascale system that contains a huge number
of cabinets or racks, a higher-order GPM with global

job allocation infonnation and partitioned power budgets
can be maintained to manage power capping in the
whole system.

2) LPM (Local Power Manager): Every compute rack has
an LPM that collects jobs' phase infonnation from the
JPMs in this rack and send the collected infonnation to
GPM periodically. After receiving the power manage­
ment commands from GPM, the LPM will conduct cor­
responding frequency scaling operations to the affected
jobs' nodes.

3) JPM (Job Phase Monitor): A JPM is a daemon
launched with each job on one of the job's assigned
computing nodes. The JPM determines the running
phase of the job by monitoring the node's system
statistics information which includes CPU utilization,
VO throughput and network throughput and send the
phase infonnation to the rack's LPM periodically. As
the number of JPM daemons is equal to the number of
running jobs (rather than the number of compute nodes)
in the system, such overheads are modest and thus help
our power management framework to scale well.

�:
,," '"
1: i
;: i
= :
�i - "

Size RR Running Claim Power Current QoS Node Job
Time Time level Phase Type list 10

32 0.75 30 min 2 hour
32 0.67 20 min 1 hour
32 0.25 45 min 1 hour
24 0.6 12 min 30 min
24 0.5 30 min 1 hour
24 0.1 18 min 20 min

0.8 24 min 30 min

CPU Norm
10 Norm

CPU Norm
CPU High

Undis Norm
10 Norm

CPU Norm

Fig. 6: Job list maintained by GPM

21
11
20
17
28
10

C. Opportunistic Power Provisioning

For every control period, to minimize jobs' execution time
and power consumption and fulfill the system power budget
requirement, GPM will adopt an opportunistic provisioning
for power constrained perfonnance optimization to distribute
power budget to all nodes for multiple jobs running on the
system. As shown in Fig. 6, a sorted running jobs' list is
maintained by GPM. The job list maintains each running job's
infonnation which contains job ID, size (number of nodes
assigned), RR (Remaining Ratio), running time, claim time,
assigned node list, QoS requirement type and current job
phase. QoS requirement is categorized into two types: high and
normal (most jobs adopt the normal QoS type). And the job list
is sorted firstly by the job size and then further sorted inside
every sublist for jobs with the same size by their RR values.
RR is defined to characterize the completeness degree of one
J'ob and it is calculated by RR = ClaimTime-:-RunningTime. ClmmT,me

As depicted in Algorithm I, the GPM conducts phase-aware
frequency scaling when certain conditions holds. Two types
of scanners are used to search for candidate jobs: a global
scanner termed scannersize is used to choose a target sub list
containing jobs with a certain size; each sublist has a local
scanner tenned scannerRR, which is used for designating a

Algorithm 1 Opportunistic Power Provisioning Algorithm

I: while True do
2: Sleep(interval)
3: Update job list
4: Scale all nodes of jobs in I/O phase down to Lmin
5: if New jobs come or Psys > T Hdown * Pcap then
6: Add jobs to the list as needed and update list
7: Scannersize +- 0
8: Every ScannerRR +- 0
9: while Psys > T Hdown * Pcap do

10: Scale down one job according to Algorithm 2
II: end while
12: Continue
13: end if
14: if Jobs finished/tenninated or Psys < T HUP *Pcap then
15: Delete jobs from the list as needed and update list
16: Scannersize +- Numsublists
17: Every ScannerRR +- its sublist's size
18: while Psys < T HUP * Pcap do
19: if All jobs in undes or CPU phases are at Lmax

then
20:

21:

break;
end if

22: Scale up one job according to Algorithm 3
23: end while
24: end if
25: end while

Algorithm 2 Scale down one job

I: Scannersize to choose the sub-list i
2: while ScannerfR < sizesub list i and !(J ob.P L > Lmin

and J ob.QosType == normal) do
3: ScannerfR + +
4: end while
5: if Find a candidate job then
6: if The job is in CPU or Undes phase then
7: Scale down all nodes of this job by one level
8: else {/*I/O phase*/}
9: Scale all nodes of this job down to Lmin

10: end if
II: ScannerfR + +
12: end if
13: Scannersize + +

job inside the sublist. As we can see, when the system power
Psys is larger than the scaling-down threshold - T Hdown or
smaller than the scaling-up threshold - T HUP times of the
power budget - Pcap , the Power Provisioning Algorithm will
search for candidate jobs for frequency scaling. By setting
the scannersize, GPM will choose the sublist pointed by
scannersize from the job list in a round-robin fashion. By
setting the scannerRR for each sub-list, GPM will further
choose the job pointed by the scannerRR. Differently, for
scaling down, GPM initializes the scannersize and every

Algorithm 3 Scale up one job

1: while ScannerfR > 0 and !(Job.PL < Lmax and
Job.Phase == CPU or Undes) do

2: ScannerfR - -
3: end while
4: if Find a candidate job then
5: if The job is in CPU phase then
6: Scale all nodes of this job up to Lmax
7: else {/*Undistinguished phase*/}
8: Scale all nodes of this job up by one level
9: end if

10: ScannerfR - -
11: end if
12: Scannersize - -

scannerRR to point to the heads of the job list and each
sublist to firstly scale down jobs with larger size and more
remaining work according to Algorithm 2; while for scaling
up, it initializes the scanners to the tails so as to firstly scale
up jobs with smaller size and less remaining work according
to Algorithm 3.

As described in Algorithm 2, at first, scannerRR is incre­
mentally moved in the sublist to find a qualified job whose
power level (P L) is larger than minimum level - Lmin and
QoS type is normal. With a job found, all its nodes' CPU
frequency will be scaled down by one level for jobs in
computation or undistinguished phase and scaled down to
Lmin for jobs in I/O or communication phase respectively.

In Algorithm 3, similarly, scannerRR is decrementally
moved in the sublist to find a qualified job whose power level
is smaller than minimum level - Lmax and current phase is
either undistinguished or computation. Then aU the found job's
nodes' CPU frequency will be scaled up by one level for jobs
in undistinguished phase or scaled up to maximum level -
Lmax for jobs in computation phase.

V. EXPERIMENTAL EVALUATION

In this section, we describe the setup of experimental en­
vironment and our evaluation results on both a cluster system
and a large-scale simulator. First, single-application results
are shown for PAFS. Then, multiple-application results are
presented for the hierarchical power management framework
which integrates both the PAFS and opportunistic power
provisioning techniques.

A. Experimental Setup

Our experiments are conducted on both a in-house cluster
and a large-scale cluster simulator. Our cluster contains 12
nodes, each of which is equipped with dual-socket quad-core
2.13GHz Intel Xeon processors, 8GB of DDR2 800 MHz
memory and Linux 2.6.18-164.eI5 kernels. Eight of the nodes
are used for application jobs while the remaining four host
a 1442 GB Lustre File system with three OSTs. We only
report the power consumption results collected from the eight
compute nodes.

On the cluster, we evaluate our techniques by running two
applications (GTC2 [18] and GEOS5 [1]) and a microbench­
mark called MADbench [5]. GTC2 is a PIC-based fusion
simulation application for studying plasma microlurbulance in
tokamak devices. GEOS-5, the Goddard Earth Observing Sys­
tem model, is another scientific application being widely used
by NASA for observing system modeling, conducting climate,
weather prediction and other scientific research. MADbench
is a benchmark for testing the overall integrated performance
of I/O, communication and calculation subsystems of large­
scale parallel architectures under the stresses of real scientific
applications workload.

To project our techniques on large-scale clusters, we design
a trace-driven simulator that simulates the job scheduling,
execution, node allocation and DVFS power management
across thousands of compute nodes. We adopt two real-world
job traces that are based on workload logs from production
clusters [6]. The RICC trace contains a running log consisting
of 447794 jobs collected on Fujitsu RX200S5 Cluster with
1024 quad-core nodes from May 1st to Sep 30th 2010.
The META log contains 103656 jobs collected on Czech
MetaCentrum grid with 806 compute nodes for six months.
To represent applications with different working phases, we
randomly assign a job type to each job entry with a time
ratio of undistinguished phase: I/O phase: computation phase
as 1:1:3 (phases are switched midst each job's progress).
Our simulation results are collected by running two 4000-job
sequential sections from the RICC log and from the META
log, respectively.

B. Frequency scaling and power capping for a cluster

In this section, results for running standalone applications
and multiple applications at the same time with our techniques
compared to with baseline schemes are described.

1) Standalone execution results: We firstly assess the per­
formance of PAFS via running each benchmark (MADbench,
GEOS5 and GTC2) individually on 4 compute nodes and
measure their job execution time, consumed power, energy,
and EDP (Energy-Delay Product) when power budget limi­
tation is not issued. We compare the results of using PAFS
with that of using another three DVFS schemes, which are
performance, ondemand and powersave, respectively. During
the experiments, we observe very close or nearly identical
results when using performance and ondemand across all the
tests. For clarity in the graphs, we report the average of those
results and name it as ondemand & performance.

Fig. 7 shows normalized values of time, power, energy and
EDP when using different power management schemes for
MADbench, GEOS5 and GTe. Overall, PAFS outperforms
the other alternatives in terms of EDP by from 5% to as
much as 17%. Compared to ondemand & performance PAFS
causes minimal or no performance degradation (execution time
delay) but can save significant power and energy because
of appropriate CPU frequency scaled down during CPU in­
critical phases; compared to powersave, PAFS achieves much

1.2 1.2 1.2
DOndcmand&Performance eOndemand&Performance Dondemand&Performance

1.15 1.15 8PAFS
1.15 C!IIPAFS --

IIPowersave

1.1

1.05 1.05 1.05

0.95 0.95 0.95

0.9 0.9 09

0.85 0.85 0.85

0.8 0.8 0.8

� �
� � �

� �E m
� � �m m

Energy Energy Energy

(a) MADbeneh (b) GEOS5 (e) GTC2

Fig. 7: Nonnalized values of time, power, energy and EDP of different DVFS modes for MADbench, GEOS5 and GTC.

better performance. That is why PAFS leads to better energy
and performance trade-off over other DVFS schemes.

For MADbench, we observe that PAFS reduces the EDP
by 2% and 8%, when compared to ondemand & peiformance

and powersave respectively. This is because there is a data
creation process in the beginning, PAFS correctly recognizes
it as I/O phase and scales down the CPU frequency.

For GEOS5, PAFS performs 5% and 17% better than onde­

mand & performance and powersave in terms of EDP. GEOS5
consists of multiple iterations of long I/O and computation
phases that provide PAFS more optimization opportunities.
This explains why PAFS achieves a higher improvement ratio
for the GEOS5. Fig. 8 provides detailed per-node average
power and execution time of running GEOS5 application with
different DVFS modes. As we see from the figure, although
PAFS delays the execution time (by 1 %) when compared to
ondemand & peiformance modes and increases the power con­
sumption when compared to the powersave mode, it achieves
a much better balance between the execution time and power
consumption when compared to both.

GTC2 is a communication-bounded application. PAFS and
powersave both keep CPU at the lowest frequency level
and achieve 7% better energy efficiency than ondemand &
performance.

6000
5000

""
] 4000
I
� 3000
� ! 2000

Ondemand&Performance PAFS

300
250
200 I

I 150 § � 100 �
2

Fig. 8: GEOS5 with different frequency scaling modes

2) Multiple applications with a cluster-wide power budget:

We then evaluate the HPM when multiple applications are
running together in the cluster with a specific power budget
and compare the result with that of using the baseline DVFS,
which sequentially selects nodes to scale its CPU frequency
so that the budget can be satisfied. In the experiments, GTC2
and MADbench run on the four nodes sequentially with an
idle period between them, while GEOS5 runs on the another
4 nodes throughout the entire period. A global power budget
of 1760 Watts is issued for the entire cluster.

TABLE I: Baseline DVFS results for multiple applications

Time(s) Av�pow(W) Energy(MJ) EDP
GEOS(Node 4-7) 5378 842.28 4.530 24361
MAD(Node 0-3) 1618 743.56 1.203 1946.6
GTC2(Node 0-3) 1448 925.50 1.340 1940.5
Total 5378 1610.7 8.662 28248

TABLE II: HPM results for multiple applications

Time(s) Av�pow(W) Energy(MJ) EDP
GEOS(Node 4-7) 4893 870.95 4.262 20852
MAD(Node 0-3) 1493 794.96 1.187 1772.0
GTC(Node 0-3) 1458 788.99 1.150 1677.2
Total 4893 1591.47 7.787 24301

Table I and II show the experiment results for GTC,
GEOS5, and MAD bench when running with the baseline
DVFS and HPM, respectively. As we can see from the
Total rows of both tables, PAFS outperfonns the baseline
DVFS scheme regarding to job execution time, average power
consumption and total energy consumption, HPM achieves up
to 13.6% improvement in terms of EDP.

Fig. 9 (a) and (b) illustrate their detailed power footprints
respectively. Green, red and blue points represent the power
consumptions on node 0-3, node 4-7, and all nodes respec­
tively. And a limitation line is provided for capping the total
power budget. We can see that HPM implements a phase­
aware, more flexible and efficient power management scheme
leading to a better energy-efficiency than the baseline scheme.

C. Simulation results for large-scale system traces

To investigate the effectiveness of HPM in the large-scale
production cluster, we replay two production traces introduced
in Section V-A using our simulator and compare the results
with that of using the baseline DVFS scheme which is un­
aware of jobs and scales CPU frequency of each node as
needed. Table III summarizes the comparison results between
HPM and the baseline DVFS scheme, in terms of average
job execution time, power consumption on each node, total
power consumption, and EDP when running RICC and META
workload traces. Overall, compared to the baseline scheme,
HPM improves the EDP by 4.26% and 4.59% for META and
RICC traces, respectively. More importantly, we notice that
PAFS reduces not only the power consumption but also the
job execution time over the baseline scheme.

TABLE III: Results of executing production traces in simulated large clusters

Av�Job Time(s) Avg Node Pow(W) Av�Job E(MJ) Av�Job EDP EDP Improve

0 iii �
c 0 "-&
E � c 0 U
�

� "-

� �
c 0 0-5.
E � c 0 U
�

� "-

2000

1800

1600

1400

1200

1000

800

600
0

2000

1800

1600

1400

1200

1000

800

600
0

META-baseline 46593
META-HPM 45768
RICC-baseline 11669.6
RICC-HPM 11566

1000 2000 3000
Time Elapse (seconds)

(a) Baseline DVFS

Power Budget

Node 0-3
Node 4-7

Total

4000

165.59
164.63
163.72
161.60

5000

t· J; .�� . ��
. :��l'�H'��!�

.. ,.,,\ . . .,,�: . .. �

1000

.�.������: ��

2000 3000 4000 5000
Time Elapse (seconds)

(b) HPM

Fig. 9: Power Consumption Comparison

VI. CONCLUSIONS

In this work, we propose an application-transparent dy­
namic phase detection strategy through job status monitoring
and combine this with a cluster-wide hierarchical phase­
aware power management framework to achieve better energy­
efficiency for active computing nodes in a power constrained
system. Evaluation results on an in-house cluster and a clus­
ter simulator show that our phase-aware power management
scheme PAFS and HPM outperform baseline DVFS schemes
by 4.3%-17% in terms of EDP for important scientific appli­
cations and real production cluster job logs.

ACKNOWLEDGEMENTS

This work is funded in part by a NASA ,grant
NNXIIAR20G and enabled by the U.S. National SCience
Foundation award CNS-1059376 to Auburn University. Sandia
National Laboratories is a multi-program laboratory managed
and operated under the contract DE-AC04-94AL85000.

REFERENCES

[I] GEOS5. http://gmao.gsfc.nasa.gov/systems/geos5.
[2] Green500. http://www.green500.org.
[3] NVIDIA Tesla. http://www.nvidia.com/objectltesla-supercomputing\

newline-solutions.html.

27.69 1291 -
27.01 1236 4.26%
24.764 288.98 -
23.838 275.73 4.59%

[4] Top500. http://www.top500.org.
[5] J. Borrill, J. Carter, L. Oliker, D. Skinner, and R. Biswas. Integrated

perfomlance monitoring of a cosmology application on leading hec
platforms. In ICPP·05. IEEE, 2005.

[6] D.G. Feitelson and D. Tsafrir. Workload sanitation for performance
evaluation. In International Symposium on Petjormance Analysis of
Systems and Software, pages 22L-230. IEEE, 2006.

[7] Vw. Freeh, D.K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B.L.
Rountree, and M.E. Femal. Analyzing the energy-time trade-off in high­
perfomlance computing applications. IEEE Transactions on Parallel and
Distributed Syslems, L8(6):835-848, 2007.

[8] M.e. Huang, J. Renau, and J. Torrellas. Positional adaptation of
processors: application to energy reduction. In 30th annual International
Symposium on Complller Architeclllre, pages 157-168. IEEE, 2003.

[9] N. Kappiah, Vw. Freeh, and D.K. Lowenthal. Just in time dynamic
voltage scaling: Exploiting inter-node slack to save energy in mpi
programs. In Proceedings of the 2005 ACMIIEEE conference on
Supercompllling, page 33. IEEE, 2005.

[10] J. H. Laros, III, K. T. Pedretti, S. M. Kelly, W. Shu, and e. T. Vaughan.
Energy based performance tuning for large scale high perfomlance
computing systems. In HPC'12, San Diego, CA, USA, 2012 .

[11] M. Laurenzano, M. Meswani, L. Carrington, A. Snavely, M. Tikir, and
S. Poole. Reducing energy usage with memory and computation-aware
dynamic frequency scaling. Euro-Par 2011, pages 79-90, 20 LI.

[12] D. Li, J. Vetter, G. Marin, e. McCurdy, C. Cira, Z. Liu, and W. Yu. An
analysis of scientific applications for using non-volatile memory in high
perfomlance computing. In IPDPS. IEEE, 2012.

[13] M.Y. Lim, vw. Freeh, and D.K. Lowenthal. Adaptive, transparent fre­
quency and voltage scaling of communication phases in mpi programs.
In SC 2006 Conference, Proceedings of the ACMIIEEE. IEEE, 2006.

[14] Z. Liu, B. Wang, P. Carpenter, D. Li, J. Vetter, and W. Yu. PCM-based
durable write cache for fast disk I/O. In MASCOTS'l3, pages 45L-458.
IEEE,2012.

[15] Z. Liu, F. Wu, X. Qin, C. Xie, J. Zhou, and J. Wang. TRACER: A
trace replay tool to evaluate energy-efflciency of mass storage systems.
In CLUSTER'l3, pages 68-77. IEEE, 2010.

[16] Z. Liu, J. Zhou, W. Yu, F. Wu, X. Qin, and e. Xie. MIND: A black­
box energy consumption model for disk arrays. In International Green
Computing COf(ference and Workshops (IGCC). IEEE, 2011.

[17] K. Ma and X. Wang. PGCapping: Exploiting power gating for power
capping and core lifetime balancing in cmps. In International Con­
ference on Parallel Architectures and Compilation Techniques. ACM,
2012.

[L8] L. Oliker, J. Carter, M. Wehner, A. Canning, S. Ethier, A. Mirin,
D. Parks, P. Worley, S. Kitawaki, and Y. Tsuda. Leading computational
methods on scalar and vector hec platforms. In Proceedings of the 2005
ACMIIEEE conference on Supercomputing, page 62. IEEE Computer
Society, 2005.

[19] R. Raghavendra, P. Ranganathan, V Talwar, Z. Wang, and X. Zhu. No
power struggles: Coordinated multi-level power management for the data
center. In ACM SIGOPS Operating Systems Review, volume 42, pages
48-59. ACM, 2008.

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In ACM SIGARCH Com­
puter Architecture News, volume 30, pages 45-57. ACM, 2002.

[21] Y. Tawara, A. ldehara, and H. Yamamoto. DVFS and power-off controls
on a multicore operating system. In 12th International Forum on
Embedded MPSoC and Multicore, Jifu, Japan, 2010.

[22] J. Vetter. On the path to exascale: Deploying an emerging hpc
architecture. In DOE Exascale Tools Workshop, Annapolis, MD, 2011.

[23] L. Wang, G. von Laszewski, J. Dayal, and F. Wang. Towards energy
aware scheduling for precedence constrained parallel tasks in a cluster
with DVFS. In CCGRID. IEEE, 2010.

[24] X. Wang and M. Chen. Cluster-level feedback power control for
performance optimization. In 14th International Symposium on High
Pe,formance Computer Architeclllre, pages 10 1-110. IEEE, 2008.

