
Hadoop Acceleration Through Network Levitated Merge

Yandong Wang
Auburn University

wangyd@auburn.edu

Xinyu Que
Auburn University
xque@auburn.edu

Weikuan Yu
Auburn University
wkyu@auburn.edu

Dror Goldenberg
Mellanox Technologies
gdror@mellanox.co.il

Dhiraj Sehgal
Mellanox Technologies
dhirag@mellanox.com

Abstract

Hadoop is a popular open-source implementation of the MapRe-
duce programming model for cloud computing. However, it faces a
number of issues to achieve the best performance from the under-
lying system. These include a serialization barrier that delays the
reduce phase, repetitive merges and disk access, and lack of ca-
pability to leverage latest high speed interconnects. We describe
Hadoop-A, an acceleration framework that optimizes Hadoop with
plugin components implemented in C++ for fast data movement,
overcoming its existing limitations. A novel network-levitated merge
algorithm is introduced to merge data without repetition and disk
access. In addition, a full pipeline is designed to overlap the shuf-
fle, merge and reduce phases. Our experimental results show that
Hadoop-A doubles the data processing throughput of Hadoop, and
reduces CPU utilization by more than 36%.

1. Introduction

MapReduce [6] has emerged as a popular and easy-to-use pro-
gramming model for numerous organizations to process explo-
sive amounts of data, perform massive computation, and extract
critical knowledge for business intelligence. Hadoop [1] is an
open-source implementation of MapReduce, currently maintained
by the Apache Foundation, and supported by leading IT compa-
nies such as Google and Yahoo!. Hadoop implements MapRe-
duce framework with two categories of components: a JobTracker
and many TaskTrackers. The JobTracker commands TaskTrack-
ers (a.k.a. slaves) to process data in parallel through two main
functions: map and reduce. In this process, the JobTracker is in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11, November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

charge of scheduling map tasks (MapTasks) and reduce tasks (Re-
duceTasks) to TaskTrackers. It also monitors their progress, col-
lects run-time execution statistics, and handles possible faults and
errors through task re-execution.

Performance and scalability are critical to ensure Hadoop’s con-
tinuing success to various industry and scientific users. A number
of studies have been carried out to improve the performance of
Hadoop MapReduce framework. Jiang et al. [11] have tuned the
parameters of Hadoop for better performance. Condie et al. [5]
have proposed the MapReduce Online architecture to open up di-
rect network channels between MapTasks and ReduceTasks and
speed up the delivery of data from MapTasks to ReduceTasks.
While their work reduces job completion time and improves sys-
tem utilization, it cannot cope with a gigantic dataset that does not
fit in memory, and also complicates the fault tolerance handling of
Hadoop tasks. Furthermore, it demands a large number of network
channels for data movement. For these reasons, MapReduce On-
line has to fall back onto the default MapReduce execution mode.

Little work has been carried out to examine the relationship
of Hadoop MapReduce’s three data processing phases, i.e., shuf-
fle, merge, and reduce, and their implication to the efficiency of
Hadoop. With an extensive examination of Hadoop MapReduce
framework, particularly its ReduceTasks, we reveal that the orig-
inal architecture faces a number of challenging issues to exploit
the best performance from the underlying system. To ensure the
correctness of two-phase MapReduce protocol, no ReduceTasks
can start reducing data until all intermediate data has been merged
together. This results in a serialization barrier that significantly
delays the reduce operation of ReduceTasks.

More importantly, the current merge algorithm merges inter-
mediate data segments from MapTasks when the number of avail-
able segments (including those that are already merged) goes over
a threshold. These segments are spilled to local disk storage when
their total size is bigger than the available memory. This algorithm
causes data segments to be merged repetitively, and therefore mul-
tiple rounds of disk accesses of the same data (c.f. Section 2.2.2).
It poses a severe threat to the efficiency of Hadoop data processing.

To address these critical issues for Hadoop MapReduce Frame-
work, we have designed Hadoop-A, an acceleration framework
that can take advantage of plugin components for performance
enhancement and protocol optimizations. Several enhancements



are introduced: (1) a novel algorithm that enables ReduceTasks
to perform data merging without repetitive merges and disk ac-
cess; (2) a full pipeline is designed to overlap the shuffle, merge
and reduce phases for ReduceTasks; and (3) besides the TCP/IP
protocol in the original Hadoop, an alternative protocol is intro-
duced in Hadoop-A to enable data movement via RDMA (Remote
Direct Memory Access). Since ReduceTasks are able to merge
data by staying above local disks, we refer to this new algorithm
as network-levitated merge. We have carried out an extensive set
of experiments to evaluate the performance of Hadoop-A com-
pared to the original Hadoop. Our evaluation demonstrates that
the network-levitated merge algorithm is able to remove the se-
rialization barrier and effectively overlap data merge and reduce
operations for Hadoop ReduceTasks. Overall, Hadoop-A is able
to improve the throughput of Hadoop data processing by more
than 100%. Its RDMA-based data movement also reduces CPU
utilization by more than 36%.

The rest of the paper is organized as follows. Section 2 pro-
vides the motivation. We then describe the Hadoop-A accelera-
tion framework in Section 3, followed by Section 4 that details the
network-levitated merge algorithm. Section 5 provides experimen-
tal results. Section 6 provides a review of related work. Finally,
we conclude the paper in Section 7.

2. Motivation

Hadoop’s MapReduce implementation enables a convenient and
easy-to-use data processing framework. However, our character-
ization and analysis reveal a number of issues in the existing ar-
chitecture. In this section, we provide an overview of the Hadoop
MapReduce framework, and then shed light on existing limitations
in the current design.

2.1 Overview of Hadoop MapReduce Framework

A key feature of the Hadoop MapReduce framework is its pipelined
data processing. As shown in Figure 1, Hadoop consists of three
main execution phases: map, shuffle/merge, and reduce. When a
user job is submitted to the JobTracker, its input dataset is divided
into many data splits. In a split, user data is organized as many
records of <key,val> pairs. In the first phase, the JobTracker se-
lects a number of TaskTrackers and schedules them to run the map
function. Each TaskTracker launches several MapTasks, one per
split of data. The mapping function in a MapTask converts the
original records into intermediate results, which are data records in
the form of <key’,val’> pairs. These new data records are stored
as a MOF (Map Output File), one for every split of data. A MOF
is organized into many data partitions, one per ReduceTask. Each
data partition contains a set of data records. When a MapTask
completes one data split, it is rescheduled to process the next split.

In the second phase, when MOFs are available, the JobTracker
selects a set of TaskTrackers to run the ReduceTasks. TaskTrack-
ers can spawn several concurrent ReduceTasks. Each ReduceTask
starts by fetching a partition that is intended for it from a MOF
(also called segment). Typically, there is one segment in each
MOF for every ReduceTask. So, a ReduceTask needs to fetch such
segments from all MOFs. Globally, these fetch operations lead to
an all-to-all shuffle of data segments among all the ReduceTasks.
While the data segments are being shuffled, they are also merged
based on the order of keys in the data records. As more remote seg-

Split	   MapTask	  

….	   ….	  

Split	   MapTask	  

Split	   MapTask	  

MOF	  

MOF	  

MOF	  

MOF	   ReduceTask 
MEM	  

map	  

ReduceTask	  

ReduceTask	  

ReduceTask	  

shuffle/merge	   reduce	  

DFS	  
DFS	  

Figure 1. An Overview of Data Processing in
Hadoop MapReduce Framework

ments are fetched and merged locally, a ReduceTask has to spill,
i.e., store, some segments to local disks in order to alleviate mem-
ory pressure. Shuffle and merge of data segments by ReduceTasks
is called the copy phase in Hadoop. It is also commonly referred
as the shuffle/merge phase.

In the third, or reduce phase, each ReduceTask loads and pro-
cesses the merged segments using the reduce function. The final
result is then stored to Hadoop Distributed File System [17].

2.2 Issues in the Existing Hadoop Framework

There are several issues in the existing Hadoop framework, in-
cluding (a) the serialization between Hadoop shuffle/merge and
reduce Phases, (b) repetitive merges and disk access, and (c) the
lack of support for RDMA interconnects.

2.2.1 A Serialization in Hadoop Data Processing

Hadoop strives to pipeline the processing of large datasets. It
is indeed able to do so, particularly for map and shuffle/merge
phases. As shown in Figure 2, after a brief initialization period, a
pool of concurrent MapTasks starts the map function on the first
set of data splits. As soon as the MOFs are generated from these
splits, a pool of ReduceTasks starts to fetch partitions from these
MOFs. At each ReduceTask, when the number of segments is
larger than a threshold, or when their total data size is more than a
memory threshold, the smallest segments are merged.

Time 

Shuffle Merge 

Reduce map 

start First MOF Serialization 

Figure 2. Serialization between Shuffle/Merge and
Reduce Phases

To guarantee correctness of the MapReduce programming model,
it is necessary to ensure that the reduce phase does not start until
the map phase is done for all data splits. However, the pipeline
as shown in Figure 2 contains an implicit serialization. At each



ReduceTask, not until all its segments are available and merged,
will the reduce phase start to process data segments via the re-
duce function. These essentially enforce a serialization between
the shuffle/merge phase and the reduce phase. When there are
many segments to process (which is often the case), it takes a sig-
nificant amount of time for a ReduceTask to shuffle and merge
them. As a result, the reduce phase will be significantly delayed.
Our analysis (c.f. Section 5.4) has revealed that this can delay the
reduce phase by 668 seconds, i.e., more than 39.4% of the total
execution time for a Hadoop program that sorts 192GB of data on
24 nodes (c.f. the last row of Table 2).

2.2.2 Repetitive Merges and Disk Access

As mentioned earlier in the overview, ReduceTasks merge data
segments when the number of segments or their total size goes
over a threshold. A newly merged segment has to be spilled to
local disks due to memory pressure. However, the current merge
algorithm in Hadoop often leads to repetitive merges, thus extra
disk accesses. Figure 3 shows a common sequence of merge op-
erations in Hadoop. For the purpose of illustration, we hereby
choose a very small threshold parameter io.sort.factor = 3. A Re-
duceTask fetches its data segments and arranges them in the order
of their size. When the number of data segments reaches six, i.e.,
twice the threshold, the smallest three segments are merged, shown
as Step 1 in Figure 3. Under memory pressure, this will incur disk
access. The resulting segment is inserted back into the heap based
on its relative size.

more 
1: merge 

3: merge 

4: to merge soon 

2: insert 

Figure 3. Repetitive Merging and Disk Access
When more segments arrive (as shown in Step 2), the thresh-

old will be broken again. It is then necessary to merge another
set of segments, shown as Step 3. This again causes additional
disk access, let alone the need to read some segments if they have
been stored on local disks. Depending on its relative size, a pre-
viously merged segment is likely to be grouped into another set
and merged again, shown as Step 4. Since the smallest segments
are usually selected for merge, chances are rather high for a seg-
ment to be merged repetitively. Furthermore, any segment merged
from a subset of segments eventually needs to be merged for final
results. Altogether, this means repetitive merges and disk access,
therefore degraded performance for Hadoop.

It is tempting to choose a different policy for merge. This can
lead to a similar problem of essentially the same nature. The key

constraint is that, if any merge happens before a global order of
segments is established, it ought to be re-merged into the final re-
sult before the reduce function. Therefore, an alternative merge
algorithm is critical for Hadoop to mitigate the impact of repeti-
tive merges and their associated disk access.

2.2.3 Unable to Use RDMA Interconnects

Hadoop does not take advantage of high-performance RDMA
interconnect technologies such as InfiniBand [9] that have matured
in the HPC (High Performance Computing) community. For ex-
ample, a node in a hierarchical Hadoop cluster is typically equipped
with one or more Gigabit Ethernet (GigE) network interface cards
and connected to the lowest tier GigE switch. With this configura-
tion, one card can only add an upper bound of 125 MB/sec to the
data movement throughput of Hadoop. Given a multi-socket and
multi-core server, such capacity has to be shared and very thinly
divided amongst all cores. Worse yet, advances in processor tech-
nology will soon deliver compute servers with hundreds of cores
to the mass market. Furthermore, RDMA supports high bandwidth
data movement with very little CPU involvement. Simply replac-
ing the network hardware with the latest interconnect technolo-
gies such as InfiniBand and 10 Gigabit Ethernet, and continuing
to run Hadoop on TCP/IP will not enable Hadoop to leverage the
strengths of RDMA. Thus, the lack of support for RDMA inter-
connects will become a severe threat for Hadoop to keep up with
the advances of other computer technologies, particularly when
more highly capable processors, storage, and interconnect devices
are deployed to various computing and data centers.

3. Design of Hadoop Acceleration

In view of the issues discussed in Section 2, we deem that
it is important to design a solution that can accelerate Hadoop’s
MapReduce framework and overcome existing limitations. We
have designed Hadoop-A, an acceleration framework that allows
Hadoop to take advantage of RDMA-capable interconnects, exper-
iment with different plugin merge algorithms, and retain the same
user interface. In this section, we will describe the architecture of
Hadoop-A, and the exploitation of RDMA for data shuffling.

3.1 Software Architecture of Hadoop-A

Figure 4 shows the architecture of Hadoop-A. Two new user-
configurable plugin components, MOFSupplier and NetMerger,
are introduced to leverage RDMA-capable interconnects and en-
able alternative data merge algorithms. Both MOFSupplier and
NetMerger are threaded C++ implementations, with all compo-
nents following the object-oriented principle. The choice of C++
over Java is to avoid the overhead of the Java Virtual Machine
(JVM) in data processing and allow flexible choice of new con-
nection mechanisms such as RDMA, which is not yet available
in Java. We briefly describe several features of this acceleration
framework without going too much into the technical details of
their implementations.

User-Transparent Plugins – A primary requirement of Hadoop-
A is to maintain the same programming and control interfaces for
users. To this end, we design the MOFSupplier and NetMerger
plugins as C++ programs that can be launched by TaskTrackers.
A user can choose to enable or disable the acceleration, which is



JobTracker

TaskTracker

Hadoop

TaskTracker

ReduceTask

TaskTracker

MapTask ReduceTask
Java

Merged Data

NetMergerC++

MOFSupplier

Data RDMA
Fetch

Manager

Merged Data

Merge
ManagerRDMAData 

Engine
RDMA
Server

Merging Thread
Client

Interconnect

Acceleration

Figure 4. Software Architecture of Hadoop-A

controlled by a parameter in the configuration file. With these run-
time plugins, we ensure that Hadoop-A is user-transparent in two
ways: (1) no changes are introduced for the scheduling and moni-
toring interface between TaskTracker and MapTask, and the same
for TaskTracker and ReduceTask; and (2) no modification is made
to the submission and control interface between a user program
and the JobTracker. All MapReduce programs written for Hadoop
will continue to function with Hadoop-A.

Multithreaded and Componentized MOFSupplier and Net-
merger – MOFSupplier contains an RDMA server that handles
fetch requests from ReduceTasks. It also contains a data engine
that manages the index and data files for all MOFs that are gen-
erated by local MapTasks. Both components are implemented
with multiple threads in MOFSupplier. NetMerger is also a mul-
tithreaded program. It provides one thread for each Java Reduc-
eTask. It also contains other threads, including an RDMA client
that fetches data partitions and a staging thread that uploads data
to the Java-side ReduceTask.

Event-Driven Progress and Coordination – To synchronize
with Java-side components, we provide event channels between
MOFSupplier/NetMerger plugins and Hadoop. These event chan-
nels are also used to coordinate activities and monitor progress for
internal components of MOFSupplier and NetMerger. All chan-
nels are implemented through asynchronous loopback sockets that
can wake up threads when there are tasks, and allow them to go
back to sleep when tasks are not available. Run-time progress re-
ports and execution statistics are collected and stored as a part of
Hadoop logging files. Such logging utilities are capable of moni-
toring and dissecting the execution of Hadoop jobs. For example,
results in Section 5.4 are collected by using this feature.

3.2 RDMA-Accelerated Data Shuffling

As mentioned in Section 2, Hadoop cannot make use of RDMA
interconnects such as InfiniBand. The left half of Figure 5 shows
the communication stack currently used for Hadoop data shuffling.
When notified of the completion of a MOF, Hadoop ReduceTasks
invoke a copy thread to fetch its data partition through a Java-based

HTTP GET request. On the server side, a Java-based HTTP server
is launched by every TaskTracker. A specific HTTP servlet is at-
tached to this server to handle HTTP GET requests and serve data
partitions from the MOF files accordingly.

HadoopHadoop Hadoop AccelerationHadoop Acceleration

HTTP Servlet

JVM Sockets

HTTP Get

JVM Sockets
No JVMNo JVM No JVMNo JVMJava

TCP/IP 
Sockets

EthernetEthernet

TCP/IP 
Sockets

RDMA Server
Verbs

Interconnect
(InfiniBand/RoCE etc)

Interconnect
(InfiniBand/RoCE etc)

RDMA Client
VerbsC++

(InfiniBand/RoCE, etc)(InfiniBand/RoCE, etc)

Figure 5. RDMA-Accelerated Data Shuffling
Hadoop-A component architecture allows us to introduce al-

ternative communication protocols for data shuffling in Hadoop.
To exploit the benefit of RDMA-capable interconnects, we design
our RDMA-based data shuffling protocol completely in the native
C++ language, as shown on the right of Figure 5. The new proto-
col directly builds the RDMA-based communication on top of the
verbs protocol, and completely avoids the overhead of JVM for
Hadoop data shuffling.

RDMA-based shuffling protocol consists of an RDMA server
in the MOFSupplier and an RDMA client in the NetMerger. In-
finiBand Reliable Connected (RC) service are established on a
per-node basis for RDMA clients and servers. The RDMA CM
protocol is used for connection establishment. Connections are re-
tained for the lifetime of an RDMA client, and will be torn down
and re-established for a revived client. Once connected, RDMA
clients and servers communicate data through pre-registered mem-
ory buffers. The data engine in the MOFSupplier always prefetches
data segments. It retrieves data from disk when the requested data
is not yet available in memory. Such data movement is realized
through a direct request and reply protocol. An RDMA client
sends a request along with the information of the available mem-
ory buffer, and the RDMA server locates the data and writes it to
the client buffer via a zero-copy RDMA write operation. More im-
plementation details of the RDMA protocol (and the data engine)
are omitted here as they are not the focus of this paper.

4. A Network-Levitated Shuffle, Merge and
Reduce Pipeline

As discussed in Section 2, there exist two critical issues in
Hadoop: (1) the serialization barrier between shuffle/merge and
reduce phases, and (2) repeated merges and disk access. We first
describe a network-levitated merge algorithm that avoids repeated
merges, and then detail the construction of a new pipeline to elim-
inate the serialization.

4.1 Network-Levitated Data Merge

Hadoop resorts to repetitive merges because of limited memory
compared to the size of data. For each remotely completed MOF,
it invokes an HTTP GET request to query the partition length, pull
the entire data, and store locally in memory or on disk. This incurs
many memory loads/stores and/or disk I/O operations.



<k1,v1><k2,v2><k3,v3>,… 

<k1,v1>,… <k1’,v1’> 

<k2’,v2’>,… <k2,v2>,… 

<k3’,v3’>,… <k3,v3>,… 

Merged Data: 

S1 

S2 

S3 

<k1,v1>,… <k1’,v1’>,… 

<k2’,v2’>,… <k2,v2>,… 

<k3’,v3’>,… <k3,v3>,… 

<k1,v1><k2,v2><k3,v3>,…,<k2’,v2’><k1’,v1’><k3’,v3’>,… 

Merged Data: 

S2 

S1 

S3 

S1 

S2 

S3 

<k1,v1>,… 

<k2,v2>,… 

<k3,v3>,… 

S2 

S1 

S3 

Merge Point 

(a) Fetching Header (b) Priority Queue Setup 

(c) Concurrent Fetching & Merging (d) Towards Completion 

Figure 6. A Network-Levitated Merge Algorithm

With the performance of RDMA interconnects comes so close
to memory, it is now unnecessary, even unwise, to pull data par-
titions locally before merging. Therefore we design an algorithm
that can merge all data partitions exactly once, and at the same
time stay levitated above local disks.

Figure 6 shows our network-levitated merge algorithm. Our
algorithm is modified from Hadoop’s Priority Queue-based merge
sort algorithm. The key idea is to leave data on remote disks until
it is time to merge the intended data records.

As shown in Figure 6(a), three remote segments S1, S2, and
S3 are to be fetched and merged. Instead of fetching them to local
disks, our new algorithm only fetches a small header from each
segment. Each header is specially constructed to contain partition
length, offset, and the first pair of <key,val>. These <key,val>
pairs are sufficient to construct a Priority Queue (PQ) to organize
these segments. More records after the first <key,val> pair can
be fetched as allowed by the available memory. Because it fetches
only a small amount of data per segment, this algorithm does not
have to store or merge segments onto local disks. Instead of merg-
ing segments when the number of segments is over a threshold, we
keep building up the PQ until all headers arrive and are integrated.
As soon as the PQ has been set up, the merge phase starts. The
leading <key,val> pair will be the beginning point of merge oper-
ations for individual segments, i.e., the merge point. This is shown
in Figure 6(b).

Our algorithm merges the available <key,val> pairs in the same
way as is done in Hadoop. Each segment is a part of a MOF pro-
duced by the map function of Hadoop, which means that it is com-
posed of data records ordered by their keys. Thus the root of a
complete PQ is the first record among all segments. So, it is safe
to store this root record as the first record in the final merged data.
When the PQ is updated, the next root will be the first <key,val>
among all remaining segments. It is then stored to the final merged
data as well. When the available data records in a segment are de-

pleted, our algorithm can fetch the next set of records to resume
the merge operation. In fact, our algorithm always ensures that
the fetching of upcoming records happens concurrently with the
merging of available records. As shown in Figure 6(c), the head-
ers of all three segments are safely merged; more data records are
fetched, and the merge points are relocated accordingly.

Concurrent data fetching and merging continues until all records
are merged. Note that data records are merged exactly once and
stored as part of the merged results. Figure 6(d) shows a possible
state of the three segments when their merge completes. Naturally,
one may ask where the merged data is stored and what happens if
it cannot be contained in memory. Since the merge data has the fi-
nal order for all records, we can safely deliver the available data to
the Java-side ReduceTask where it is then consumed by the reduce
function. Further details are available below in Section 4.2.

4.2 Pipelined Shuffle, Merge and Reduce

Besides avoiding repetitive merges, our algorithm removes the
serialization barrier between merge and reduce. As described in
Section 4.1, the merged data has <key,val> records ordered in
their final order, and can be delivered to the Java-side ReduceTask
as soon as they are available. Thus the reduce phase no longer has
to wait until the end of the merge phase.

In view of the possibility to closely couple the shuffle, merge
and reduce phases, we design Hadoop-A with a full pipeline, which
is shown in Figure 7. In this pipeline, MapTasks map data splits
as soon as they can. When the first MOF is available, Reduc-
eTasks fetch the headers and build up the PQ. These activities are
pipelined. Header fetching and PQ setup are pipelined and over-
lapped with the map function, but they are very light-weight, com-
pared to shuffle and merge operations. As soon as the last MOF
is available, completed PQs are constructed. The full pipeline of
shuffle, merge, and reduce then starts. One may notice that there is



Time 

shuffle merge 

reduce map 

start First MOF 

header PQ setup 

Last MOF 

Figure 7. Pipelined Shuffle, Merge and Reduce

still a serialization between the availability of the last MOF and the
beginning of this pipeline. This is inevitable in order for Hadoop
to conform to the correctness of the MapReduce programming
model. Simply stated, it is erroneous to send any data to the re-
duce function (for final results), while the intermediate result is
yet to be produced by the map function.

Therefore our pipeline is able to shuffle, merge and reduce data
records as soon as all MOFs are available. This eliminates the
previous serialization barrier in Hadoop, and allows intermediate
results to be reduced as soon as possible for final results.

5. Experimental Results

In this section, we show experimental results from our evalua-
tion of Hadoop-A on InfiniBand, compared to the original Hadoop
on Gigabit Ethernet and IPoIB.

5.1 Testbed and Performance of Network Devices

We conduct our experiments on a cluster of 26 nodes. Each
node is equipped with dual-socket quad-core 2.13GHz Intel Xeon
processors and 8 GB of DDR2 800 MHz memory, along with
8x PCI-Express Gen 2.0 bus. Four cores on a socket share 4
MB L2 cache. These nodes run Linux 2.6.18-164.el5 kernels.
All nodes are equipped with Mellanox ConnectX-2 QDR Host
Channel Adaptors and are connected to a 36-port InfiniBand QDR
switch. We use the InfiniBand software stack, OFED [2] version
1.5.2, as released by Mellanox. Each node has a 250GB, 7200
RPM, Western Digital SATA hard drive.

The performance of RDMA is measured using the perf_test
from OFED [2], that of IPoIB and Gigabit Ethernet (GigE) using
the netperf [4] benchmark. For the performance of IPoIB and Gi-
gabit Ethernet in Java, we use a Java-based TTCP benchmark [3].

Table 1. Comparison of Network Performance

Devices Bandwidth (MB/sec)
Java C

IB (RDMA) – 3239.21
IB (IPoIB) 1078.40 1220.39
Gigabit Ethernet 122.31 124.13

Table 1 shows the comparison of peak throughput for three net-
work protocols: RDMA, IPoIB and GigE. RDMA delivers much

higher throughput in the C environment, but it is not available in
a Java environment. IPoIB can achieve a peak performance of
1078.40 MB/sec and 1220.39 MB/sec, respectively, when running
in Java and C. For all our tests, we use the default connected mode
of IPoIB. GigE can achieve a peak of 122.31 MB/sec and 124.13
MB/sec in Java and C, respectively. Note that compute nodes
in our system have relatively slow processors and memory buses
compared to the best available in the market. Thus these numbers
may differ slightly from vendors’ advertised performance num-
bers. Nonetheless, these network protocols provide a good set to
compare the performance of Hadoop and Hadoop-A.

5.2 Overall Performance

We run Hadoop TeraSort and WordCount programs with dif-
ferent data sizes and different numbers of slave nodes. We choose
the data size per split as 256MB. Each slave has 8 MapTasks and
4 ReduceTasks. Figure 8 shows the performance comparison be-
tween Hadoop-A and Hadoop for TeraSort and WordCount pro-
grams. The Y-axis shows the percentage of completion for Map
and Reduce Tasks. The X-axis shows the progress of time during
execution. As shown by (a) and (b), Hadoop-A speeds up the to-
tal execution time significantly for the TeraSort program, by more
than 47% compared to Hadoop over IPoIB or GigE. WordCount,
on the other hand, does not benefit much from Hadoop-A because
of the small size of its intermediate data and low requirement on
data movement, as shown by (c) and (d). We focus on TeraSort for
the rest of the performance evaluation.

Figure 8(a) shows that MapTasks of TeraSort complete much
faster with Hadoop-A, especially when the percentage of comple-
tion goes over 50%. This is because Hadoop-A only performs
light-weight operations such as fetching headers and setting up
PQ, thereby leaving more resources such as disk bandwidth for
MapTasks. Note that Hadoop reports the progress of ReduceTasks
as soon as data is being merged. Hadoop-A implements the same.
Because Hadoop-A waits until the completion of last MOF before
merge, this results in seemingly slow progress of ReduceTasks in
Hadoop-A. Hadoop-A still makes progress on ReduceTasks. Once
it begins reporting, its progress in terms of percentage jumps up
quickly, as shown by (b) and (d) for TeraSort and WordCount, re-
spectively.

5.3 Tuning the Size of Data Splits

 0

 50

 100

 150

 200

 250

 300

 350

 4  8  12  16  20  24

T
h

ro
u

g
h

p
u

t 
(M

B
/s

e
c
)

Number of Nodes

64MB

128MB

256MB

Figure 9. Performance with Different Block Sizes



 0

 20

 40

 60

 80

 100

 120

 140

 0  500  1000  1500  2000

Pr
og

re
ss

 (%
)

Time (sec)

Hadoop-A (Map)
Hadoop on IPoIB (Map)
Hadoop on GigE (Map)

(a) Map Progress of TeraSort

 0

 20

 40

 60

 80

 100

 120

 140

 0  500  1000  1500  2000

Pr
og

re
ss

 (%
)

Time (sec)

Hadoop-A (Reduce)
Hadoop on IPoIB (Reduce)
Hadoop on GigE (Reduce)

(b) Reduce Progress of TeraSort

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300  350

Pr
og

re
ss

 (%
)

Time (sec)

Hadoop-A (Map)
Hadoop on IPoIB (Map)
Hadoop on GigE (Map)

(c) Map Progress of WordCount

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300  350

Pr
og

re
ss

 (%
)

Time (sec)

Hadoop-A (Reduce)
Hadoop on IPoIB (Reduce)
Hadoop on GigE (Reduce)

(d) Reduce Progress of WordCount

Figure 8. Progress Diagrams of TeraSort and WordCount

The size of data splits determines the granularity of the pipeline
for Hadoop and Hadoop-A. To understand the impact of split size
to the performance of Hadoop-A, we measure the throughput of
TeraSort using different split sizes. Figure 9 shows our evalua-
tion results. Among three split sizes, 64MB, 128MB and 256MB,
Hadoop-A achieves the best throughput for TeraSort when the split
size is 128MB.

5.4 Dissection of ReduceTask Data Processing

As shown in Figures 2 and 7, Hadoop-A avoids the serializa-
tion barrier between shuffle/merge and reduce phases of Hadoop
ReduceTasks. Instead, it has a separate, light-weight phase to
fetch headers and set up PQ. To shed light on how well the full
pipeline of shuffle, merge and reduce in Hadoop-A benefits the
performance of Hadoop, we run TeraSort with 4GB per Reduc-
eTask and measure the time of different phases in Hadoop and
Hadoop-A. The way that Hadoop and Hadoop-A maintain their
execution statistics makes it possible and greatly simplifies this
measurement. We collect timestamps at the begin and end of in-
dividual phases, and calculate the elapsed time. The timestamps
across different ReduceTasks are close to each other. We take the
average across different ReduceTasks.

Table 2 shows our measurement results, including both the ab-
solute time in seconds and the percentage of different phases dur-
ing the execution of ReduceTasks. Note that the execution of Re-

duceTasks differs from that of the entire program by only a small
duration, roughly the time taken to complete the first MOF. This
can also be validated from Figures 2 and 7.

Hadoop-A significantly cuts down on the execution time of Re-
duceTasks. The shuffle/merge phase in Hadoop dominates the
execution of ReduceTasks. Hadoop-A avoids shuffle/merge and
performs only light-weight tasks such as header fetching and PQ
setup. The PQ setup phase (including header fetching) is much
faster compared to the shuffle/merge phase in Hadoop. Interest-
ingly, even though Hadoop-A delays the start of merge until the
completion of last MOF and overlaps the merge operation together
with shuffle and reduce, the execution of the full pipeline for Re-
duceTasks can still be as much as 18% faster than the stand-alone
reduce phase in Hadoop. This is mainly because our merge algo-
rithm is levitated above local disks and avoids repetitive merges.

Hadoop Fetching Throughput – One puzzling observation
from Table 2 is the comparison between IPoIB and GigE for Hadoop.
As listed in Table 1, IPoIB delivers more than 8 times higher
throughput than GigE, but such performance power does not re-
sult in performance advantage for Hadoop. We wonder if IPoIB
can really speed up data movement for TeraSort with the origi-
nal Hadoop. We create a Java program to mimic the execution of
HTTP GET operations in Hadoop ReduceTasks and measure the
data fetching throughput. In this program, a client makes itera-
tive requests to fetch data of a certain size, ranging from 4MB to
256MB. The server then retrieves data of the same size from a disk



Table 2. Time Breakdown of ReduceTask Execution (Seconds)

Slaves Hadoop on GigE Hadoop on IPoIB Hadoop-A
Shuffle/Merge Reduce Shuffle/Merge Reduce PQ Setup Shuffle/Merge/Reduce

4 1238.70 (66.2%) 633.45 (33.8%) 1179.76 (65.7%) 615.09 (34.3%) 452.92 (42.5%) 613.70 (57.5%)
6 1066.44 (67.7%) 522.79 (32.3%) 1152.52 (65.7%) 602.20 (34.3%) 426.91 (45.5%) 511.07 (54.5%)
8 1016.43 (65.0%) 551.38 (35.0%) 1190.05 (65.0%) 641.79 (35.0%) 441.47 (44.2%) 556.81 (55.8%)
10 1137.70 (64.1%) 629.21 (36.0%) 1208.32 (65.1%) 649.44 (34.9%) 437.97 (44.6%) 543.89 (55.4%)
12 1143.04 (65.0%) 607.22 (35.0%) 1208.22 (65.4%) 639.27 (34.6%) 442.98 (45.1%) 538.11 (54.9%)
14 1194.74 (66.0%) 622.86 (34.1%) 1166.19 (65.6%) 612.02 (34.4%) 446.10 (45.3%) 539.89 (54.7%)
16 1182.15 (65.7%) 616.34 (34.2%) 1169.19 (64.9%) 631.51 (35.0%) 455.07 (47.6%) 501.21 (52.4%)
18 1192.02 (65.6%) 624.65 (34.4%) 1195.53 (65.6%) 628.12 (34.4%) 461.09 (45.7%) 547.89 (54.3%)
20 1158.60 (65.8%) 602.68 (34.2%) 1178.89 (65.7%) 614.57 (34.3%) 461.91 (46.3%) 535.33 (53.7%)
22 1164.56 (66.3%) 593.30 (33.7%) 1170.11 (65.8%) 608.39 (34.2%) 463.11 (45.2%) 563.76 (54.8%)
24 1150.01 (65.0%) 599.97 (35.0%) 1148.26 (65.9%) 597.09 (34.1%) 460.01 (47.4%) 509.81 (52.6%)

file (8GB or 16GB) and replies back to the client.
Figure 10 shows the comparison of fetching throughput be-

tween IPoIB and GigE. With an 8GB file, both IPoIB and GigE
can achieve a throughput nearly 96MB/sec. This is a bit higher
than the peak rate of our disks because of operating system cache
effects, given a memory size of 8GB. With a 16GB file, however,
the throughput drops below 80MB/sec for both IPoIB and GigE
because of the loss of cache effects. In both case, the through-
put results reveal that fast network throughput of IPoIB does not
benefit data-intensive TeraSort programs in Hadoop.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 4  8  16  32  64  128  256

T
h

ro
u

g
h

p
u

t 
(M

B
/s

e
c
)

Request Size (MB)

IPoIB (File=8GB)

1GigE (File=8GB)

IPoIB (File=16GB)

1GigE (File=16GB)

Figure 10. Data Fetching Throughput via HTTP Get

5.5 CPU Utilization

We measure CPU utilization during the execution of TeraSort
every 2 seconds. The percentage of CPU usage for 8 cores is
recorded. We then take the average across all slaves at the same
timestamp. Figure 11(a) shows the comparison of the average
CPU utilization between Hadoop-A and Hadoop on IPoIB. Fig-
ure 11(b) shows that of Hadoop on GigE. These results are from a
TeraSort program on 20 slave nodes. Similar comparisons are ob-
served for TeraSort on different number of nodes. Clearly, Hadoop-
A has less CPU utilization compared to Hadoop. Cumulatively,
Hadoop-A has a CPU utilization of 18.7% at the time of its job
completion, compared to 29.3% and 33.5% for Hadoop-IPoIB and
Hadoop-GigE, respectively, at the same time point. Relatively, the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  200  400  600  800  1000  1200  1400  1600

C
P

U
 U

ti
li
z
a
ti

o
n

 (
%

)

Progression of Time (Sec)

Hadoop-A

Hadoop on IPoIB

(a) Hadoop-A vs. Hadoop-IPoIB

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  200  400  600  800  1000  1200  1400  1600

C
P

U
 U

ti
li
z
a
ti

o
n

 (
%

)

Progression of Time (Sec)

Hadoop on GigE

(b) Hadoop-GigE
Figure 11. Comparison of CPU Utilization

reduction is 36.2% and 44.2%, respectively. Note that Hadoop-A
has higher CPU usage towards the end of its completion, during
which it is running a pipeline of shuffle/merge/reduce operations.
The CPU utilization curve reveals that Hadoop-A is able to lever-
age system resource and sustain this pipeline, thereby shortening
the execution time of TeraSort.

5.6 Scalability of Hadoop-A

Being able to leverage more nodes to process large amounts of
data is an essential feature of Hadoop. We want to ensure Hadoop-
A can deliver scalability in a similar manner. So we measure



the total execution time of TeraSort in two scaling patterns: one
with fixed amount of total data (128GB) and increasing number of
nodes, and the other with fixed data (4GB) per ReduceTask and
increasing number of nodes. The aggregated throughput is calcu-
lated by dividing the total size with the program execution time.

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 4  8  12  16  20  24

T
im

e
 (

s
e
c
)

Number of Nodes

Hadoop-A

Hadoop on IPoIB

Hadoop on GigE

Figure 12. Hadoop-A Scalability with Increasing
Data Size

Figure 12 shows the scalability comparison between Hadoop-
A and Hadoop with a fixed data size per node. Both Hadoop and
Hadoop-A can achieve linear scalability. Hadoop-A can cut the
execution time by approximately 50% and therefore double the
throughput. Figure 13 shows the scalability comparison between
Hadoop-A and Hadoop with a fixed size of total data. Again both
Hadoop and Hadoop-A can achieve good scalability. Hadoop-A
can cut the execution time by up to 40% and 43%, compared to
Hadoop on IPoIB and GigE, respectively. Conversely, this results
in an throughput improvement of 66.7%, and 75.4%, respectively.
These results adequately demonstrate better scalability of Hadoop-
A for large-scale data processing compared to the original Hadoop.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10  12  14  16  18  20  22  24

T
im

e
 (

s
e
c
)

Number of Nodes

Hadoop-A

Hadoop on IPoIB

Hadoop on GigE

Figure 13. Hadoop-A Scalability with Increasing
Number of Nodes

6. Related Work

MapReduce is a programming model for large-scale arbitrary
data processing. The model popularized by Google provides very
simple but powerful interfaces, while hiding complex details of

parallelizing computation, fault-tolerance, distributing data and load
balancing [6]. Its open-source implementation, Hadoop, provides
a software framework for distributed processing of large datasets [1].

A rich set of research has been published on improving the per-
formance of MapReduce recently. Originally, the Hadoop sched-
uler assumed that all nodes in a cluster were homogeneous and
made progress with the same speed. Jiang et al. [11] conducted a
comprehensive performance study of MapReduce (Hadoop), con-
cluding that the total performance could be improved by a fac-
tor of 2.5 to 3.5 by carefully tuning the factors, including: I/O
mode, indexing, data parsing, grouping schemes and block-level
scheduling. Zaharia et al. [21] designed a new scheduling algo-
rithm, Longest Approximate Time to End (LATE), for heteroge-
neous environments where ideal application environment might
not be available. To fully take advantage of the multicore and
multiprocessor systems, Ranger et al. [15] designed Phoenix, a
programming API and runtime system for shared-memory sys-
tems. In Phoenix, users only need to write simple parallel code
without considering the complexity of thread creation, dynamic
task scheduling, data partitioning, and fault tolerance across pro-
cessor nodes. Considering the fact that original data structure used
to group key/value pairs would be a primary performance bottle-
neck on the clusters of multicore architecture, Kaashoek et al. [13]
designed a new MapReduce library with a compromise data struc-
ture, which outperforms its simpler peers, including Phoenix. Seo
et al. [16] has leveraged prefetching and pre-shuffling techniques
into MapReduce. They have shown that these techniques can im-
prove the overall performance of Hadoop in shared environment.
In [8], Sun engineers describe their work on executing Hadoop
over Lustre File System.

The closest work to ours is MapReduce online as proposed by
Condie et al. [5]. As discussed in Section 1, it focuses on fast data
output from MapTasks and changes Hadoop fault handling mech-
anism. Our work addresses the similar performance issue of data
movement, but differs from these studies by enabling network-
levitated merge to avoid disk access and overlapping merge and
reduce at ReduceTasks.

Leveraging RDMA from high speed networks for high-performance
data movement has been very popular in various programming
models and storage paradigms. Liu et al. [12] designed RDMA-
based MPI over InfiniBand. Implementations of PVFS [14] on
top of RDMA networks such as InfiniBand and Quadrics were de-
scribed in [19] and [20], respectively. A recent evaluation [18] of
Hadoop Distributed File system (HDFS) [17] used the SDP [10]
and IPoIB protocols of InfiniBand [9], and the authors showed that
MapReduce is still unable to leverage the RDMA (Remote Di-
rect Memory Access) communication mechanism available from
high-performance RDMA interconnects such as InfiniBand and
RoCE [7] (RDMA over Converged Ethernet). Our acceleration
framework uses RDMA as its first communication protocol be-
sides the TCP/IP protocol in the original Hadoop. Our work com-
plements previous efforts to enable RDMA for Hadoop large-scale
data processing programming model. Particularly, we show that
RDMA is very beneficial in reducing Hadoop CPU utilization.

7. Conclusions

We have examined the design and architecture of Hadoop’s
MapReduce framework in great detail. Particularly, our analysis
has focused on data processing inside ReduceTasks. We reveal that



there are several critical issues faced by the existing Hadoop im-
plementation, including its merge algorithm, its pipeline of shuf-
fle, merge, and reduce operations, as well as its lack of support
for RDMA interconnects. We have designed and implemented
Hadoop-A as an extensible acceleration framework that can al-
low plugin components to address all these issues. By introduc-
ing a new network-levitated algorithm that merges data without
touching disks and designing a full pipeline of shuffle, merge,
and reduce phases for ReduceTasks, we have successfully accom-
plished an accelerated Hadoop framework, Hadoop-A. Our exper-
imental results show that Hadoop-A doubles the data processing
throughput of Hadoop, and also reduces CPU utilization by more
than 36% by leveraging RDMA-based data movement. For fu-
ture work, we plan to investigate the scalability of Hadoop-A on
large-scale systems that are equipped with RoCE networks such as
RDMA-capable 10Gigabit Ethernet.

Acknowledgments

We are very thankful to Dr. Douglas Thain from University of
Notre Dame for his help on finalizing the paper.

This work is funded in part by a Mellanox grant to Auburn Uni-
versity, and by National Science Foundation awards CNS-0917137
and CNS-1059376.

8. References
[1] Apache Hadoop Project. http://hadoop.apache.org/.
[2] Open Fabrics Alliance. http://www.openfabrics.org.
[3] Test-TCP. http://www.pcausa.com/Utilities/pcattcp.htm.
[4] The Public Netperf Homepage. http://www.netperf.org/

netperf/NetperfPage.html.
[5] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M.

Hellerstein, Khaled Elmeleegy, and Russell Sears.
MapReduce Online. In 7th USENIX Symp. on Networked
Systems Design and Implementation (NSDI), pages
312–328, April 2010.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. Sixth Symp. on Operating
System Design and Implementation (OSDI), pages 137–150,
December 2004.

[7] HPC Wire. RoCE: An Ethernet-InfiniBand Love Story.
http://www.hpcwire.com/blogs/.

[8] Sun Microsystems Inc. Using Lustre with Apache Hadoop.
http://wiki.lustre.org.

[9] Infiniband Trade Association. http://www.infinibandta.org.
[10] InfiniBand Trade Association. Socket Direct Protocol

Specification V1.0, 2002.
[11] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. The

performance of mapreduce: An in-depth study. In
Proceedings of the 36th International Conference on Very
Large Data Bases (VLDB), volume 3, pages 472–483, 2010.

[12] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda. High
Performance RDMA-Based MPI Implementation over
InfiniBand. International Journal of Parallel Programming
(IJPP), 32:167–198, 2004.

[13] Yandong Mao, Robert Morris, and Frans Kaashoek.
Optimizing mapreduce for multicore architectures.
Technical Report MIT-CSAIL-TR-2010-020, MIT, May
2010.

[14] P. H. Carns and W. B. Ligon III and R. B. Ross and R.
Thakur. PVFS: A Parallel File System For Linux Clusters.
In Proceedings of the 4th Annual Linux Showcase and
Conference, pages 317–327, Atlanta, GA, October 2000.

[15] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa,
Gary R. Bradski, and Christos Kozyrakis. Evaluating
mapreduce for multi-core and multiprocessor systems. In
Int’l Symp. on High Performance Computer Architecture
(HPCA), pages 13–24. IEEE Computer Society, 2007.

[16] Sangwon Seo, Ingook Jang, Kyungchang Woo, Inkyo Kim,
Jin-Soo Kim, and Seungryoul Maeng. HPMR: Prefetching
and pre-shuffling in shared MapReduce computation
environment. In IEEE Cluster Conference, pages 1–8,
August 2009.

[17] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The hadoop distributed file system. In
Proceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), pages 1–10,
Washington, DC, USA, 2010. IEEE Computer Society.

[18] S. Sur, H. Wang, J. Huang, X. Ouyang, and D. K. Panda.
Can High-Performance Interconnects Benefit Hadoop
Distributed File System? In Workshop on Micro
Architectural Support for Virtualization, Data Center
Computing, and Clouds (MASVDC). Held in Conjunction
with MICRO, Dec 2010.

[19] Jiesheng Wu, Pete Wychoff, and Dhabaleswar K. Panda.
PVFS over InfiniBand: Design and Performance Evaluation.
In Proceedings of the International Conference on Parallel
Processing (ICPP), Kaohsiung, Taiwan, October 2003.

[20] Weikuan Yu, Shuang Liang, and Dhabaleswar K. Panda.
High Performance Support of Parallel Virtual File System
(PVFS2) over Quadrics. In Proceedings of The 19th ACM
International Conference on Supercomputing (ICS), Boston,
Massachusetts, June 2005.

[21] Matei Zaharia, Andrew Konwinski, Anthony D. Joseph,
Randy H. Katz, and Ion Stoica. Improving mapreduce
performance in heterogeneous environments. Technical
Report UCB/EECS-2008-99, EECS Department, University
of California, Berkeley, Aug 2008.


	Introduction
	Motivation
	Overview of Hadoop MapReduce Framework
	Issues in the Existing Hadoop Framework
	A Serialization in Hadoop Data Processing
	Repetitive Merges and Disk Access
	Unable to Use RDMA Interconnects


	Design of Hadoop Acceleration
	Software Architecture of Hadoop-A
	RDMA-Accelerated Data Shuffling

	A Network-Levitated Shuffle, Merge and Reduce Pipeline
	Network-Levitated Data Merge
	Pipelined Shuffle, Merge and Reduce

	Experimental Results
	Testbed and Performance of Network Devices
	Overall Performance
	Tuning the Size of Data Splits
	Dissection of ReduceTask Data Processing
	CPU Utilization
	Scalability of Hadoop-A

	Related Work
	Conclusions
	References

