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Abstract-The advance of high-performance computing sys­
tems towards exascale will be constrained by the systems' energy 
consumption levels. Large numbers of processing components, 
memory, interconnects, and storage components must all be 
considered to achieve exascale performance within a targeted 
energy bound. While application-aware power allocation schemes 
for computing resources are well studied, a portable and scalable 
budget-constrained power management scheme for scientific ap­
plications on exascale systems is still required. Execution activities 
within scientific applications can be categorized as CPU-bound, 
I/O-bound and communication-bound. Such activities tend to be 
clustered into 'phases', offering opportunities to manage their 
power consumption separately. Our experiments have demon­
strated that their performance and energy consumption are 
affected differently by CPU frequency, an opportunity to fine tune 
CPU frequency for a minimal impact on the total execution time 
but significant savings on the energy consumption. By exploiting 
this opportunity, we present a phase-aware hierarchical power 
management framework that can opportunistically deliver good 
tradeoffs between system power consumption and application 
performance under a power budget. Our hierarchical power 
management framework consists of two main techniques: Phase­
Aware CPU Frequency Scaling (PAFS) and opportunistic pro­
visioning for power-constrained performance optimization. We 
have performed a systematic evaluation using both simulations 
and representative scientific applications on real systems. Our 
results show that our techniques can achieve 4.3%-17% better 
energy efficiency for large-scale scientific applications. 

I. INTRODUCTION 

Exascale computing systems are projected to arrive around 
2018. Such systems will be roughly 50 times faster than the 
current top computer system, e.g., Titan at Oak Ridge National 
Laboratory [4]. A real challenge with developing an exascale 
system is that its energy consumption must be capped within 
a budget, e.g., 20 Megawatts according to a report from the 
U.S. Department of Energy [22]. Such power consumption 
objectives require exascale systems to be 20 times more energy 
efficient than the most efficient system today in terms of 
GFLOPSlWatt [2, 10]. To address this issue, lots of efforts 
have been undertaken to bring faster and more energy efficient 
computing [3], memory [12] and storage [14] hardware to 
build large-scale supercomputers. 

In addition to developing energy-efficient computing hard­
ware, managing system power within a given budget while 
maintammg an acceptable performance goal will become 
an increasingly important issue for the applications on the 
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platform. However, there is a lack of a portable and scalable, 
energy-efficient computation and data management scheme for 
scientific applications running on HPC platforms. 

Recently, heuristic feedback-based power management 
schemes have been developed to control power within a given 
cap while delivering perfonnance [19, 24]. However, these 
techniques did not consider different runtime characteristics 
of the phases of an application's runtime. A typical scientific 
application performs computation over a data set in a periodic 
manner. Each period is called a timestep or iteration. Each 
time step consists of several phases: computation, data ex­
change (communication) and possibly I/O, each with different 
CPU, memory and power usage attributes. Application I/O 
phases may consume a large amount of time and energy 
for storing restart/checkpoint files and analysis results while 
perfonning very little computation. Varying the CPU fre­
quency and voltage based on these distinct needs can reduce 
the power consumption while having very little impact on 
the overall wall clock performance. While traditional power­
aware techniques focus either on the computation part or 
on the I/O and communication part, little research has been 
conducted to take all phases into account for managing energy 
consumption. For example, in some applications, the I/O and 
communication phases may take considerable time with a 
relatively low demand on computation power. A poor selection 
of CPU frequency may lead to some combination of wasted 
CPU cycles, degraded perfonnance, or unnecessary energy 
expenditure. 

Therefore, in order to achieve a better trade-off between 
energy usage and application execution efficiency for a com­
puting system with a power budget, we propose a Hierarchical 
Power Management framework (HPM) which consists of 
two main techniques: Phase-Aware CPU Frequency Scaling 
(PAFS) and opportunistic provisioning for power-constrained 
performance optimization. PAFS carefully monitors an appli­
cation's working phase and orchestrates the CPU frequency 
and voltage to achieve nearly identical performance with re­
duced energy consumption. Furthermore, built on top of PAFS, 
to cap the computing cabinet's power consumption within a 
given budget while optimizing its job throughput, we devise 
an opporlunistic provisioning technique for power-constrained 
performance optimization. The HPM is implemented through 
three main components: Job Phase Monitor (JPM), Local 
Power Managers (LPM), and Global Power Manager (GPM). 



These components monitor each running job's working phase 
and dynamically assign a certain power level to each compute 
node according to every job's working phase and the global 
power budget. 

Our contributions are three-fold. (1) We introduce the 
PAFS technique that enhances scientific applications' energy­
efficiency without undue increase of wall clock time. (2) 
We provide an opportunistic provisioning scheme for power­
constrained optimization, which offers an efficient and 
application-transparent power management solution for large­
scale computing systems. (3) We evaluate our techniques 
through experiments on both real cluster and simulated large­
scale systems. Results for scientific applications and pro­
duction cluster logs show that our system-wide management 
framework can improve system energy efficiency by 4.3%-
17% compared to baseline techniques, which results from both 
the wall clock time and energy consumption improvement. 

II. RELATED W ORK 

Freech et al. comprehensively analyzed the energy-time 
tradeoff for a wide range of applications on a power-scalable 
cluster [7]. They studied how application performance and 
energy use increases with the number of nodes and introduced 
metrics to categorize applications on the relationship of time 
to CPU frequency. Liu et al. provided a set of tools and 
metrics for evaluating energy consumptions and I/O perfor­
mance of storage systems [15, 16]. Sherwood et al. proposed 
an automatic tool called SimPoint [20] to exploit program 
phase behavior for guiding program analysis, simulation and 
optimization. They first conducted an off-line code execution 
to create code behavior signatures and used clustering analysis 
to group similar parts of program's execution into phases. 
The evaluation's granularity was at the basic block level and 
focused on single node programs. Huang et al. provided a 
subroutine-based positional adaptation [8] for saving energy by 
static or dynamic instrumentation. The static instrumentation 
required many off-line profiling runs on target platforms 
while the dynamic instrumentation caused run-time overhead 
at start-up. Different from off-line code analysis and binary 
instrumentation, our techniques determine a running job's 
working phase by dynamically analyzing its node's working 
status and performs a phase-aware and application-transparent 
CPU frequency scaling for conserving system energy. 

Raghavendra et al. provided a coordinated multilevel power 
management [19] for data centers. A control-theoretic core 
was introduced in the system model and multiple-level control 
channels were built for different power management solu­
tions and requirements. Similarly, Wang et al. introduced a 
cluster-level feedback power control for performance opti­
mization [24]. A model predictive control theory was em­
ployed to scale the servers' CPU frequencies to achieve better 
performance under a power budget limit. These techniques 
worked well for uni-processor systems but did not consider 
multi-core nodes with per-core DFS enabled. In addition, the 
distinctions between computation phases and I/O phases for 
scientific application jobs are not addressed. 

Tiwari et al. presented a per-loop frequency selecting tech­
nique [11]. It built up an optimal benchmark-frequency library 
from tests on a wide range of benchmarks, then acquired ap­
plication signatures by lightweight static analysis and runtime 
tracing. After that, a library was queried to choose an optimal 
frequency and frequency scaling procedures were inserted into 
compiled executables by binary instrumentation. This scheme 
worked well for small systems with a limited number of 
applications but was not applicable for large-scale time-critical 
batch processing systems. 

Lim et al. implemented an MPI runtime system [13] to 
dynamically reduce CPU frequencies during communication 
phases in MPI programs for better energy-efficiency. Wang 
et al. provided scheduling heuristics for frequency scaling 
in precedence-constrained parallel tasks [23]. Kappiah et al. 
exploited inter-node slackness [9] in MPI programs and re­
duced processor frequency on those less-burdened nodes to 
save energy. Differently, our work provides hierarchical power 
management at the system level while meeting a power budget 
cap at the same time. Also, power gating was exploited for 
better core balances in CMPs [17], which is orthogonal to 
our DVFS based power management and can complement it 
to further reduce power consumptions for CPU cores' idle 
periods. 

III. PHASE-AwARE CPU FREQUENCY SCALING (PAFS) 

Analyzing the behavior of many scientific simulations yields 
a broad generalization describing the activities performed by 
these applications. Each of these activities can be distilled 
down to different phases each performed periodically pro­
gressing the simulation. Using a simple model of these phases 
makes changing the CPU frequency a less common and less 
intrusive operation while maintaining most of the advantages 
of scaling the frequency at finer granularity. In the case of 
massively parallel simulations, this reduced granularity is suf­
ficient for achieving most of the energy efficiency gains with 
low overhead. This section first explores such phases and the 
impact of CPU frequency scaling has on the wall clock time 
and the performance of these phases, then the Phase Aware 
Frequency Scaling (PAFS) technique is presented to exploit 
such different impacts for energy efficiency improvement. 

A. Different working phases 

Different applications can be categorized to be CPU-bound, 
memory-bound or communication-bound. Inside one scientific 
application, its running progress can be divided into repetitive 
periods of computation, I/O and communication phases. Based 
on our experimental observations, different types of appli­
cations and different phases within these applications have 
varying sensitivity to CPU frequency changes. For example, 
the run time of computation-bound working phases can vary 
linearly with CPU frequency while the performance of I/O 
and network bounded phases are almost not affected when 
scaling down or up CPU frequencies. Some applications may 
have working phases that consist of mixture of many short 
computation phases and I/O phases that are hard to detect. 



Such working phases, termed undistinguished phase, display 
a medium performance sensitivity to CPU frequency level. 
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Fig. I: Computation and I/O Phases for Low and High CPU 
Frequencies during Application Execution 

Fig. I illustrates a typical execution of the NASA GEOS5 
climate simulation [1]. It consists of multiple time steps with 
each time step divided into two distinct phases. The first 
phase is a computation phase during which the application is 
performing computation for the climate and geographic sim­
ulation and is CPU-bound. The second phase is an I/O phase 
when the application writes simulation status to storage where 
CPU frequency is not a bound. The computation phase causes 
100% utilization of each CPU core leading to high power 
consumption while the I/O phase mainly focuses on network 
transfer and memory access leading to the same 100% CPU 
utilization but consuming less power. The red and blue curves 
show power consumptions for CPU frequency of 2.133 GHz 
and 1.6 GHz, respectively. As we can observe, when scaling 
the CPU frequency from high to low, the power consumption 
can be reduced by about 20% while the execution time may 
be prolonged. For different running phases in a time step, 
the extend degree of execution time can vary. Specifically, for 
the computation phase, the performance degradation ratio is 
proportional to the reduction ratio of CPU frequency. However, 
the I/O phase is only prolonged very slightly. These disparate 
impacts motivate us to develop a phase-aware technique for 
energy efficient frequency scaling. 
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Fig. 2: Power consumption of a compute node in different 
statues with varying CPU frequency levels 

Our compute nodes are equipped with an Intel® Xeon® 

E5405 8-core CPU whose cores can be independently clocked 
to five frequency levels: 1.6 GHz, 1.733 GHz, 1.866 GHz, 2.0 
GHz and 2.133 GHz. As a job can be running in different 
working phases, thus each compute node may experience one 

of the three types of different statues: serving a job in compu­
tation phase, serving a job in I/O or communication phases 
and idle (not serving any application). In different statues, 
the compute node will have different resource utilization and 
power consumption. We can observe from Fig. 2 for different 
working statues of GEOS-5 application how the node's power 
consumptions vary with CPU frequency levels. 

To keep the model simple, we adopt a linear regression for 
node power consumption and its CPU frequency (the model's 
residual standard error is 2.436). When CPU cores are idle, 
the power consumption changes very slightly (variations less 
than 0.4%) with the CPU frequency varying from the lowest 
level to the highest level. Therefore, we reasonably assume 
the power consumption Pidle is constant for various CPU 
frequency levels when the cores are idle. 

B. PAFS vs default DVFS schemes 

PAFS works by carefully monitoring a running application's 
working phase and orchestrates the CPU frequency and voltage 
to achieve nearly identical performance with reduced energy 
consumption. First, we categorize the job's working phases 
into three types: I/O or communication phase, computation 
phase and undistinguished phase (consisting of short periods 
of I/O, communication or computation work and its execution 
time is moderately sensitive to frequency). Then, for the I/O 
and computation phases that are not CPU-bound, as the execu­
tion time is not sensitive to CPU frequency, the CPU frequency 
is reduced to the lowest level consuming less energy even with 
a slight increase on the phase time. For the computation phase, 
the higher the frequency, the shorter the execution time and 
net energy consumption. Thus we can achieve better energy­
efficiency if the power budget is not more limiting. For the 
undistinguished phase, its frequency is scheduled according 
to the dynamic power provisioning. 

Cpufreq is a popular DVFS tool integrated in many state­
of-the-art computing platforms. It scales each CPU core's 
clock frequency and voltage to different levels conserving 
power when there is less demand for compute cycles. Cpufreq 
provides several representative scaling schemes such as 'on­
demand', 'performance', 'userspace', 'powersave' and 'con­
servative' with each offering different characteristics. 'Onde­
mand' shifts to a minimum frequency when there is no or min­
imal load and shifts to maximum frequency immediately under 
high load to minimize elapsed time; 'performance' always 
scales the maximum frequency to achieve best performance; 
'userspace' offers dynamic, manual control of the frequency; 
'powersave' always chooses the minimum frequency; and 
'conservative' chooses the minimum frequency if there is no 
load and gradually changes the frequency according to load 
intensity [21]. 

Fig. 3 illustrates the behaviors of PAFS and three default 
DVFS schemes when there are two processes running on a 
quad-core CPU compute node assuming that two-cores are 
used for each process. The green squares represent a low 
frequency state while the red squares are for high frequency. 
When the application switches from a computation phase 
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Fig. 3: PAFS and ot er DVFS modes in a four-core CPU. 

to an I/O (or communication) phase, the 'powersave' and 
'performance' modes will keep all cores in lowest power/fre­
quency level and highest power/frequency level respectively. 
For 'ondemand', as only two cores are used, it will scale the 
active cores in high frequency while scale the idle cores in 
low frequency. Different from the modes above, the PAFS we 
propose will scale all cores to lower frequency during I/O (or 
communication) phases while scale the active cores to high 
frequency during computation phases. For undistinguished 
phases, CPU frequency is decided with respect to real-time 
power budget status. In doing so, the scheme can conserve 
significant energy with minimal performance loss. 

IV. HIERARCHICAL POW ER MANAGEMENT 

In this section, we first present the problem of power 
constrained performance optimization. Then the hierarchical 
power management framework is proposed to address this 
problem. In this framework, a novel opportunistic provisioning 
for performance optimization is devised together with the 
PAFS to optimize system energy efficiency. 

A. Performance Optimization with a Power Cap 

Given an arbitrary eight-node computing cabinet, it will re­
ceive scientific computation jobs from the system job manager. 
Fig. 4 illustrates the utilization of the cabinet over time. Our 
main target is to maximize system's energy efficiency without 
exceeding the cabinet's power capping. 
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Fig. 4: Jobs in different phases on system nodes 
A system cabinet's power consumption is summed up with 

each compute node's power consumption. For simplicity in 
this initial exploration of this work, we solely focus on the 
contribution of the compute node's CPU to energy consump­
tion for the entire machine. Future work will expand this 
model to incorporate other factors such as cooling, memory, 
network, and storage. A node's power consumption Pnode i is 
detennined by its working status, CPU frequency (jreq) and 

CPU utilization (u). Different working status has varied linear 
coefficients - O;status and (3status in the power model. On one 
hand, we should cap the system's total power consumption 
Psystem below a given budget Pcap; on the other hand, we 
want to minimize the average of all jobs' EDP (Energy 
Delay Product) to achieve a best trade-off between energy and 
application performance. Thus we can normalize our model 
and problem as follows: 

Pnodei = j(status, jreq, u) 

= (O;status * j req + (3status) * u + Pidle 

Psystem = L Pnode i 

EDPjobj = Ejobj * tjobj 

Minimize Avg EDPjob 
Subject to Psystem <= Pcap 

B. Hierarchical Power Management Framework 

(1) 

(2) 

(3) 

(4) 

Fig. 5 illustrates how the power management framework 
operates at the system level by showing the global power 
management and each of the compute nodes housed in each 
cabinet. The PDU (Power Distribution Unit) takes charge of 
distributing power to server racks in the system. To implement 
system-wide power management for scientific application jobs, 
we design a hierarchical framework to manage high per­
formance computing systems' power, which is implemented 
through three main components: GPM, LPM and JPM. 

Fig. 5: Hierarchical Power Management 
1) GPM (Global Power Manager): A system contains a 

GPM to manage power for all of the computing racks. It 
maintains a sorted list of all running jobs. It periodically 
receives jobs' working phase information from each 
rack and updates the job list. To cap the total system 
power consumption within the given budget, it executes 
the power provisioning algorithm as described in Sec­
tion IV-C. Specifically, inside a job, nodes working for 
this job will be assigned with the same CPU frequency 
level to avoid the performance throttling effects. Real­
time global power consumption measured by the power 
meter will be sent to GPM as feedback information. 
For an exascale system that contains a huge number 
of cabinets or racks, a higher-order GPM with global 



job allocation infonnation and partitioned power budgets 
can be maintained to manage power capping in the 
whole system. 

2) LPM (Local Power Manager): Every compute rack has 
an LPM that collects jobs' phase infonnation from the 
JPMs in this rack and send the collected infonnation to 
GPM periodically. After receiving the power manage­
ment commands from GPM, the LPM will conduct cor­
responding frequency scaling operations to the affected 
jobs' nodes. 

3) JPM (Job Phase Monitor): A JPM is a daemon 
launched with each job on one of the job's assigned 
computing nodes. The JPM determines the running 
phase of the job by monitoring the node's system 
statistics information which includes CPU utilization, 
VO throughput and network throughput and send the 
phase infonnation to the rack's LPM periodically. As 
the number of JPM daemons is equal to the number of 
running jobs (rather than the number of compute nodes) 
in the system, such overheads are modest and thus help 
our power management framework to scale well. 
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C. Opportunistic Power Provisioning 

For every control period, to minimize jobs' execution time 
and power consumption and fulfill the system power budget 
requirement, GPM will adopt an opportunistic provisioning 
for power constrained perfonnance optimization to distribute 
power budget to all nodes for multiple jobs running on the 
system. As shown in Fig. 6, a sorted running jobs' list is 
maintained by GPM. The job list maintains each running job's 
infonnation which contains job ID, size (number of nodes 
assigned), RR (Remaining Ratio), running time, claim time, 
assigned node list, QoS requirement type and current job 
phase. QoS requirement is categorized into two types: high and 
normal (most jobs adopt the normal QoS type). And the job list 
is sorted firstly by the job size and then further sorted inside 
every sublist for jobs with the same size by their RR values. 
RR is defined to characterize the completeness degree of one 
J'ob and it is calculated by RR = ClaimTime-:-RunningTime. ClmmT,me 

As depicted in Algorithm I, the GPM conducts phase-aware 
frequency scaling when certain conditions holds. Two types 
of scanners are used to search for candidate jobs: a global 
scanner termed scannersize is used to choose a target sub list 
containing jobs with a certain size; each sublist has a local 
scanner tenned scannerRR, which is used for designating a 

Algorithm 1 Opportunistic Power Provisioning Algorithm 

I: while True do 
2: Sleep(interval) 
3: Update job list 
4: Scale all nodes of jobs in I/O phase down to Lmin 
5: if New jobs come or Psys > T Hdown * Pcap then 
6: Add jobs to the list as needed and update list 
7: Scannersize +- 0 
8: Every ScannerRR +- 0 
9: while Psys > T Hdown * Pcap do 

10: Scale down one job according to Algorithm 2 
II: end while 
12: Continue 
13: end if 
14: if Jobs finished/tenninated or Psys < T HUP *Pcap then 
15: Delete jobs from the list as needed and update list 
16: Scannersize +- Numsublists 
17: Every ScannerRR +- its sublist's size 
18: while Psys < T HUP * Pcap do 
19: if All jobs in undes or CPU phases are at Lmax 

then 
20: 

21: 

break; 
end if 

22: Scale up one job according to Algorithm 3 
23: end while 
24: end if 
25: end while 

Algorithm 2 Scale down one job 

I: Scannersize to choose the sub-list i 
2: while ScannerfR < sizesub list i and !(J ob.P L > Lmin 

and J ob.QosType == normal) do 
3: ScannerfR + + 
4: end while 
5: if Find a candidate job then 
6: if The job is in CPU or Undes phase then 
7: Scale down all nodes of this job by one level 
8: else {/*I/O phase*/} 
9: Scale all nodes of this job down to Lmin 

10: end if 
II: ScannerfR + + 
12: end if 
13: Scannersize + + 

job inside the sublist. As we can see, when the system power 
Psys is larger than the scaling-down threshold - T Hdown or 
smaller than the scaling-up threshold - T HUP times of the 
power budget - Pcap , the Power Provisioning Algorithm will 
search for candidate jobs for frequency scaling. By setting 
the scannersize, GPM will choose the sublist pointed by 
scannersize from the job list in a round-robin fashion. By 
setting the scannerRR for each sub-list, GPM will further 
choose the job pointed by the scannerRR. Differently, for 
scaling down, GPM initializes the scannersize and every 



Algorithm 3 Scale up one job 

1: while ScannerfR > 0 and !(Job.PL < Lmax and 
Job.Phase == CPU or Undes) do 

2: ScannerfR - -
3: end while 
4: if Find a candidate job then 
5: if The job is in CPU phase then 
6: Scale all nodes of this job up to Lmax 
7: else {/*Undistinguished phase*/} 
8: Scale all nodes of this job up by one level 
9: end if 

10: ScannerfR - -
11: end if 
12: Scannersize - -

scannerRR to point to the heads of the job list and each 
sublist to firstly scale down jobs with larger size and more 
remaining work according to Algorithm 2; while for scaling 
up, it initializes the scanners to the tails so as to firstly scale 
up jobs with smaller size and less remaining work according 
to Algorithm 3. 

As described in Algorithm 2, at first, scannerRR is incre­
mentally moved in the sublist to find a qualified job whose 
power level (P L) is larger than minimum level - Lmin and 
QoS type is normal. With a job found, all its nodes' CPU 
frequency will be scaled down by one level for jobs in 
computation or undistinguished phase and scaled down to 
Lmin for jobs in I/O or communication phase respectively. 

In Algorithm 3, similarly, scannerRR is decrementally 
moved in the sublist to find a qualified job whose power level 
is smaller than minimum level - Lmax and current phase is 
either undistinguished or computation. Then aU the found job's 
nodes' CPU frequency will be scaled up by one level for jobs 
in undistinguished phase or scaled up to maximum level -
Lmax for jobs in computation phase. 

V. EXPERIMENTAL EVALUATION 

In this section, we describe the setup of experimental en­
vironment and our evaluation results on both a cluster system 
and a large-scale simulator. First, single-application results 
are shown for PAFS. Then, multiple-application results are 
presented for the hierarchical power management framework 
which integrates both the PAFS and opportunistic power 
provisioning techniques. 

A. Experimental Setup 

Our experiments are conducted on both a in-house cluster 
and a large-scale cluster simulator. Our cluster contains 12 
nodes, each of which is equipped with dual-socket quad-core 
2.13GHz Intel Xeon processors, 8GB of DDR2 800 MHz 
memory and Linux 2.6.18-164.eI5 kernels. Eight of the nodes 
are used for application jobs while the remaining four host 
a 1442 GB Lustre File system with three OSTs. We only 
report the power consumption results collected from the eight 
compute nodes. 

On the cluster, we evaluate our techniques by running two 
applications (GTC2 [18] and GEOS5 [1]) and a microbench­
mark called MADbench [5]. GTC2 is a PIC-based fusion 
simulation application for studying plasma microlurbulance in 
tokamak devices. GEOS-5, the Goddard Earth Observing Sys­
tem model, is another scientific application being widely used 
by NASA for observing system modeling, conducting climate, 
weather prediction and other scientific research. MADbench 
is a benchmark for testing the overall integrated performance 
of I/O, communication and calculation subsystems of large­
scale parallel architectures under the stresses of real scientific 
applications workload. 

To project our techniques on large-scale clusters, we design 
a trace-driven simulator that simulates the job scheduling, 
execution, node allocation and DVFS power management 
across thousands of compute nodes. We adopt two real-world 
job traces that are based on workload logs from production 
clusters [6]. The RICC trace contains a running log consisting 
of 447794 jobs collected on Fujitsu RX200S5 Cluster with 
1024 quad-core nodes from May 1st to Sep 30th 2010. 
The META log contains 103656 jobs collected on Czech 
MetaCentrum grid with 806 compute nodes for six months. 
To represent applications with different working phases, we 
randomly assign a job type to each job entry with a time 
ratio of undistinguished phase: I/O phase: computation phase 
as 1:1:3 (phases are switched midst each job's progress). 
Our simulation results are collected by running two 4000-job 
sequential sections from the RICC log and from the META 
log, respectively. 

B. Frequency scaling and power capping for a cluster 

In this section, results for running standalone applications 
and multiple applications at the same time with our techniques 
compared to with baseline schemes are described. 

1) Standalone execution results: We firstly assess the per­
formance of PAFS via running each benchmark (MADbench, 
GEOS5 and GTC2) individually on 4 compute nodes and 
measure their job execution time, consumed power, energy, 
and EDP (Energy-Delay Product) when power budget limi­
tation is not issued. We compare the results of using PAFS 
with that of using another three DVFS schemes, which are 
performance, ondemand and powersave, respectively. During 
the experiments, we observe very close or nearly identical 
results when using performance and ondemand across all the 
tests. For clarity in the graphs, we report the average of those 
results and name it as ondemand & performance. 

Fig. 7 shows normalized values of time, power, energy and 
EDP when using different power management schemes for 
MADbench, GEOS5 and GTe. Overall, PAFS outperforms 
the other alternatives in terms of EDP by from 5% to as 
much as 17%. Compared to ondemand & performance PAFS 
causes minimal or no performance degradation (execution time 
delay) but can save significant power and energy because 
of appropriate CPU frequency scaled down during CPU in­
critical phases; compared to powersave, PAFS achieves much 
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Fig. 7: Nonnalized values of time, power, energy and EDP of different DVFS modes for MADbench, GEOS5 and GTC. 

better performance. That is why PAFS leads to better energy 
and performance trade-off over other DVFS schemes. 

For MADbench, we observe that PAFS reduces the EDP 
by 2% and 8%, when compared to ondemand & peiformance 

and powersave respectively. This is because there is a data 
creation process in the beginning, PAFS correctly recognizes 
it as I/O phase and scales down the CPU frequency. 

For GEOS5, PAFS performs 5% and 17% better than onde­

mand & performance and powersave in terms of EDP. GEOS5 
consists of multiple iterations of long I/O and computation 
phases that provide PAFS more optimization opportunities. 
This explains why PAFS achieves a higher improvement ratio 
for the GEOS5. Fig. 8 provides detailed per-node average 
power and execution time of running GEOS5 application with 
different DVFS modes. As we see from the figure, although 
PAFS delays the execution time (by 1 %) when compared to 
ondemand & peiformance modes and increases the power con­
sumption when compared to the powersave mode, it achieves 
a much better balance between the execution time and power 
consumption when compared to both. 

GTC2 is a communication-bounded application. PAFS and 
powersave both keep CPU at the lowest frequency level 
and achieve 7% better energy efficiency than ondemand & 
performance. 
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Fig. 8: GEOS5 with different frequency scaling modes 

2) Multiple applications with a cluster-wide power budget: 

We then evaluate the HPM when multiple applications are 
running together in the cluster with a specific power budget 
and compare the result with that of using the baseline DVFS, 
which sequentially selects nodes to scale its CPU frequency 
so that the budget can be satisfied. In the experiments, GTC2 
and MADbench run on the four nodes sequentially with an 
idle period between them, while GEOS5 runs on the another 
4 nodes throughout the entire period. A global power budget 
of 1760 Watts is issued for the entire cluster. 

TABLE I: Baseline DVFS results for multiple applications 

Time(s) Av�pow(W) Energy(MJ) EDP 
GEOS(Node 4-7) 5378 842.28 4.530 24361 
MAD(Node 0-3) 1618 743.56 1.203 1946.6 
GTC2(Node 0-3) 1448 925.50 1.340 1940.5 
Total 5378 1610.7 8.662 28248 

TABLE II: HPM results for multiple applications 

Time(s) Av�pow(W) Energy(MJ) EDP 
GEOS(Node 4-7) 4893 870.95 4.262 20852 
MAD(Node 0-3) 1493 794.96 1.187 1772.0 
GTC(Node 0-3) 1458 788.99 1.150 1677.2 
Total 4893 1591.47 7.787 24301 

Table I and II show the experiment results for GTC, 
GEOS5, and MAD bench when running with the baseline 
DVFS and HPM, respectively. As we can see from the 
Total rows of both tables, PAFS outperfonns the baseline 
DVFS scheme regarding to job execution time, average power 
consumption and total energy consumption, HPM achieves up 
to 13.6% improvement in terms of EDP. 

Fig. 9 (a) and (b) illustrate their detailed power footprints 
respectively. Green, red and blue points represent the power 
consumptions on node 0-3, node 4-7, and all nodes respec­
tively. And a limitation line is provided for capping the total 
power budget. We can see that HPM implements a phase­
aware, more flexible and efficient power management scheme 
leading to a better energy-efficiency than the baseline scheme. 

C. Simulation results for large-scale system traces 

To investigate the effectiveness of HPM in the large-scale 
production cluster, we replay two production traces introduced 
in Section V-A using our simulator and compare the results 
with that of using the baseline DVFS scheme which is un­
aware of jobs and scales CPU frequency of each node as 
needed. Table III summarizes the comparison results between 
HPM and the baseline DVFS scheme, in terms of average 
job execution time, power consumption on each node, total 
power consumption, and EDP when running RICC and META 
workload traces. Overall, compared to the baseline scheme, 
HPM improves the EDP by 4.26% and 4.59% for META and 
RICC traces, respectively. More importantly, we notice that 
PAFS reduces not only the power consumption but also the 
job execution time over the baseline scheme. 



TABLE III: Results of executing production traces in simulated large clusters 
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Fig. 9: Power Consumption Comparison 

VI. CONCLUSIONS 

In this work, we propose an application-transparent dy­
namic phase detection strategy through job status monitoring 
and combine this with a cluster-wide hierarchical phase­
aware power management framework to achieve better energy­
efficiency for active computing nodes in a power constrained 
system. Evaluation results on an in-house cluster and a clus­
ter simulator show that our phase-aware power management 
scheme PAFS and HPM outperform baseline DVFS schemes 
by 4.3%-17% in terms of EDP for important scientific appli­
cations and real production cluster job logs. 
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