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Abstract
Flash based solid-state devices (FSSDs) have been adopted

within the memory hierarchy to improve the performance of

hard disk drive (HDD) based storage system. However, with

the fast development of storage-class memories, new storage

technologies with better performance and higher write en-

durance than FSSDs are emerging, e.g., phase-change mem-

ory (PCM). Understanding how to leverage these state-of-

the-art storage technologies for modern computing systems

is important to solve challenging data intensive computing

problems. In this paper, we propose to leverage PCM for

a hybrid PCM-HDD storage architecture. We identify the

limitations of traditional LRU caching algorithms for PCM-

based caches, and develop a novel hash-based write caching

scheme called HALO to improve random write performance

of hard disks. To address the limited durability of PCM

devices and solve the degraded spatial locality in traditional

wear-leveling techniques, we further propose novel PCM

management algorithms that provide effective wear-leveling

while maximizing access parallelism. We have evaluated this

PCM-based hybrid storage architecture using applications

with a diverse set of I/O access patterns. Our experimental

results demonstrate that the HALO caching scheme leads to

an average reduction of 36.8% in execution time compared

to the LRU caching scheme, and that the SFC wear leveling

extends the lifetime of PCM by a factor of 21.6.

I. Introduction

The explosive growth of data brings both performance and

power consumption challenges. To solve these challenges,

flash-based Hybrid Storage Drives (HSDs) have been pro-

posed to combine standard hard disk drives (HDDs) and

Flash-based Solid-State Drives (FSSDs) into a single stor-

age enclosure [1]. Although flash-based HSDs are gaining

popularity, they suffer from several striking shortcomings of

FSSDs, namely high write latency and low endurance, which

seriously hinder the successful integration of FSSDs into

HSDs. Lots of techniques have been proposed to address the

issues [30, 29]. However, most of them only target specific

usage scenarios and cannot act as a general solution to

eliminate FSSDs’ drawbacks, which continue to threaten the

future success of FSSD-based HSDs. There remains a need

of better technologies in the storage market.

Latest storage technologies are bringing in new non-

volatile random-access memory (NVRAM) devices such as

phase-change memory (PCM), spin-torque transfer memory

(STTRAM), and resistive RAM (RRAM). These memory de-

vices support the non-volatility of conventional HDDs while

providing speeds approaching those of DRAMs. Among

these technologies, PCM is particularly promising with sev-

eral companies and universities already providing prototype

chips and devices [5, 2]. Compared to FSSD, PCM is

equipped with a number of performance and energy advan-

tages [7]. First, PCM has much faster read response time

than FSSD. It offers a read response time of around 50ns,

nearly 500 times faster than that of FSSD. Second, PCM can

overwrite data directly on the memory cell, unlike FSSD’s

write-after-erase. The write response time of PCM is less

than 1μs, nearly three orders of magnitude faster than that

of FSSD. Third, the program energy for PCM is 6 Joule/GB,

3 times smaller than that of FSSD [7]. Thus, PCM is a viable

alternative to FSSDs for building hybrid storage systems.

A number of techniques have used NVRAM as data

cache to improve disk I/O [6, 11, 18, 31, 13]. Most of

them use LRU-like methods (e.g., Least Recently Written,

LRW [11, 13]) to manage small size non-volatile cache to

improve performance and reliability of HDD-based storage

and file system. However, for GBs of high density PCM

cache, using LRU to manage them will cause big DRAM

overheads in managing the LRU stack and mapping. In

addition, LRU/LRW cannot ensure that destaging I/O traffic

be presented as sequential writes to hard disks. CSCAN

method used in [13] as a supplement for LRW can ease

this issue to some extent but it requires O(log(n)) time

for insertion, making it not suitable for large size cache

management. Therefore, it is crucial to rethink the current

cache management strategies for PCM.
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In this paper, we design a novel hybrid storage system

that leverages PCM as a write cache to merge random write

requests and improve access locality for HDDs. To support

this hybrid architecture, we propose a novel cache manage-

ment algorithm, named HALO. It implements a new eviction

policy and manages address mapping through cuckoo hash

tables. These techniques together save DRAM overheads

significantly while maintaining constant O(1) speeds for both

insertion and query. Furthermore, HALO is very beneficial in

terms of managing caching items, merging random write re-

quests, and improving data access locality. In addition, by re-

moving the dirty-page write-back limitations that commonly

exist in DRAM-based caching systems, HALO enables better

write caching and destaging, and thus achieves better I/O

performance. And by storing cache mapping information

on non-volatile PCM, the storage system is able to recover

quickly and maintain integrity in case of system crashes.
To use PCM as a write cache, we also address PCM’s

limited durability. Several existing wear-leveling techniques

have shown good endurance improvement for PCM-based

memory systems [26, 25, 33]. However, these techniques

are not specifically designed for PCM used in storage and

file systems, and thus can negatively impact spatial locality

of file system accesses, which in turn will degrade read-

ahead and sequential access performance of file systems. We

propose a wear leveling technique called space filling curve

wear-leveling, which not only provides a good write balance

between different regions of the device, but also keeps data

locality and enables good adaptation to the file system’s I/O

access characteristics.
Using two in-house simulators, we have evaluated the

functionality of the proposed PCM-based hybrid storage de-

vices. Our experimental results demonstrate that the HALO

caching scheme leads to an average reduction of 36.8% in

execution time compared to the LRU caching scheme, and

that the SFC wear leveling extends the lifetime of PCM by a

factor of 21.6. Our results demonstrate that PCM can serve

as a write cache for fast and durable hybrid storage devices.
The rest of the paper is organized as follows. Section II

provides a brief overview of related work, Section III the

design of a hybrid PCM-HDD architecture. Then Section IV

offers the details of wear-leveling. Section V provides experi-

mental methodology and results, followed by our conclusions

in Section VI.

II. Related Work

A. Caching and Logging
Least recently used (LRU) and least frequently used

(LFU) are common cache replacement policies. LRU-k [21],

LRFU [17], MQ [34] and LIRS [16] are important improve-

ments to the basic LRU policy. They consider inter-access

time, access history and access frequency to improve hit

ratios. DULO [15] and DISKSEEN [9] complement LRU by

leveraging spatial locality of data access. DULO gives pri-

ority to random blocks by evicting sequential blocks (those

with similar block addresses and timestamps). However, the

limited sequential bank size and volatility of DRAM prevents

DULO from detecting sequences within a larger global

address space and over a longer time scale. For this reason,

DULO is not positioned to attain performance improvements

over LRU for random access workloads in storage and file

systems.

Logging is a method that aims to mitigate random writes

to hard drives [27] and flash-based SSDs [32]. When data

blocks are appended to early blocks rather than updated

in place, the garbage collection is necessary and becomes

a critical issue. DCD [20] uses a hard disk as a log disk

for improving the random write performance of hard disks.

However, it does not solve issues such as random reads

from the log disk and suffers from expensive destaging

operations (still random writes) under heavy workloads.

Several techniques employ non-volatile devices to boost

the performance of storage and file systems. Some use

NVRAM as the file system metadata storage [10, 11, 24],

while others use NVRAM as LRU/LRW caches in file and

storage systems [6, 18, 31]. However, these techniques have

limitations. For example, they can only boost performance

for certain types of file systems; they also cannot ensure the

sequential write-back to HDDs due to the usage of LRU

policy to manage cache replacement. The HALO scheme

as proposed in our hybrid storage system addresses both of

these limitations.

B. Wear Leveling for PCM

Many research efforts have been invested in studying wear

leveling in order to extend the lifetime of PCM. Qureshi

et al. [26] make the writes uniform in the average case

by organizing data as rotating lines in a page. For each

newly allocated page, a random number is generated to

determine the detailed rotation behavior. Seong et al. [28]

use a dynamic randomized address mapping scheme that

swaps data using random keys to prevent adversaries. Zhou

et al. [33] propose a wear-leveling mechanism that integrates

two techniques at different granularities: a fine-grained row

shifting mechanism that rotates a physical row one byte at a

time for a given shift interval, and a coarse-grained segment

swapping mechanism that swaps the most frequently written

segment with the less frequently written segments. Their

work suffers from the overhead of hardware address mapping

and the overhead of periodical sorting to pick up appropriate

segments for swapping. Ipek et al. [14] propose a solution

to improve the lifetime of PCM by replicating a single

physical memory page over two faulty, otherwise unusable

PCM pages. With modifications to the memory controller,

TLBs and OS, their work greatly improves the lifetime

of PCM. Our wear leveling work is distinguished from

these prior efforts. We regard the global address space as a
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multidimensional geometric space and employ a novel space

filling curve-based algorithm to evenly distribute accesses

across different dimensions. Compared with existing work,

our approach significantly extends the lifetime of PCM in

hybrid storage devices.

III. Leveraging PCM for Hybrid Storage

Hybrid storage devices have been constructed in many differ-

ent ways. Most HSDs are built using flash-based solid state

devices as either a non-volatile cache or a prefetch buffer

inside the hard drives. The combination of FSSDs and HDDs

offers an economic advantage with low-cost components and

the mass production. This composition of hybrid storage

devices, as shown in Figure 1(a), is currently popular.

HDD FSSD 

Controller 

PCM FSSD 

Controller 

HDD PCM 

Controller 

(a) (b) (c) 
Fig. 1: Different architectures of hybrid storage devices

Exploring emerging NVRAM devices such as PCM as

components in hybrid storage devices has attracted signif-

icant research interest. Research in this direction proceeds

along two distinct paths. Along the first path, PCM is used

as a direct replacement for FSSDs, as shown in Figure 1(b).

Along the second path, PCM is used in combination with

FSSDs to compensate FSSDs’ lack of in-place updating, and

possibly push HDDs out of hybrid storage devices, as shown

in Figure 1(c). For example, Sun et al. [30] use this type of

hybrid storage devices to demonstrate its high performance

and increased endurance with low energy consumption.

However, there are two major problems associated with this

approach. First, since FSSDs provide primary data storage

space, the erasure-before-write problem still exists, although

it happens at lower frequency. This causes significant perfor-

mance loss for data intensive applications. Second, without

HDDs in the memory hierarchy, large volumes of storage

space cannot be leveraged at economical costs. In terms of

cost per gigabyte, FSSDs are still about 10 to 20 times more

expensive than HDDs.

For the aforementioned reasons, we investigate the benefits

of leveraging PCM as a write cache for hybrid storage

devices that are designed along the first path. As shown

in Figure 1(b), we use PCMs to completely replace FSSDs

while retaining HDDs for their capacity advantage. With the

fast development of PCM technologies, we expect that the

PCM-based hybrid storage drive will become more popular.

In this section, we describe our hybrid storage drive that uses

PCM in a write cache for HDDs to improve performance and

reliability of HDD-based storage and file systems.

A. HALO-Based Caching and Mapping

It demands novel caching algorithms to use PCM as caches

for HDDs. We design a new caching algorithm, referred to

as HALO, to manage data blocks that are cached in PCM for

hard disk drives. HALO is a non-volatile caching algorithm

which uses a HAsh table to manage PCM and merge random

write requests, thereby improving access LOcality for HDDs.

Figure 2 shows the HALO framework. The basic idea of

HALO is to use a chained hash table to maintain the

mapping of HDD’s LBNs (Logical Block Number) to PCM’s

PBNs (PCM block addresses). Sequential regions on HDDs,

in units of 1MB, are managed by one hash bucket. The

information associated with sequential regions is used to

make cache replacement decisions.

 
  
 
 

 
HALO  Caching 

  
Wear  Leveling 

  

Volatile System Buffer Cache 

PCM HDD 

Applications 
(Web Servers, File Servers and RDBMS) 

Destage 

Read Write Read 

Fig. 2: The design of durable write cache

Data Structures – As shown in Figure 3, the chained

hashtable includes an in-DRAM array (the bucketinfo table)

and on-PCM mapping structures. Another cuckoo hashtable

enables space-efficient fast query. The bucketinfo table stores

information for HDD data regions. Each bucket item in the

table represents a 1MB region on the disk partition or logical

volume. Hence, the number of buckets in the bucketinfo table

is determined by the size of the disk volume. Each bucket-

info item, if activated, contains three components: listhead,

bcounts, and recency. Listhead maintains the head block’s

PBN for a list of cache items that map to the same sequential

1MB disk area; Bcounts represents the number of caching

blocks; Recency records the latest access time-stamps for all

cache items in this bucket. We use a global request counter

to represent the time-stamp. Whenever a request arrives, the

counter increases by one. The total counts variable records

how many HDD blocks have been cached inside PCM, while

activated bucks indicates the number of bucketinfo items

activated in the bucketinfo table. Buck scan is used to search

the bucketinfo table for a candidate destaging bucket.

Cache items that are associated with a bucket item do not

need to be linked in the ascending order of LBNs, because

they are only accessed in groups during destaging. Each

newly inserted item will be linked to the head of the list.

This guarantees insertions to be finished in constant time.

Each cache item maintains a 4KB mapping from HDD block

address (LBN) to PCM block number (PBN). It contains a

LBN (the starting LBN of 8 sequential HDD blocks), the
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PBN of the next PCM block in the list and an 8-bit bitmap

which represents the fragmentation inside a 4KB PCM block.

If the 8-bit bitmap is nonzero, nonzero bits represent cached

512B HDD blocks. Each cache item is stored on each PCM

block’s meta data section [5].

To achieve fast retrieval of HDD blocks, a DRAM-based

cuckoo hash table is maintained using the LBN as the key

and the PBN as the value. On a cache hit, PBN of the cache

item is returned, which enables fast access of data informa-

tion in the PCM. Traditional hash tables resolve collisions

through linear probing or chained hash and they can answer

lookup queries within O(1) time when its load factor is very

low, i.e., smaller than log(n)/n, where n is the table size.

With an increasing load factor, its query time can degrade

to O(log(n)) or even O(n). Cuckoo hashing solves the issue

by using multiple hash functions [23, 12]. It can achieve

fast lookups within O(1) time (albeit a bigger constant than

linear hashing), as well as good space efficiency (high load

factor). To address any 512B block in a 2TB disk volume,

we need only four bytes (232 blocks) to represent the LBN

key. Thus we store full keys rather than partial keys into the

hash table because using partial keys [8] leads to additional

read accesses to PCM during false-positive read and full key

read caused by key-value displacement.

LBN PBN LBN: x h2(x) 

h3(x) 

Cache 
Block 

Next PBN 

Bitmap 
LBN 

Cache 
Block 

Next PBN 

Bitmap 
LBN 

Cache 
Block 

Next PBN 

Bitmap 
LBN 

Bucket[i] 
Listhead 
Recency 
Bcounts 

Buckinfo_table 

DRAM 

PCM 

… … … 

buck_scan 

Bucket[0] 

Bucket[n]           
(Empty) 

Cuckoo Hashtable 

… 

… 

… 

Head 

Tail 

h1(x) 

h4(x) 

Cache     
Item 

Fig. 3: Data structure of HALO caching

Caching Algorithm – Our caching algorithm is described

in Algorithm 1. When a request arrives, the bucket index is

computed using the request’s LBN. The hash table is then

searched for an entry corresponding to the LBN. In the event

of a cache hit, the PBNs are returned from the hash table

and the corresponding blocks are either written in-place to,

or read from the PCM. The corresponding bucket’s recency

in the bucketinfo table is also updated to the current time-

stamp. In the event of a cache miss on a read request, data

is read directly from the HDD, without updating the cache.

In the event of a cache miss on a write request, a cache item

is allocated in the PCM, and data is written to that item.

Then, if the bucket item of the bucketinfo table for the LBN

is empty, it will be activated. Then, the bucket item’s list of

cache items is updated, the address mapping information is

Algorithm 1 Cache Management Algorithm

1: Compute the bucket index i from the LBN

2: if this is a write request then
3: Search the cuckoo hashtable using the LBN

4: if this is a cache hit then
5: Write to the PCM block with returned PBN

6: Bucket[i].recency ← globalReqClock
7: else {/∗Cache miss∗/}
8: Allocate and write a PCM block

9: if Bucket[i] is empty then
10: Activate Bucket[i]
11: activate bucks ← activate bucks+1.

12: end if
13: Link item to Bucket[i].Listhead, add to cuckoo

hashtable

14: Bucket[i].recency ← globalReqClock
15: Bucket[i].bcounts ← Bucket[i].bcounts+1

16: total bcounts ← total bcounts+1

17: end if
18: else {/∗This is a read request∗/}
19: Search the cuckoo hashtable.

20: if cache hit then
21: Read the PCM block with the returned PBN.

22: Bucket[i].recency ← globalReqClock.

23: else {/∗Cache miss∗/}
24: Read the block from HDD.

25: end if
26: end if

added to the hash table, the recency of this bucket is set to the

current time-stamp, and the bucket’s bcounts is incremented.

Destaging – When the utilization of PCM reaches a

threshold, e.g., 95% of its total size, we will activate the

destaging process to evict some data buckets out of PCM.

A bucket is eligible to be destaged to HDDs if either of the

following two conditions holds.

First, the bucket’s bcounts needs to be greater than the

average value of bcounts plus a constant T H BCOUNT S
and the bucket’s recency needs to be older than the global

request timestamp by a constant T H RECENCY . For every

scan, these two thresholds will dynamically decrease with

more scanned buckets to make sure that victim buckets

can be found within a reasonable number of steps. Second,

the bucket’s recency needs to be older than the global

request timestamp by a constant OUT DAT E RECENCY
(OUT DAT E RECENCY � T H RECENCY ). As soon as

a bucket is identified as eligible for destaging, all cache

blocks associated with the bucket are destaged to the HDD,

the bucket is deactivated and the corresponding items in

the cuckoo hash table are deleted. As these cache blocks

are mapped to 1MB sequential region of HDD, this batch

of write-backs are supposed to only incur one single seek

operation to HDD, thus providing good write locality and
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causing minimal affects to read requests.

We select these two criteria for determining destaging

candidates for the following reasons. First, we want to

choose a bucket that has enough items to form a large

enough sequential write to the HDD to increase spatial

locality of write operations, and at the same time it needs

to be one that is not recently used in order to preserve

temporal locality. Second, for very old and small buckets,

we evict them from the PCM by setting the control variable

OUT DAT E RECENCY .

Integrity Upon System Crashes – Mapping information

of a PCM block that contains the LBN, the next PBN and

the bitmap are stored on non-volatile PCM. Therefore, in

case the system crashes, system can first reboot and then

either destage the dirty items from PCM to HDD or rebuild

the in-DRAM hashtables by scanning information on fixed

positions of the PCM meta data sections (to get the cache

items’ information including LBN, bitmap and next PBN).

As the PCM’s read performance is similar to that of DRAM,

the recovery procedure should only take seconds to rebuild

the in-memory mapping data structures.

IV. Space Filling Curve Based Wear leveling

Although the write-endurance of PCM is 3-4 orders of

magnitude better than that of FSSDs, it is still worse than that

of traditional HDDs. When used as storage, excessively un-

balanced wearing of PCM cells must be prevented to extend

its lifetime. A popular PCM wear leveling technique [25]

avoids frequent write requests to the same regions by shifting

cache lines and spreads requests through randomization at

the granularity of cache lines (256B). This technique is

feasible when PCM is used as a part of main memory.

However, when PCM is used as a cache for back-end

storage, this technique can negatively impact spatial locality

of file system requests that are normally several KBytes or

MBytes in size. In addition, the use of Feistel network or

invertible binary matrix for address randomization requires

extra hardware to achieve fast transformation. To address

these issues, we propose a wear leveling algorithm for PCM

in hybrid devices, namely Space Filling Curve (SFC)-based
wear leveling. Instead of using 256-Byte cache lines or single

bits as wear leveling units, our algorithm uses stripes (32KB

each). Such bigger units can significantly reduce the number

of data movements in wear leveling. In addition, with the

fast access time of PCM devices, the time to move a 32KB

stripe is quite small (less than 0.1 ms). Hence, the data

movement overhead will not affect the response times of

front-end requests. Relevant parameters for SFC based wear

leveling are listed in Table I.

SFCs are mathematical curves whose domain spans across

a multidimensional geometric space in a balanced man-

ner [19]. In theory, there are an infinite number of possi-

bilities to map one-dimensional points to multi-dimensional

ones, but what makes SFCs suitable in our case is the fact

that the mapping schemes of SFCs maintain the locality of

data. In particular, points whose 1D indices are close together

are mapped to indices of higher dimensional spaces that are

still close. In our case, the LBN sequence is represented by

the 1D order of points. The 3D space, into which the LBN

sequence is mapped, is constructed with a tuple of three

elements along the stripe dimension (the offset of stripes in

a bank), the bank dimension (the offset of banks in a rank),

and the rank dimension (the offset of ranks in a device).

TABLE I: Parameters Used for Wear Leveling.

LSN Global Stripe Number (0-64K)
Stripesize 64 blocks (32KB)

Ncubes Number of cubes (32)
Nranks Number of ranks in a PCM (8)
Nbanks Number of banks in a rank (16)

O f f setinStripe Offset of blocks in a stripe
Cubeno Cube Number (0−31)

Cubestripes Number of stripes in a cube (2048)
O f f setinCube Offset of stripes within a cube

Seqno Sequence Number within a SFC cube
(R,B,S) Rank, Bank, Stripe

8

32*16

16
Cube�0

Cube�31

R

S

B

0

Fig. 4: Space filling curve based wear leveling

LSN =

⌊
LBN

Stripesize

⌋

O f f setinStripe = LBN mod Stripesize

Cubeno = Stripeno mod Ncubes

O f f setinCube =

⌊
Stripeno

Ncubes

⌋

Seqno = StartGapMap(O f f setinCube)
(R,B,S) = SFCMapFunc(Seqno)

(1)

We have 512 stripes in a bank, 16 banks in a rank and 8

ranks in a device. We evenly split the 3D space into 32 cubes

along the stripe dimension. In other words, the number of

stripes in each cube is 16 × 16 × 8 (i.e., #stripe × #bank

× #rank). After splitting, we apply the round-robin method

to distribute accesses across these cubes. And inside every

cube, a start-gap like stripe shifting is implemented, making

the 3D SFC cube move like a snake. The consequence is

that consecutive writes in the same cube can only happen

for addresses that are 32 stripes away, which dramatically
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reduces the possibility of intensive writing in the same

region. Within each cube, we apply SFC to further disperse

accesses. We orchestrate SFC to disperse accesses across

ranks as much as possible. This helps exploit parallelism

from the hardware.

In summary, using SFC in combination of the round-robin

method, we are able to map a 1D sequence of block numbers

into a 3D triple of stripe number, rank number and bank

number. The address mapping scheme is generally depicted

in Figure 4. The left figure shows the logical organization of

the device with its 32 cubes (or parallelepiped’s, to be more

precise, because the size is 8× 16× 16). The right figure

shows a 3-dimensional space filling curve that is used for

our work. The mapping scheme starts with LBN provided by

the system and ends up with a 3-tuple (R, B, S) calculated

based on Equation 1.

V. Experimental Evaluation

To evaluate the proposed PCM-based hybrid storage devices,

we have designed a simulation framework that implements

the HALO algorithm, traditional LRU caching schemes, and

several wear leveling algorithms. In the simulator, we have a

PCM simulator that simulates the performance and wearing

characteristics of PCM. During evaluation, the block-level

I/O traces are input to simulators. The I/O requests are then

processed by caching and wear leveling schemes, which

generate two intermediate trace files (i.e., a PCM trace file

and an HDD trace file). The PCM trace file collects requests

that hit in the PCM cache. The HDD trace file collects

requests that result from cache misses and destaging. PCM

trace file are replayed by PCM simulator to get response

and wear leveling results. HDD trace files are replayed on

a 500GB, 7200RPM Seagate disk in a CentOS 5 Linux

2.6.32 system with an Intel E4400 CPU and 2.0 GB memory.

The DRAM-based system buffer cache is bypassed by the

HDD trace replaying process. Traces are replayed in a close-

loop way for measuring system service rate. Because PCM

devices have much higher (more than 10 times) throughput

rates and response performance than those of HDDs [5], we

reasonably assume that the total execution time of a workload

trace is dominated by the replay time of the HDD trace.

Based on the above discussion, the workload execu-

tion time can be calculated as follows: (Total IO Size ∗
Tra f f ic Rate/Average T hroughput). The traffic rate is cal-

culated as the total number of accessed disk sectors (after

the PCM cache’s filtering) divided by the total number of

requested sectors in the original workloads. This metric is

similar to the cache miss rate. The lower the traffic rate we

can achieve, the better the cache scheme performs. In order to

achieve shorter execution times and better I/O performance,

we must minimize the traffic rate and at the same time

maximize the average HDD throughput. According to our

tests, a standard hard disk can achieve as high as 100 MB/sec

of throughput for sequential workloads and only achieve 0.5

MB/sec for workloads with small random requests. We will

evaluate whether the HALO caching scheme can reduce the

HDD traffic rate while maximizing average throughput of a

hard disk by reducing the inter-request seek distance among

all disk writes.

1) Workloads: In our tests, we use seven trace files.

Specifically, the traces Fin1 and Fin2 were collected with the

SPC-1 benchmark suite at a large financial organization [3];

the trace Dap was collected at a Display Advertisement

Platform’s payload server; the trace Exchange was collected

at a Microsoft Exchange 2007 mail server for 5,000 corporate

users; the trace TPC-E was collected on a storage system

of 12 28-disk RAID-0 arrays under an OLTP benchmark,

TPC-E [4]; the trace Mail was collected on a mail server by

Florida International University [4]. The workload statistics

are described in Table II. The seventh trace Randw was

collected by us on the target disk while running the IOmeter

benchmark with 4KB, 100% random, 100% write workloads

for 2 hours with a dataset of 5.9GB [22].

TABLE II: Workload Statistics

Fin1 Fin2 Dap Exch TPC-E Mail
Write% 84.6% 21.5% 54.9% 74% 99.8% 90.1%

Dataset (GB) 18.0 8.85 84.2 163.8 13.2 85
AvgSize (KB) 3.38 2.4 77 13.65 10.48 4

A. Performance

Fig. 5: Execution time

To evaluate execution times of seven traces, we choose

512MB as the cache size for Fin1 and Fin2, and 2GB as the

cache size for the other five traces. Figure 5 shows the results.

We notice that execution times are reduced greatly for all

traces. The execution improvement of HALO caching over

LRU caching is 47.11% for Fin1, 27.48% for Fin2, 18.97%

for Dap, 28.27% for Exchange, 66.10% for TPC-E, 2.65%

for Mail, and 67.11% for Randw. The improvement level is

mainly determined by the randomness and write ratio of the

traces. Note that for the Mail trace, the improvement is only

2.65%. The reason is that most of write requests in the Mail

trace are sequential requests, for which there is not much

room for HALO caching to improve on LRU caching. The
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improvement of execution time comes from the reduction

on traffic and the improvement on the average throughput of

HDDs.

Fig. 6: Traffic rate for Fin1, Fin2 and Dap

Fig. 7: Traffic rate for Exchange, TPC-E, Mail and Randw

Fig. 8: Average inter-request LBN distance

Figures 6 and 7 show the traffic rate for the seven traces

with no cache, the HALO cache policy and the LRU cache

policy, respectively. In most cases (the cache size ranging

from 256MB to 6GB), HALO consistently achieves 5% -

10% lower traffic rates than LRU. For the trace Fin1, HALO

achieves as much as 10.3% lower traffic rates than LRU,

where the cache size varies from 256MB to 3GB. We observe

similar results for Exchange and TPC-E. For Dap, because

the access repeatability and temporal locality is very poor,

the traffic rate for HALO and LRU remains relatively high.

However, HALO still gets a 6% better traffic rate than LRU.

For Randw, as it has a completely random write access

pattern, no cache schemes can achieve good cache hits. That

explains why the traffic rate of HALO and LRU are almost

Fig. 9: Life rate comparison between different wear leveling techniques

identical. Yet, HALO can still bring significant performance

improvement in terms of execution time because of improved

write access locality. For Fin2, as the cache size becomes

larger, the PCM write cache consistently reduces more traffic

until it reaches 768MB. This is due to Fin2’s relatively

high read ratio (84.60%) and thus the opportunities for

optimizing write operations are limited. For Mail, HALO’s

improvement is more insignificant for larger cache sizes.

However, for small cache sizes (512MB–2GB), the traffic

rate under LRU caching is about 2% less than that under

HALO caching, because most write requests are already in

a uniform sequential pattern, so our cache scheme—which

is targeted at random-write workload—cannot show good

improvement.

We use the average inter-request LBN distance as a metric

to evaluate the I/O access sequentiality to HDD, and the

results are shown in Figure 8. We notice that the distance is

reduced greatly by HALO caching for almost all traces. This

explains why the execution time and average disk throughput

with HALO are much better than with non-cache and with

LRU, as shown in Figure 6 and 7. For Fin2, HALO does

not reduce the distance much, because a majority of Fin2

requests are read requests, and there is little room for HALO

to improve performance.

B. Wear Leveling Results

Figure 9 illustrates the wear leveling results for different

wear leveling schemes. RR is a simple round-robin wear-

leveling technique which iteratively distributes stripes first

over ranks, and then over banks within the same rank. And

for RR, a start-gap like stripe shifting scheme is implemented

in each bank. SG-max represents the maximum bank write

count deviations for non-randomized region-based start-gap

wear leveling (SG). Avg-counts represents the average bank

write counts of all 128 banks. NAME-life represents the

life rate compared to perfect wear leveling, which can be

calculated by
1

(NAME-max/Avg-counts+1)
. The “lifetime

improvement” column indicates that SFC-based wear level-

ing improves the endurance much better compared to SG.

The average life rate is 0.9255 for SFC-based wear leveling
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(SFC), 0.619 for rank-bank round-robin wear leveling (RR),

and 0.0598 for SG. The average lifetime improvement with

our schemes for all traces is 21.60.

VI. Conclusions

In this paper, we propose a new hybrid PCM-HDD storage

system that leverages PCM as a write cache to merge random

write requests and improve access locality for the hybrid

device. Along with this, we also design a cache scheme,

named HALO, which utilizes the non-volatility of PCM

to improve I/O performance. Results from a diverse set of

workloads demonstrate that HALO can achieve lower traffic

rates to HDDs and achieve better system throughput. Our

approaches reduce execution times significantly. This hybrid

storage organization is especially beneficial for workloads

with intensive random writes. We also design a space filling

curve based wear leveling scheme, to extend the lifetime

of PCM in the proposed hybrid devices. Our results show

that SFC-based wear leveling improves the life time of PCM

devices by as much as 21.6 times.

In the future, we plan to design a scalable and hierarchical

hash table to reduce memory space overhead. In addition,

we plan to improve the on-demand destaging scheme with

a load-aware batch strategy. This is likely to reduce the

interference from read requests in sequential destaging op-

erations, further reducing seek distances between read and

write requests.
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