
Identifying Opportunities for Byte-Addressable Non-Volatile
Memory in Extreme-Scale Scientific Applications

Dong Li†, Jeffrey S. Vetter†, Gabriel Marin†, Collin McCurdy†, Cristian Cira�, Zhuo Liu� and Weikuan Yu�

†Oak Ridge National Laboratory, �Auburn University

{lid1,vetter,maring,cmcurdy}@ornl.gov, {cmc0031,zhuoliu,wkyu}@auburn.edu

Abstract—Future exascale systems face extreme power chal-
lenges. To improve power efficiency of future HPC systems,
non-volatile memory (NVRAM) technologies are being investi-
gated as potential alternatives to existing memories technolo-
gies. NVRAMs use extremely low power when in standby mode,
and have other performance and scaling benefits. Although
previous work has explored the integration of NVRAM into
various architecture and system levels, an open question re-
mains: do specific memory workload characteristics of scientific
applications map well onto NVRAMs’ features when used in
a hybrid NVRAM-DRAM memory system? Furthermore, are
there common classes of data structures used by scientific
applications that should be frequently placed into NVRAM?
In this paper, we analyze several mission-critical scientific
applications in order to answer these questions. Specifically,
we develop a binary instrumentation tool to statistically report
memory access patterns in stack, heap, and global data. We
carry out hardware simulation to study the impact of NVRAM
for both memory power and system performance. Our study
identifies many opportunities for using NVRAM for scientific
applications. In two of our applications, 31% and 27% of
the memory working sets are suitable for NVRAM. Our
simulations suggest at least 27% possible power savings and
reveal that the performance of some applications is insensitive
to relatively long NVRAM write-access latencies.

I. INTRODUCTION

Exascale computing platforms are expected to become

available later this decade. Although the precise details of

the exascale systems are not yet known, it is rather certain

that these systems will bring with them grand challenges

in several different dimensions. The most pervasive of these

challenges is managing power consumption [1]. Future exas-

cale systems will require much higher energy efficiency than

today’s systems. To illustrate, the Jaguar supercomputer in

Oak Ridge National Laboratory runs at 0.25 Gigaflops/Watt.

For a 1 exaflops supercomputer, at least 40 Gigaflops/Watt

is required in order to manage power consumption: an

improvement of two orders of magnitude is required. In

current systems, main memory accounts for up to 40% of

the server energy, comparable to or slightly higher than the

processor’s contribution. Furthermore, power consumption

by main memory can result in resiliency, scalability and cost

issues.
Byte-addressable, non-volatile, solid-state memory de-

vices (NVRAMs) such as phase-change memory (PCRAM),

spin-torque transfer memory (STTRAM), and resistive RAM

(RRAM), have been investigated as potential alternatives to

existing memory technologies in future computing systems.

These new memory devices provide the non-volatility of

conventional disks while providing speeds approaching those

of DRAM. Unlike DRAM, NVRAMs are not suffering from

either the leakage power or the need to refresh memory

cells - phenomena which account for more than 35% of

the memory subsystem power consumption for memory-

intensive workloads. Therefore, using NVRAM may po-

tentially bring significant power savings to future exascale

systems. NVRAM is attractive for reasons other than its

impressive power savings potential, as well. NVRAM could

provide substantial bandwidth for checkpointing and, since it

would enable checkpointing to be brought under the control

of hardware, would drastically reduce latency. This will

become increasingly important in exascale systems, given

the aforementioned resiliency challenge, and limited external

I/O bandwidth. Finally, NVRAM provides a viable alterna-

tive to support memory paging in HPC (high performance

computing) systems, and is fast enough to be competitive

with increasing DRAM capacity.

Recent studies have highlighted the possible impact of

NVRAM technologies on performance and energy when

they are used as a straightforward replacement for DRAM

or hard-disk drives. Some solutions have been proposed at

the architecture level to avoid NVRAM’s limitations while

improving systems’ power efficiency [2], [3], [4], [5]. Other

research focuses on redefining system interfaces or operating

primitives [6], [7], [8] to accommodate NVRAM. However,

many of these analyses have not considered NVRAM’s

potential impact on applications. It is not clear whether

large-scale mission critical scientific applications can really

benefit from NVRAM or, if so, how many opportunities

there might be. For instance, it may be possible to co-design

applications to better leverage the strengths of NVRAM. To

the best of our knowledge, these questions have not yet been

adequately addressed, and until we answer them, we will not

be able to effectively argue for including hybrid NVRAM

memory architectures in future Exascale systems.

In this paper, we analyze the workload characteristics of

several applications, and assess several computing metrics

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.89

945

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.89

945

that are important for using NVRAM. Specifically, we make

the following contributions.

• We analyze four mission-critical, large-scale scientific

applications, and use the empirical results to drive the

understanding of each application’s design goals for

individual data structures. We further generate several

general observations for application data structures that

apply broadly to many applications beyond our initial

set.

• We implement a PIN-based binary instrumentation tool

to measure and classify application data structures that

may be a good fit for NVRAM in a hybrid DRAM-

NVRAM memory architecture

• We perform power simulation based on an existing

power simulation tool to estimate power consumption

for NVRAM systems, using these memory traces col-

lected from the real scientific applications.

• We carry out full-system simulation to study the per-

formance sensitivity of these applications to memory

access latencies of different NVRAM systems.

The rest of this paper is organized as follows. Section II

provides background information for NVRAM. Section III

describes in more details our tool implementation – NV-

SCAVENGER. Sections IV and V explain how we ap-

ply simulation to investigate power and performance of

NVRAM. Section VI briefly reviews the four applications

involved in this study. Section VII presents our experimental

analysis and observations. Section VIII discusses related

work and Section IX concludes the paper.

II. BACKGROUND

NVRAMs have zero standby power, high density, non-

volatility and byte addressability [9], which can be very ben-

eficial for HPC systems. However, they also have limitations.

The first limitation is their relatively long and asymmetric

access latencies, compared to conventional DRAM. For

example, STT-RAM write latency is about four times that

of DRAM, although its read latency is about the same

as that of DRAM. PCRAM write and read latencies are

10 and 2 times longer than those of DRAM. The second

limitation is their high dynamic power consumption for

write operations. For example, PCRAM’s write energy/bit

for resetting memory cells is about 50 times higher than

that of DRAM. The third limitation is their limited write

endurance. For example, today’s state-of-the-art processor

technology has demonstrated that the write endurance for

PCRAM is around 108 and 109.7, much worse than that of

DRAM (1016).

Based on these characteristics, we divide NVRAMs into

three categories: (1) NVRAMs with long access latencies

for both read and write operations (e.g., PCRAM and Flash

memory); (2) NVRAMs with long write latencies and read

access latencies comparable to DRAM (e.g., STTRAM); (3)

NVRAMs with performance very close to and even slightly

better than DRAM (e.g., RRAM). The first category of

memory technologies are relatively mature and have been

commercialized. The third category of memories are far from

mature and most current research for them is limited at the

device level [10], [11]. In this paper, we target the first two

categories of NVRAMs that are expected to be more easily

adopted in future Exascale HPC systems.

NVRAMs must be properly managed to alleviate their

limitations. For the first NVRAM category, memory accesses

should be controlled such that performance and device

endurance is within acceptable constraints. In particular,

write accesses must be rigorously managed because their

longer latency and higher impact to system performance.

For the second category of NVRAMs, frequently written

memory pages should not be placed in NVRAMs while read-

intensive pages should be. For both categories, a general

management policy is to place memory pages in NVRAMs

as much as possible while avoiding performance-critical

frequent accesses (especially write accesses) to NVRAM,

such that energy savings are maximized and performance

losses are minimized.

To leverage NVRAMs, researchers have proposed hybrid

memory systems that combine DRAM and NVRAM [2],

[12], [4], [3]. A hybrid memory system can be hierarchi-

cal, using DRAM as a cache to reduce NVRAM access

latency, or horizontally putting NVRAM and DRAM side-

by-side behind the bus. Data movement between the two

memories can be realized by extending architectures with

OS support [3]. The first design does not fit well for many

scientific applications. For workloads with poor locality, the

DRAM cache actually lowers performance and increases

energy consumption. Previous work has shown that real

world applications can exhibit very low spatial and temporal

locality [13]. This is especially true for some large-scale

scientific simulations with irregular memory access patterns.

Therefore, our discussion in this paper focuses on the second

hybrid memory system.

Given the benefits of NVRAM, we characterize the access

patterns of scientific applications to explore opportunities for

data placement in hybrid memory systems. Three metrics are

used to quantify NVRAM opportunities. The first metric

is the read/write ratio. A higher read/write ratio translates

to less intensive write workloads, which are favored by

NVRAM, especially the second category of NVRAM. The

second metric is the memory size of a memory object. Since

the static power savings are directly related to memory size,

we want to put as much application data into NVRAM as

possible. The third metric is the memory reference rate. This

metric is complementary to the first metric for some corner

cases. In particular, a memory object with a high read/write

ratio may still account for a large fraction of write memory

accesses, which are not favored by the first category of

NVRAMs. Using this metric we can identify this type of

data structures and avoid placing them into NVRAM. In

946946

our analysis, we use these three metrics to evaluate each

time step of the main computation. We then compare the

results across time steps to monitor the variance of the

access patterns for each memory object. For a dynamic page

placement solution [3], this information is valuable because

it reflects how the usage of memory objects changes and if

the change in memory usage benefits NVRAMs (e.g. from

low read/write ratio to high read/write ratio).

III. ANALYSIS TOOL

To investigate workload characteristics of applications,

we have developed a binary instrumentation tool based on

PIN [14], named NV-SCAVENGER. It instruments every

instruction and then statistically reports NVRAM related

access patterns. A naive design of such a tool would be to

detect every memory reference, and, then, count the number

of memory references and their type at the granularity of

the whole address space. Although this method is fast in

instrumentation time, it leaves out many opportunities for

leveraging NVRAM because access patterns can vary greatly

from one memory block to another. Alternatively, we can

detect access patterns at a very fine granularity (e.g., each

memory byte). Since NVRAM is byte-addressable, putting

each byte of NVRAM friendly memory into NVRAM will

maximize the power savings. However, this approach would

have intolerable instrumentation costs and large memory

requirements to store access information. In our work, we

investigate access patterns at an appropriate granularity (i.e.,

an application memory object). A memory object can be

an application data structure, such as a data array, that

saves the computation state, or it can also be a stack frame

associated with a subroutine invocation. We differentiate

between memory objects in heap, data segment, and stack,

because it helps us to better understand how the applications

uses these memory objects, and it provides insightful infor-

mation for refactoring applications. For example, if there

are NVRAM friendly heap memory objects, we can then

extend dynamic memory allocation to explicitly direct the

allocation of memory into NVRAM; if there are NVRAM

friendly stack memory objects, we can then consider a better

stack implementation with better control over the stack data

placement.

In addition to reporting access patterns of memory ob-

jects, we further implement a configurable cache hierarchy

simulator within the tool. It takes memory references from

the instrumentation tool as the input, and outputs memory

traces filtered by the cache hierarchy. As a result, memory

traces represent main memory accesses due to last level

cache misses and cache evictions. The memory traces are

then used by our memory power simulator to estimate

the power consumption of NVRAM. The main diagram

of NV-SCAVENGER is illustrated in Figure 1. In the

next subsections, we will describe how we implement NV-

SCAVENGER for memory objects in applications’ stack,

Figure 1: Diagram of the analysis tool

heap, and global data segments.

A. Application Program Stack

The stack memory of applications is ignored in previous

NVRAM research [8]. This is partly due to the assumption

that stack data is volatile and frequently accessed thus it is

not a good candidate for NVRAM. However, we consider

stack data in our work, since scientific applications can have

significant amount of memory references to stack data (Sec-

tion VII). Many computation kernels access data allocated

on stack. It is pretty common in scientific applications to

increase the stack size and put more computation data on

the stack. Therefore, it is important to investigate access

patterns to the stack.

NV-SCAVENGER instruments stack data with two dif-

ferent methods. In the first method, we record the number

of read and write operations to the entire program stack. In

particular, for each memory reference, we record the current

stack pointer besides the memory reference information (i.e.,

address and operation type). We also record the maximum

value that the stack pointer has had during the execution

of the program. Assuming that the stack pointer grows

downwards, if the effective memory address stays between

the maximum stack pointer and the current stack pointer,

this memory reference is counted as a stack memory refer-

ence. This method involves a simple recording of memory

references and a comparison to the stack pointer register.

Therefore it is light-weighted and much faster than the

second method. The second method instruments stack data at

a finer granularity. In particular, it not only positions memory

references within the entire program stack during execution,

but also identifies which routine’s stack frame is accessed.

To implement this functionality, we instrument all function

calls and return points so that we can maintain a shadow

stack in NV-SCAVENGER. This provides the convenience

of unwinding the stack. We also record the base frame

address at each routine call. For each memory reference,

we traverse through our call stack to attribute the effective

memory address to the corresponding routine’s frame. It is

possible that the currently executing routine may access a

frame underneath the current routine’s frame. In this case,

the memory reference is attributed to the underneath frame.

This makes sense when considering data placement, because

it is the previously called routine that really allocates data

on the stack. In addition, to identify the routine, we use the

starting address of the routine as its signature, because we

947947

can easily obtain routine name and image name based on

this address using the PIN API.

B. Heap

One straightforward method to identify a memory object

as belonging to the heap is to intercept calls to the memory

allocation routines. In particular, we search the memory

allocation routines within the program image and then insert

instrumentation points at the routine entry and exit points to

obtain a memory object’s base address and the data size.

The special memory allocation realloc() is treated as a call

to the memory deallocation routine followed by a regular

call to malloc().
Because of frequent memory allocation and deallocation

operations on the program heap, some already deallocated

heap objects may share the same virtual memory address

with an active heap memory object. Therefore, we associate

a flag with each heap memory object to mark the status of

memory objects. Whenever a memory object is deallocated,

we set its associated flag to indicate that it is dead. This

behavior is implemented by instrumenting free() at its entry

point.

To identify a heap memory object, we use multiple fields

as its signature, including the base address, the size, the

line number and the file name for the function call, and

the starting addresses of the routines currently active in the

shadow stack. We maintain a callstack in NV-SCAVENGER

as described in the stack section. With these fields, we can

distinguish between heap objects while associating them

with the application code. Under this scheme, it is still

possible that memory objects allocated during different

execution phases have the same signature. For example, a

heap memory region may be allocated in the middle of each

computation iteration with the same callstack, base address

and memory size, and then deallocated at the end of each

iteration. We regard these different memory objects as the

same one in NV-SCAVENGER, because they appear within

the same program context and tend to have the same access

pattern. If these memory objects are NVRAM friendly,

they should always be placed into NVRAM whenever the

program invokes dynamic memory allocation at the specific

execution points with the same program context. This ap-

proach reduces the number of heap memory objects we have

to track and introduces more application information into our

analysis.

We instrument memory allocation and deallocation at the

system library level, instead of at the application level. This

brings a lot of convenience for analyzing Fortran 90/99

dynamic memory allocation. In Fortran 90/99, a single mem-

ory allocation routine can allocate multiple memory regions,

each one corresponding to a memory object. Instrumenting

at a low-level can easily help detect each allocation and

provide the convenience for analyzing access patterns at a

finer granularity, while instrumenting at the high level cannot

achieve this.

During instrumentation we only consider heap data ex-

plicitly allocated by the application. We do not consider

memory allocations in third-party system libraries because

the application developers usually have less control over the

placement of that data and this paper focuses on studying

the characteristics of the application itself.

C. Global

We obtain global data information (i.e., symbol name,

base address and memory size) from the application’s ex-

ecutable using libdwarf. We associate a memory object with

its symbol name and base address. However, this simple

identification mechanism does not work well for FOR-

TRAN common blocks, because a common block allows

one program unit to have a different view of a shared

memory block from other program units. In particular, the

data within a common block can be re-partitioned and re-

identified with different variable names across procedure

units. Therefore, different memory identification may point

to memory regions with overlapped data blocks. To solve

this problem, we regard the memory objects with overlapped

data blocks as one single memory object whose address

range is the union of individual memory regions. We choose

the combined symbol name of individual memory objects to

identify the new memory object.

D. Improve Instrumentation Performance

Our initial implementation of NV-SCAVENGER slows

down an application’s execution significantly, from hun-

dreds to thousands fold. With this substantial overhead,

instrumenting a large parallel application is impractical.

Therefore, we invested considerable effort in optimizing

instrumentation performance.

This significant overhead for NV-SCAVENGER’s runtime

instrumentation comes from the extensive instrumentation

functionality it needs. One possible solution is to offload

major instrumentation functionality into an offline tool.

In particular, we move the cache simulation and memory

reference attribution for different type of memory objects

into an offline tool, keeping only the functionality of tracing

memory references in the online instrumentation tool. This

solution reduces the instrumentation overhead significantly.

Meanwhile, it avoids running applications repeatedly and

provides flexibility for data processing. However, it is not a

scalable solution. A short serial HPC application can easily

produce a trace of tens of gigabytes of data. Post-processing

the trace by I/O operations, even though the trace file is

compressed, is also very slow. The instrumentation time

plus post-processing time will be even longer than that of

our initial instrumentation tool. So we stick to the original

design, i.e., computing statistics on the address stream on-

the-fly without storing raw traces. Furthermore, we cut the

948948

original design into three tools to process stack, heap and

global data separately. We run the three tools in parallel to

collect memory access patterns.

To further improve the performance of NV-SCAVENGER,

we use a memory buffer to temporarily store memory traces.

Any memory reference is simply placed into the buffer

until the buffer is full. All addresses in the buffer are then

processed at once. This scheme delays data analysis and

reduces the frequency of interferences with the program data

cache caused by data processing. This method also simplifies

the instrumentation code per memory access and reduces

state saving overhead for instrumentation.

We also apply two methods to speed up the updating of

reference records for memory objects. In particular, for any

memory reference, we must search all recorded memory

objects to identify which memory object is accessed and

then update access records for that memory object. To

speed up searching, we divide the memory address space

into many buckets and distribute the memory objects into

the buckets based on their address range. To decide which

memory object a memory reference belongs to, we apply

a memory masking scheme to the reference address to

choose the bucket corresponding to this address, and then

search for memory objects within the chosen bucket. To

avoid clustering memory objects into very few buckets and

invalidating the bucket scheme, we dynamically divide the

memory address space so that the memory objects can be

evenly distributed between buckets. We also employ a small

software cache using LRU algorithm to save information

for most often used memory objects. This scheme provides

a shortcut for updating access records for memory objects.

Another possible performance improvement for instru-

mentation is to use sampling, a technique widely employed

in hardware simulation to reduce instrumentation points.

With a tool like SimPoint [15], one can detect phases in

program behavior and use periodic sampling to produce

representative results when an appropriate sampling period

is chosen. However, sampling is not applicable to our case

study, because we intend to establish a memory access

panorama for all memory objects. Sampling can lead to the

loss of access information for many memory objects, which

in turn causes improper data placement.

IV. MEMORY POWER SIMULATION

Our memory power simulator is based on DRAM-

Sim2 [16]. It is designed to be a power estimation model

of the memory controller, the device modules and the buses

of any random access memory (RAM). This simulator uses

trace files collected from NV-SCAVENGER and outputs

the simulated power consumption for NVRAM. It can be

integrated into full system simulators too.

The simulator has three modules. The first one, the

memory system, integrating the other two, acts as an in-

terface to other full system simulator components or, in

our case, to the trace files. When the power simulator is

integrated with a full system simulator that provides timing

information, power estimates can be accurately computed.

In the absence of timing information, when the simulator is

fed with memory traces, memory requests are processed by

the memory system at full speed. Our simulation reports the

average memory power in this case. The second module is

the memory controller. It regulates the flow of transactions

to and from the NVRAM devices. This includes address

mapping, row policy and bank state updates. Last but not

least, the third module simulates memory ranks. This module

is responsible for tracking down the errors in scheduling,

handling the command transactions issued by the memory

controller and powering up or down the banks. Our power

simulator for NVRAM includes power components for burst

power (i.e., the cost for reading/writing memory cells), back-

ground power, and activation/precharge power (depending

on the availability of hardware parameters). Refresh power

is 0 for NVRAM.

We make a few assumptions when estimating power for

NVRAM. We assume that the peripheral circuitry (e.g.,

DIMM interface, row buffers, and row and column decodes)

for NVRAM is the same as that of DRAM. Therefore, the

circuitry has the same performance and power characteristics

for NVRAM and DRAM. We also assume that the same

memory protocol is used for NVRAM and DRAM. These

assumptions are also used in previous NVRAM research [5],

[12], [3]. For PCRAM, the reset current of memory cells is

twice as big as the set current. In our power simulation, we

assume that the set operation has the same operation current

as the reset. Thus our power estimation should be bigger

than that of the real PCRAM memory and provides a power

consumption upper bound. For STTRAM and MRAM, the

published hardware information is very limited and we do

not have read/write current values for them. Therefore, we

use those of PCRAM (40mA for read and 150mA for

write) for the power simulation of STTRAM and MRAM.

However, we expect that the real read/write currents of

STTRAM and MRAM should be smaller than those of

PCRAM. Hence, our power estimation for STTRAM and

MRAM should be a power consumption upper bound.

V. PERFORMANCE SIMULATION

We use PTLsim, a x86/x86-64 cycle accurate system

simulator [17] to study the application performance with

different NVRAMs. PTLsim models out-of-order processor

cores with a full cache hierarchy, memory subsystem, and

supporting hardware. PTLsim uses the co-simulation tech-

nique in which the simulator runs directly on a reference

machine supporting the instruction set being simulated.

Therefore, it can context switch between native mode and

simulated mode completely transparent to the user code, en-

abling detailed simulation of specific program segments. For

our study, we change the memory access latency to simulate

949949

different NVRAM systems. Since the current simulator does

not differentiate between read and write latencies, we assume

the read latency is the same as the write latency. Because

NVRAMs usually have longer latencies for writes than for

reads, our simulation in fact provides a performance lower

bound. In addition, we do not simulate a hybrid memory

system due to the limitations of the simulator. Instead, we

assume main memory is completely replaced with NVRAM.

Our simulation based on the above assumptions is a

preliminary study. However, it provides insight about how

sensitive the application performance is to the long memory

access latencies of NVRAMs. Generally, memory access

latency can be hidden by overlapping with computation

and by memory parallelism. Architectural features such as

prefetching can also hide memory access time. Moreover,

if the application has good data locality, a large fraction of

accesses to the main memory can be avoided. Therefore,

using a memory system with a longer access latency does

not necessarily lead to proportionally worse performance.

We use simulation to understand how the application per-

formance varies when the memory access latency changes.

VI. APPLICATIONS

We investigate the following four production-level

mission-critical large-scale scientific applications that are

expected to run on extreme-scale platforms. The applications

characteristics are summarized in Table I.

• Nek5000 [18] is a dynamic solver simulating unsteady

incompressible fluid flow with thermal and passive

scalar transport on two- and three-dimensional do-

mains. It is widely used in a broad range of scientific

research, including thermal hydraulics of reactor cores,

transition in vascular flows, ocean current modeling and

combustion.

• CAM [19], the community atmosphere model, is a

global climate model that provides state-of-art com-

puter simulations of the Earth’s past, present, and

future climate states. Coupling CAM with other climate

system models, scientists can address many important

scientific questions (e.g., study the effects of green-

house gases increase and investigate the interactions

among the physical, chemical and biogeochemical sub-

systems).

• GTC [20] is is a massively parallel, particle-in-cell

code for turbulence simulation in support of the burning

plasma experiment, the crucial next step in the quest for

next generation (fusion) energy.

• S3D [21] is a massively parallel direct numerical solver

(DNS) for the full compressible Navier-Stokes, total

energy, species and mass continuity equations coupled

with detailed chemistry. S3D can greatly advance our

basic understanding of turbulent combustion processes

and thus improve efficiency of combustion devices.

L1 cache (private) Separate instruction cache and data cache,
32KB each, 4-way, 64byte cache line size,
no-write-allocate

L2 cache (private) 1MB, 16-way, LRU, 64byte cache line
size, write-allocate

Table II: Cache configuration

Feature Value
CPU cores (2.266GHz, x86) out of order, one thread

per core, two quad-core
processors

TLB per-core size 32 entries
L1 cache 8 banks, 1 CPU cycle

hit
L2 cache 5 CPU cycle hit

Size of load fill request queue 64 entries
Size of miss buffer 64 entries

Memory devices 2GB, 16 banks, 16
ranks

Device width 4
JEDEC DATA BUS BITS 64

Num mem rows, Num mem cols 1024

Table III: System configuration

Scientific applications tipically include three execution

phases: a pre-computing phase for initialization and input

parsing, a main computation loop, and a post-processing

phase for data aggregation and result output. We specifically

instrument the main computation loop because it usually

dominates execution time and yields major power saving

opportunities for NVRAMs. For heap data, many memory

objects are allocated during the pre-computing phase. To

study access patterns for those memory objects, we instru-

ment memory (de)allocation routines throughout the whole

applications, but memory references to those objects are

recorded only during the main computation loop.

VII. APPLICATION RESULTS

This section presents the results of our investigation for

the four applications described in Section VI. Tables II, III,

and IV list the parameters of the simulation. Table II shows

the parameters of the two-level cache used in both NV-

SCAVENGER and the PTLsim simulator. Tables III and IV

list the hardware parameters of the computing and memory

systems simulated under this study. We collect data for the

first 10 iterations of the main computation loop of each

application.

A. Stack Data

We first apply the fast version of the tool to the four

applications. The results are summarized in Table V. We

first notice that references to stack data account for a large

Memory Real read
latency

Real write
latency

Performance
simulation

DRAM 10ns 10ns 10ns
PCRAM 20ns 100ns 100ns

STTRAM 10ns 20ns 20ns
MRAM 12ns 12ns 12ns

Table IV: Memory access latencies of different memory systems

950950

Application Input Problem Size Description Memory footprint per task
Nek5000 2D eddy problem Fluid flow simulation 824MB
CAM(v3.1) Default test case Atmosphere model 608MB
GTC(v2) Poloidal grid points=392, Track particles=1,

toroidal grids=2, particle per cell for elec-
tron=7

Turbulence plasma simulation 218MB

S3D Grid dimensions: 60x60x60 Turbulence combustion simulation 512MB

Table I: Applications characteristics

Application Read/write ratio Reference percentage
Nek5000 6.33 75.6%

CAM 20.39 (11.46) 76.3%
GTC 3.48 44.3%
S3D 6.04 63.1%

Table V: Stack data analysis

Figure 2: Read/write ratios and memory reference rates for the
CAM stack data

fraction of total memory references. For Nek5000 and CAM,

the percentage of references to stack data is higher than 70%.

This shows that optimizing placement for stack data is very

important for scientific applications. We further notice that

read/write ratios for three of the applications are greater than

1, but less than 7. In other words, the number of reads is only

moderately higher than the number of writes. This access

pattern for stack data is not NVRAM friendly. On the other

hand, CAM is characterized by a relatively large read/write

ratio. Except for the first iteration whose read/write ratio

is 11.46, the other 9 iterations have read/write ratios as

high as 20.39. To further investigate the reason for this

high read/write ratio, we use the slow version of the tool

to analyze CAM stack data at finer granularity. The result

is displayed in Figure 2.

We noticed that 43.3% of all the objects on the stack have

read/write ratios larger than 10 and 3.2% have read/write

ratios larger than 50. Accesses to these memory objects

account for 68.9% and 8.9% of total memory references,

respectively. To investigate the reason for the high read/write

ratios, we further look into a few routines that have the

highest read/write ratios. One of these routines uses its

local variables to store interpolation coefficients derived

from input arguments at the beginning of the routine. These

coefficients are then frequently read during computation.

Another routine widely uses local variables to periodically

save temporal computation results that the later computation

repeatedly reads and derives new results. A third routine

uses stack to save some computation dependent constants.

These constants are only needed in this routine and thus

not declared as global data. All of these routines are called

intensively from the main computational kernels, which

explains why they have high memory reference rates. The

high read/write ratios of these memory objects make them

potential candidates to be placed in NVRAM. However,

possible performance loss and short device endurance must

also be considered due to these memory objects’ high

reference rates.

B. Global Data and Heap Data

We report analysis results for global data and heap data

together for brevity. Figures 3-6 display read/write ratios,

memory reference rates, and memory sizes for all global

and heap memory objects of the four applications. We first

notice that read-only data structures are common in all four

applications. For Nek5000 and CAM we have about 59MB

and 94MB read-only data, accounting for 7.1% and 15.5%

of the memory footprints, respectively. These read-only data

structures can be categorized into three common scenarios.

• Auxiliary data structures. In Nek5000 we found

two data structures that are intermediate computation

results derived from the mass matrices. These data

structures store inversed mass matrices and “element-

lagged” mass matrices. They are created during the pre-

computing phase and then used as auxiliary matrices

to facilitate computing. In CAM we found constants

related to the Legendre transform, cosine and sine of

longitudes in the global grid, a hash table of the field

names to accelerate output processing and index arrays

to facilitate look-ups. For GTC, we found auxiliary

radial interpolation arrays used to relate particle po-

sitions. For S3D, we found look-up tables that contain

coefficients for linear interpolation.

• Computing-dependent read-only data. These data

structures include boundary conditions (e.g., 70 dif-

ferent types of boundary conditions in Nek5000), ge-

ometry arrays for maintaining the locality information

for a grid (e.g., physics grid longitudes in CAM),

and mass matrices (e.g., velocity mass matrix and

temperature mass matrix in Nek5000). In many cases,

these parameters are read in from a file, or calculated

during initialization, and then read many times during

the computation. One interesting feature of some of

this read-only data is that the data may be read-only

for specific input problems but read and written with

other input problems. This is due to the random nature

951951

Figure 7: Cumulative distribution of memory usage across time
steps

of many scientific simulations. The access patterns to

this data can vary for different inputs.

• Physical invariants. For example, thermal conductivity

for soil minerals and saturated soils in CAM, and

convective characteristics data and strain rate invariants

in Nek5000.

The sizes of some of the above data structures are propor-

tional to the problem definition. With large-scale scientific

applications, these data structures can be easily scaled to use

large amounts of physical memory.

Nek5000 and CAM have many data structures whose

read/write ratios are larger than 50. These data structures

can be placed into NVRAM too, especially NVRAM of

the second category (see Section II). These data structures

use 38.6 MB and 4.8MB physical memory in Nek5000

and CAM, respectively. Furthermore, except for GTC, most

memory objects in the applications have more read than

write accesses (i.e., read/write ratio>1). Such objects are

friendly to NVRAMs with slightly longer write latencies

but similar read latencies as DRAM, such as STTRAM.

C. Memory Usage Variance

Besides the read/write ratio, memory reference rate, and

memory size metrics, understanding how access patterns

change in time is also important for determining data

placement. If there are temporal NVRAM-friendly access

patterns, a dynamic data placement scheme like [3] will

have a chance to migrate data between DRAM and NVRAM

to save power. We study memory usage variances across

iterations of the main computation loop. A majority of

scientific applications have computation loops dominating

application execution. A computation loop provides a natural

way to partition application execution. In our study, we

instrument each iteration and then statistically present how

the memory access patterns vary across iterations.

Figure 7 depicts the cumulative distribution of memory

usage for memory objects across computation iterations

(or time steps). The figures statistically reflect how mem-

ory objects are touched across computation iterations. The

number 0 in the cumulative computation step axis stands

for the pre-computing and post-processing phases. A data

point (x,y) within the figures represents that there are y
MB memory objects used in no more than x iterations.

The figures do not include those short-term heap memory

objects, but those long-term heap memory objects that are

allocated at the pre-computing phase and used throughout

the whole computation. The short-term heap memory objects

are only temporarily allocated and then deallocated in the

middle of the computation. Due to the volatility of these

memory objects, their cumulative memory size does not

represent a real opportunity for NVRAM. From the figures,

we can find that many memory objects in Nek5000 and

CAM are unevenly touched across computation iterations.

For Nek5000, there are about 200MB of global data (24.3%

of the memory footprint) not used in the main computation.

Some of the data is used in the pre-computing phase to

prepare computation methods (e.g., generating diagonal ma-

trices); some of them are used in the post-processing phase,

for example, aggregating data from MPI tasks. We identify

about 70MB (11.5% of the memory footprint) and 7.1MB

of such data for CAM and S3D, respectively. This data is

suitable for being placed in NVRAMs with their low standby

power. We also notice that some memory objects in Nek5000

and CAM are unevenly touched. They may only be used

within a few computation iterations. These memory objects

are candidates to be migrated, depending on the memory

usage variance. We do not show the cumulative distribution

of memory usage for GTC, because almost all of its memory

objects are either used throughout the whole computation

steps or used as short-term heap memory objects. In other

words, the memory objects in GTC are pretty much evenly

touched across iterations.

Figures 8-11 display the variances of read/write ratios

and memory reference rates for memory objects across

iterations. To statistically display the variance for all memory

objects, we normalize the read/write ratio and the memory

reference rate of each memory object at each iteration by

the corresponding one in the first iteration. We display the

distribution of these normalized values for each iteration.

From the figures, we observe that the read/write ratios

and the memory reference rates are pretty stable for most

memory objects across iterations. There are more than 60%

memory objects whose normalized values stay within [1,2)

for each iteration. For S3D and GTC, almost all memory

objects have their memory reference rates unchanged across

iterations. This is good news for those NVRAM friendly

memory objects. If their access patterns stay the same most

of the time, it is safe to place them in NVRAM without data

migration (i.e., no migration overhead). On the other hand,

we notice that Nek5000 has quite diverse reference rates

across iterations. To leverage NVRAM for those pages, a

memory reference monitor working at a fine time granularity

should be applied to dynamically decide the optimal location

of a memory page for a hybrid memory system.

D. Power

Table VI displays the average power consumption for the

four applications with different NVRAMs. The power data

is normalized by the DRAM power data. With NVRAMs,

952952

Figure 3: Read/write ratios, memory reference rates and memory object sizes for memory objects in Nek5000

Figure 4: Read/write ratios, memory reference rates and memory object sizes for memory objects in CAM

Figure 5: Read/write ratios, memory reference rates and memory object sizes for memory objects in GTC

Figure 6: Read/write ratios, memory reference rates and memory object sizes for memory objects in S3D

Figure 8: Read/write ratio and memory reference rate variances across the computation iterations for Nek5000

953953

Figure 9: Read/write ratio and memory reference rate variances across the computation iterations for CAM

Figure 10: Read/write ratio and memory reference rate variances across the computation iterations for S3D

Figure 11: Read/write ratio and memory reference rate variances across the computation iterations for GTC

Application DDR3 PCRAM STTRAM MRAM
Nek5000 1 0.688 0.706 0.711

CAM 1 0.686 0.699 0.701
GTC 1 0.687 0.708 0.718
S3D 1 0.686 0.711 0.730

Table VI: Normalized average power consumption

we observe at least 27% power saving. Since our simula-

tion gives a power consumption upper bound, more power

saving should be expected with a real device. Furthermore,

we notice that STTRAM and MRAM have slightly larger

power consumption than PCRAM. Intuitively they should

have smaller power consumption. However, given the fact

that the two memories have smaller access latencies, their

memory bandwidth usage are larger than PCRAM. Their

memory systems are more loaded on average, which leads

to their higher power consumption. We expect their energy

consumption will be smaller than PCRAM, given the better

performance on these two memories.

E. Performance Sensitivity

In this section, we present our preliminary simulation

results for two applications. To save simulation time for the

time-consuming full system simulation, only one iteration

of the main computation loop (or one time step) for one

task is simulated. We use the memory latencies (Table IV)

corresponding to DRAM and other three representative

NVRAMs for our simulation. The results are shown in

Figure 12. We find that the applications tolerate well the

longer memory latencies. When the memory latency is

increased by 20% (i.e., MRAM with 12ns), the performance

loss is negligible. When the memory latency is doubled (i.e.,

STTRAM with 20ns), the performance loss is less than 5%

for both applications. But if the memory latency is really

large (i.e., PCRAM with 100ns), the performance loss can

be as high as 25%.

These results are interesting. STTRAM memory, although

its access latencies may not be able to compete with tradi-

tional DRAM, does not affect significantly the performance

of the simulated applications. For NVRAMs with signifi-

cantly longer access latencies than DRAM, a hybrid memory

design or other architectural innovation must be applied to

avoid performance loss.

VIII. RELATED WORK

Using NVRAM for HPC. Emerging NVRAM pro-

vides new opportunities for high performance computing.

Caulfield et al. [22] evaluate several approaches to integrate

NVRAM into HPC systems. They explore several options

for connecting solid-state storage to the host system and

954954

Figure 12: Time simulation results

find different system organizations lead to different per-

formance trade-off. prototype data intensive supercomputer

named DASH with SSD. They show that DASH is highly

competitive by performance, cost, and power. With scientific

applications from graph theory, biology and astronomy, they

show that as much as two orders-of-magnitude speedup can

be achieved with this special NVRAM. Stan and Shen [23]

evaluate scientific I/O workloads on SSD. They find that

SSD only provides modest performance gains due to write-

intensive nature of many scientific workloads. They also

observe that the concurrent I/O may significantly affect SSD

performance, depending on specific implementation features.

Unlike the above work that evaluates the system at the

granularity of the whole application, our work studies the

applications characters at very fine granularity. Scientific

applications can have diverse access patterns at different

phases. Investigating them at fine granularity exposes more

opportunities for NVRAM.

Design hybrid memory system using NVRAM.Because

of existing problems in NVRAM, having a hybrid memory

system by combining NVRAM and DRAM has been studied

to leverage benefits of both memory systems. Ramos et

al. [3] propose a hardware-driven page placement policy

for hybrid memory systems. In particular, they rely on the

memory controller (MC) to monitor popularity and write

intensity of memory pages. MC then migrate pages between

DRAM and PCM such that performance-critical pages and

frequently written pages are placed in DRAM, while non-

critical pages and rarely written pages in PCM. They also

ask OS to periodically update its mapping of virtual pages

to physical frames based on the MC translation table to

guarantee correctness of the system. Qureshi et al. [2]

proposed a hierarchical hybrid memory system. They use

DRAM as a buffer logically placed between processor and

PCM main memory. The DRAM buffer is implemented as

a set-associative cache managed by MC. All data blocks

take space in PCM. PCM is accessed only when the DRAM

buffer eviction or buffer miss happens. Zhang et al. [24]

places PCM and DRAM in a flat address space and store all

pages in PCM initially. Like [3], they rely on MC to monitor

access patterns. Unlike [3], they rely on OS to manage pages

and treat DRAM as an OS-managed write partition. Over

time, the frequently written pages are placed into DRAM to

avoid long access latency of PCM.

Our work also targets at a hybrid memory system. Our

work provides important supplementary to the above work.

We demonstrate that using a hybrid memory system is a fea-

sible solution for HPC, given a large amount of opportunities

we found from scientific applications.

Re-design system interfaces and OS to leverage
NVRAM. The unique characters of NVRAM call for re-

thinking system designs to make them suitable for NVRAM.

Condit et al. [8] design a file system that uses a tech-

nology called short-circuit shadow paging to allow copy-

on-write at fine granularity and atomically commit small

changes at any level of the file system tree. This technology

improves system reliability and performance by leveraging

persistency and byte-addressable of NVRAM. Ouyang et

al. [7] propose a new storage primitive called atomic-write

to support NVRAM. They batch multiple I/O operations into

a single logical group that will be persisted as a whole

or rolled back upon failure. They move write-atomicity

primitive out of user space libraries and operating system

implementations into a NVRAM device specific file system

layer, such that the amount of traditional operations required

at the applications and file system layers are significantly

reduced. Coburn et al. [6] propose a fast persistent data

structure implemented on top of NVRAM. They point out

several new types of programming errors that arise only in

the persistent NVRAM data structure. They also propose

corresponding solutions to provide safe access to persistent

objects.

In contrast to the above work, our work focuses on the

applications instead of low level file systems or system

libraries. We describe how application data structures might

easily exploit a hybrid NVRAM memory architecture to

improve energy efficiency. This evidence provides the moti-

vation to leverage a hybrid NVRAM memory system design

in future HPC architectures, and to begin exploring how to

co-design applications to best use this new capability.

IX. CONCLUSIONS

This paper performs a detailed analysis of memory access

patterns for several real large-scale scientific applications.

By performing the analysis, we intend to investigate op-

portunities for a hybrid DRAM-NVRAM system from the

application view, which is not explored in previous NVRAM

research. To carry out the analysis, we develop a binary

instrumentation tool, NV-SCAVENGER. It monitors the

access patterns of memory objects in stack, heap, and global

and statistically present results. We also use our NVRAM

power simulation tool based on DRAMsim to specifically

study the implication of PCRAM on power consumption. We

investigate performance sensitivity of those applications to

different memory latencies of NVRAM using a full system

simulator. Our results reveal a lot of opportunities for using

NVRAM in HPC.

955955

X. ACKNOWLEDGMENTS

The paper has been authored by Oak Ridge National

Laboratory, which is managed by UT-Battelle, LLC under

Contract #DE-AC05-00OR22725 to the U.S. Government.

Accordingly, the U.S. Government retains a non-exclusive,

royalty-free license to publish or reproduce the published

form of this contribution, or allow others to do so, for

U.S. Government purposes. This research is sponsored by

the Office of Advanced Scientific Computing Research in

the U.S. Department of Energy. We are especially grateful

to Paul Fischer (Argonne National Laboratory) and Ihor

Holod (University of California, Irvine) for their insightful

suggestions to DOE applications.

REFERENCES

[1] P. Kogge et al., “Exascale computing study: Technol-

ogy challenges in achieving exascale systems,” DARPA

Information Processing Techniques Office, Tech. Rep.,

2008.

[2] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scal-

able High Performance Main Memory System Using

Phase-Change Memory Technology,” in Proc. of the
Int. Symp. Computer Architecture, 2009.

[3] L. Ramos, E. Gorbatov, and R. Bianchini, “Page Place-

ment in Hybrid Memory Systems,” in Proc. Int. Conf.
Supercomputing, 2011.

[4] W. Zhang and T. Li, “Exploring Phase Change Memory

and 3D Die-Stacking for Power/Thermal Friendly, Fast

and Durable Memory Architecture,” in International
Conference on Parallel Architecture and Compilation
Techniques, 2009.

[5] B. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architec-

turing Phase Change Mmemorhy as a Scalable DRAM

Architecture,” in Int. Symp. Computer Architecture,

2009.

[6] J. Coburn et al., “NV-Heaps: Making Persistent Ob-

jects Fast and Safe With Next-Generation, Non-Volatile

Memories,” in Proc. Int. Conf. Architectural Support
for programming languages and operating systems,

2011.

[7] X. Ouyang et al., “Beyond Block I/O: Rethinking

Traditional Storage Primitives,” in Proc. Int. Symp.
High Performance Computer Architecture, 2011.

[8] J. Condt et al., “Better I/O Through Byte-Addressable,

Persistent Memory,” in ACM Symp. Operating System
Principles, 2009.

[9] M. H. Kryder and K. Chang Soo, “After hard drives:

What comes next?” IEEE Trans. Magnetics, vol. 45,

no. 10, pp. 3406–3413, 2009.

[10] S. Yu and H. Wong, “A Phenomenological Model for

the Reset Mechanism for Metal Oxide RRAM,” IEEE
Electron Device Letters, vol. 32, no. 12, 2010.

[11] H. Jeong, Y. Kim, J. Lee, and S. Choi, “A low-

temperaturegrown TiO2 based devcie for the flexible

stacked RRAM application,” Nanotechnology, no. 11,

2010.

[12] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Explor-

ing Phase Change Memory and 3D Die-Stacking for

Power/Thermal Friendly, Fast and Durable Memory

Architecture,” in Int. Symp. Computer Architecture,

2009.

[13] J. Weinberg, M. O. McCracken, E. Strohmaier, and

A. Snavely, “Quantifying locality in the memory access

patterns of hpc applications,” in Proc. SC 2005, 2005,

pp. 50–50.

[14] C. Luk, R. Cohn, R. Muth, and et. al, “Pin: Building

Customized Program Analysis Tools with Dynamic In-

strumentation,” in ACM SIGPLAN Conf. Programming
Language Design and Implementation, 2005.

[15] T. Sherwood and E. P. et al., “Automatically Char-

acterizing Large Scale Program Behavior,” in Proc.
Int. Conf. Architectural Support for programming lan-
guages and operating systems, 2002.

[16] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAM-

Sim2: A Cycle Accurate Memory System Simulator,”

Computer Architecture Letters, no. 1, 2011.

[17] M. Yourst, “PTLsim: A Cycle Accurate Full System

x86-64 Microarchitectural Simulator,” in Int. Symp.
Performance Analysis of Systems and Software, 2007.

[18] P. Fischer, J. Lottes, and S. Kerkemeier, “nek5000 Web

page,” 2008, http://nek5000.mcs.anl.gov.

[19] N. C. for Atmospheric Research, “CAM Web page,”

2011, http://www.cesm.ucar.edu.

[20] Z. Lin, “GTC Web page,” 2010,

http://phoenix.ps.uci.edu/GTC.

[21] E. Hawkes and R. Sankaran, “Direct numberical sim-

ulation of turbulent combustion: fundamental insights

towards predictive models,” Journal of Physics: Con-
ference Series, no. 15, 2005.

[22] A. M. Caulfield, J. Coburn, and et. al, “Understanding

the Impact of Emerging Non-Volatile Memories on

High-Performance, IO-Intensive Computing,” in Proc.
SC 2010, 2010.

[23] S. Park and K. Shen, “A Performance Evaluation of

Scientific I/O Workloads on Flash-Based SSDs,” in

Workshop on Interfaces and Architectures for Scientific
Data Storage, 2009.

[24] W. Zhang and T. Li, “Exploring Phase Change Memory

and 3D Die-Stacking for Power/Thermal Friendly, Fast

and Durable Memory Architecture,” in International
Conference on Parallel Architecture and Compilation
Techniques, 2009.

956956

