
Virtual Topologies for Scalable Resource
Management and Contention Attenuation in a

Global Address Space Model on the Cray XT5

Weikuan Yu†‡ Vinod Tipparaju‡ Xinyu Que† Jeffrey S. Vetter‡

Department of Computer Science † Computer Science & Mathematics‡

Auburn University Oak Ridge National Laboratory

{wkyu,xque}@auburn.edu {tipparajuv,vetter}@ornl.gov

Abstract—Global Address Space (GAS) programming
models enable a convenient, shared-memory style address-
ing model, and support completely asynchronous data
movement. Their underlying runtime systems face critical
challenges in (1) scalably managing resources (such as
memory for communication buffers), and (2) gracefully
handling unpredictable communication patterns and any
associated contention. In this research, we investigate these
challenges for a popular GAS runtime library, Aggregate
Remote Memory Copy Interface (ARMCI) on, large-scale
Cray XT5 systems. We represent the management of
communication resources as directed graphs, and pro-
pose two new scalable virtual topologies, Meshed Fully
Connected Graphs (MFCG) and Cubic Fully Connected
Graphs (CFCG), for scalable resource management and
contention attenuation. To ensure deadlock-free communi-
cation in these multi-dimensional topologies, we design and
develop lowest dimension first forwarding to support fully-
or partially-populated MFCG and CFCG on any number
of nodes. We have extensively evaluated the benefits of these
virtual topologies on the petascale Jaguar Cray XT5 system
at Oak Ridge National Laboratory. Our experimental
results demonstrate MFCG as the most suitable virtual
topology because of its benefits in resource management,
contention mitigation, and the resulting benefit to scientific
applications.
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I. INTRODUCTION

Several supercomputing sites have deployed systems

with extreme amounts of computational power [1]. The

Jaguar Cray XT5 system at the Oak Ridge National

Laboratory (ORNL), the IBM Roadrunner system at

Los Alamos National Laboratory (LANL), and China’s

GPGPU-based Tianhe-1A system can perform to the

order of 1015 floating point operations per second

(petaflop). While supercomputing systems grow to un-

precedented number of processors (with LLNL Se-

quoia [2] system and NCSA Blue Waters [3] system

in the near future), scientific applications continue to

face many challenges such as programming productivity,

application scalability, and efficiency. Message passing

has been the de facto model to achieve scalability and

efficiency, however, Global Address Space (GAS) or

Partitioned Global Address Space (PGAS) models are

emerging as scalable alternatives because they have the

ability to alleviate programming burden by supporting

data access to both local and remote memory through a

simple shared-memory addressing model.

PGAS languages such as Unified Parallel C (UPC) [4],

Co-Array Fortran (CAF) [5], and X10 [6], and GAS

libraries such as Global Arrays (GA) Toolkit [7] are

becoming increasingly popular. These GAS languages

and libraries use the services of an underlying commu-

nication library (which we refer to as the GAS runtime)

for serving their communication needs. GAS languages

normally use this runtime as a compilation target to do

the data transfers on distributed memory architectures.

They have a translation layer that translates a memory

access to a corresponding data transfer operation on the

underlying system. ARMCI (Aggregated Remote Mem-

ory Copy Interface) [8] is a popular GAS runtime that

has been used to implement both PGAS languages (such

as Co-Array Fortran) and GAS libraries (such as GA).

While some MPI applications have reached a sustained

petaflop performance and beyond, NWChem [9] compu-

tation chemistry code is a GAS model based application

and is one of the three applications to have crossed the

petaflop barrier in terms of sustained performance [10]

on Jaguar. This was made possible by the porting of

Global Arrays toolkit, and more specifically, its GAS

runtime, ARMCI [11].

Unfortunately, running a GAS model and its under-

lying GAS runtime in the context of a real scientific

application at a scale similar to Jaguar (200,000+ cores)

has brought forth a few staggering challenges. These

challenges are a result of the characteristics and asyn-
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chronous one-sided features of the GAS runtime. The

first is that of resource management, incurred by un-

predictable communication patterns and communication

resources (such as buffers) that need to be allocated

to support it. The second challenge is that of network

contention – allowing any process to access the address

space of any other process and supporting load balancing

at the same time create an environment that is prone to

contention.

In this paper we describe a powerful virtual topol-
ogy approach to attenuating contention and efficiently

managing communication resources in ARMCI (and

any GAS/PGAS runtime in general) at petascale and

beyond. We represent the allocation of communication

resources as directed graphs. While the original model

can be depicted as a fully connected graph (FCG), we

introduce two new scalable virtual topologies, Meshed

FCGs (MFCG) and Cubic FCGs (CFCG), for scalable

resource management and contention attenuation. We

systematically examine communication characteristics of

MFCG, CFCG, and Hypercube. To ensure deadlock-free

communication in these multi-dimensional topologies,

we design and develop lowest dimension first (LDF) for-

warding to support fully- and partially-populated MFCG

and CFCG on any number of nodes.

We have successfully implemented these virtual

topologies and LDF in ARMCI on Jaguar, and con-

ducted experiments to evaluate these topologies using

microbenchmarks and real large-scale applications. Our

results demonstrate MFCG as the most suitable virtual

topology because of its benefits in resource management,

contention mitigation, and the resulting benefit for sci-

entific applications.

The rest of the paper is organized as follows. Section II

discusses background and motivation. Section III defines

several virtual topologies. Section IV describes the im-

plementation of LDF. Experimental results are provided

in Sections V and VI, followed by related work in

Section VII. We conclude the paper in Section VIII.

II. BACKGROUND AND MOTIVATION

ARMCI guarantees that its one-sided operations are

fully unilateral (i.e., may complete regardless of the

actions taken by the remote process). In particular,

polling the application by remote process (implicitly

when making a library call, or explicitly by calling

provided polling interface) is not required for com-

munication progress. This is realized by introducing a

communication helper thread at each compute node.

This communication helper thread (CHT), also called

communication server, is created by the lowest ranked

process (master) on a node. An area of shared memory is

allocated for these processes. The CHT handles remote

one-sided requests on behalf of all local processes, and

exchanges data with them through the shared memory.

Typically, communication resources are allocated in

ARMCI (and similarly in other GAS/PGAS runtime

systems that we are aware of) to support asynchronous

one-sided communication primitives, despite any lack

of corresponding communication mechanisms in the

underlying network. Hence, in order to realize one-sided

implementation for all operations (particularly for lock,

unlock, accumulate, and noncontiguous data transfer

operations), a process needs to have a way to initiate

an operation without the involvement of the targeted

process. To this aim, a CHT pre-allocates buffers and

other communication structures for requests from remote

processes.
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Figure 1: A Directed Graph Representing Resource

Allocation for One-Sided Requests

We define virtual topology as a means to represent

the graph of resource allocation. In the case of memory

buffers for communication, a directed graph can repre-

sent the resource allocation of buffers amongst all nodes.

A graph G: (V, E) consists of a set of vertices V and a

set of edges E. A vertex i represents all processes and

the CHT on a single node i. A directed edge E(i, j)

from i to j denotes the fact that there is a set of request

buffers allocated on node i for processes on node j.

For an ARMCI application running on N nodes, this

representation of buffer allocation forms a FCG with

N ∗ (N −1) directed edges. There are (N −1) outgoing

edges at each vertex (node), representing N − 1 sets of

buffers from N − 1 remote nodes. Figure 1 shows the

resource allocation graph for a 6-node case.

A. Critical Challenges for GAS Runtime

The directed graph representation of resource alloca-

tion in Figure 1 reveals two critical challenges that a

GAS model (in our case, Global Arrays) poses to its

underlying GAS runtime (in our case, ARMCI).

Resource Management – The first challenge is on

the allocation of resources for communication. Consider

an example of the targeted systems for this work, the

Cray XT5. Cray XT5 has Seastar2+ interconnect and
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uses the connection-less Portals messaging library as

the lowest level communication protocol. To support

the connection-less Portals interface, Seastar2+ allows

for 256 simultaneous message streams. When additional

streams need to be initiated (or in case of resource ex-

haustion), the Cray BEER (Basic End to End Reliability)

protocol does the necessary flow control and handles

reliability. This means that the resource allocation prob-

lem for ARMCI communication buffers (where a set of

buffers needs to be allocated for every incoming edge as

shown in Figure 1) maps to parallel message streams

in Portals but at a different scale. The total request

buffer requirement in ARMCI for the FCG would be

roughly N ∗ B ∗ M , where N is the total number of

processes (actually slightly smaller than N due to local

processes), B the buffer size, and M the set of buffers

per process. With only two 16-KB buffers per process,

it would require 1,024 MB per CHT to support parallel

programs with 32,000 processes, and 32 GB per CHT

on a future system with a million processes.

�

�

� � � ���

Figure 2: A Flat-Tree Representation of Contention

among Communication Requests

Contention – Another challenge revealed by the FCG

model is the potential contention that could be caused

by many concurrent requests to a single node. Because

all nodes (vertices) are directly connected, the paths

for requests from all nodes to traverse a virtual FCG

and reach one node can be represented as a flat tree

of depth 1. Figure 2 shows a tree representation of

request traversal paths to Node 0. Such a flat tree is

very vulnerable to transient hot-spot accesses, such as

when thousands of processes simultaneously accessing

one data element in an address space. These scenarios

create a severe contention problem in addition to the

resource allocation problem described above. Under such

scenarios, significant burden is placed on the physical

network, which will be forced to adopt some throttling

mechanisms, typically causing serious slowdown of the

entire communication and jeopardizing the system pro-

ductivity.

III. VIRTUAL TOPOLOGIES FOR GLOBAL ARRAYS

RUNTIME

As discussed in Section II, the default resource alloca-

tion in ARMCI leads to a serious scalability challenge.

More importantly, its resource dependence relationship

(irrespective of any underlying physical network topol-

ogy) can cause contention when some processes be-

come hot-spots to the communication requests. A virtual

topology FCG can precisely reflect the state of resource

allocation and contention. It also suggests that alternative

virtual topologies may offer a solution for scalable

resource management and contention attenuation. To this

aim, we introduce two new virtual topologies: MFCG

and CFCG. We examine the features of these two

topologies, along with Hypercube.

A. MFCG

The first virtual topology is called Meshed Fully

Connected Graphs (MFCG for short). Figure 3 (a) shows

an example of MFCG, in which all nodes are virtualized

as vertices in a X × Y mesh (in this case, X = 3
and Y = 3). Nodes with the same Y-offset are fully

connected. That is to say, they all dedicate request buffers

to each other. The same policy is applied to nodes

with the same X-offset. Thus, for an arbitrary X × Y
MFCG, an individual node has (X − 1) outgoing edges

on X-dimension and (Y − 1) outgoing edges on Y-

dimension. A request forwarding mechanism is provided

to exchange requests between a pair of nodes that are not

directly connected. Therefore, using MFCG, the number

of request buffers on each node decreases to O(
√
N),

instead of O(N) in FCG.

MFCG is also beneficial in alleviating contention.

Figure 4 (a) shows request paths for nodes in a 3 × 3
MFCG to reach Node 0. Two types of request paths

are possible: the first type is used by the nodes that

are directly connected to Node 0; and the second type

is used by the nodes that are not directly connected.

These paths form a tree of height 2 and rooted at Node

0. Compared to the flat tree as shown in Figure 2, the

contention is reduced to O(
√
N). One may rightfully

argue that contention as depicted in Figure 4(a) does

not reflect the actual contention in the physical network.

The purpose of scalable virtual topology is to offer a

convenient tool that can cope with network contention at

a software level, instead of leaving the contention issues

completely to the network hardware.

B. CFCG

Another virtual topology we introduced is Cubic Fully

Connected Graphs (CFCG). Figure 3 (b) shows an ex-

ample of CFCG, in which all nodes are virtualized as

vertices in a X × Y × Z cube (in this case, X = 3,

Y = 3, and Z = 3). The nodes with the same offsets

on two dimensions are fully connected as an FCG. For

an arbitrary X ×Y ×Z CFCG, an individual node have

(X−1) outgoing edges on X-dimension, (Y −1) outgo-

ing edges on Y-dimension, and (Z−1) outgoing edges on

Z-dimension (to clarify, not all vertices/edges are shown
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(b) Cubic FCGs
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Figure 3: Three Virtual Topologies (For clarity, not all vertices/edges are shown in CFCG)

for CFCG). Using CFCG, the number of request buffers

on one node scales in the order of O( 3
√
N), instead of

O(N) with FCG. A request may have to be forwarded

maximally two times before reaching its destination.

Figure 4(b) shows the tree representation of request

paths for nodes in a 3× 3× 3 CFCG to reach Node 0.

These directed paths form a trinomial tree of height 3

and rooted at Node 0. For a system with N nodes, the

tree of request paths rooted at an arbitrary node will be

k-nomial tree where k =
3
√
N . Compared to the flat tree

in Figure 2, network contention is then reduced by an

order of O( 3
√
N), at the expense of up to 2 forwarding

steps to deliver a request.

C. Hypercube

As discussed above, CFCG is more scalable in re-

source allocation than MFCG and FCG, despite more

steps for request forwarding. One may wonder if a

virtual topology of even higher dimension could be

a worthy solution. So we investigate the third virtual

topology, Hypercube. Figure 3(c) shows 16 nodes that

are connected as a Hypercube. Each node is directly

connected to log2 N nodes (4 in this case). Figure 4(c)

provides a tree representation of request paths from

all nodes to Node 0. For N nodes, it is essentially a

binomial tree of depth log2 N . Using Hypercube, the

number of request buffers required on one node scales

in the order of O(log2 N). Two nodes may be separated

by up to log2 N dimensions apart. Therefore, up to

(log2 N − 1) forwarding steps are needed for a request

to reach its destination. On the other hand, at each depth

of a request path tree, contention is reduced by an order

of O(log2 N).

IV. IMPLEMENTATION

We have implemented MFCG, CFCG, and Hypercube

in ARMCI on Jaguar. The support for request forwarding

is the key to realizing these virtual topologies. Commu-

nication servers, i.e., CHTs, on intermediate nodes are

used to forward a request from the original process to

the target server. Upon the arrival of a request, the target

sends a response (or acknowledgment) directly to the

original process. If an intermediate server (or the target)

detects that the request is forwarded from an upstream

server, it sends an acknowledgment to the upstream

server. To support multidimensional topologies such as

MFCG, CFCG, and Hypercube, our implementation also

allows a request to be forwarded multiple steps.

For correct request forwarding, the actual implemen-

tation of virtual topologies requires proper handling of

two important issues: (a) how to determine the order

of forwarding; and (b) how to enable virtual topologies,

MFCG and CFCG, when the number of nodes can only

be configured as partially-populated topologies (mesh

or cube), e.g., a prime number that cannot be evenly

divided. As mentioned in Section III-C, we include

Hypercube only to examine its tradeoff in resource

management and contention, compared to MFCG and

CFCG. For the investigative purpose, we only support

hypercube when the number of nodes is a power of 2.

A. Lowest-Dimension-First Forwarding

Multiple communication steps are needed for an

ARMCI request to properly reach its destination, in

multi-dimensional virtual topologies such as MFCG,

CFCG and Hypercube. Each step corresponds to a re-

lationship in which an upstream node is dependent on

the availability of request buffer at the downstream node.

If the forwarding of requests were to happen arbitrarily,

it would create cyclic dependences and lead to deadlocks

in a multi-dimensional virtual topology.

We develop a lowest-dimension-first (LDF) protocol

to ensure deadlock-free forwarding in virtual topologies.

Algorithm 1 illustrates the selection of next node for

request forwarding in LDF. For two nodes S = (s0, s1,

..., sk−1) and T = (t0, t1, ..., tk−1) on a virtual topology

with k dimensions, LDF always chooses the lowest

dimension i on which S and T differ. A request is then

forwarded to the next destination D, which is a number
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Figure 4: Tree Representations of Request Paths in Virtual Topologies

Algorithm 1 Lowest Dimension First Forwarding

1: {Dimension: k}
2: {Current Node: S = (s0, s1, ..., sk−1)}
3: {Destination Node: T = (t0, t1, ..., tk−1)}
4: D ← S {Initialize D as the next node}
5: i← 0
6: while (D �= T ) do
7: if si �= ti then
8: D ← (s0, s1, ..., si−1, ti, si+1, ..., sk−1)
9: {Forward the request to the next node, D}

10: end if
11: i← i+ 1
12: end while

derived by replacing si of S with ti. Since the order

of forwarding is established in a monotonic dimension

order, breaking any cyclic dependence. Therefore LDF

is deadlock-free. When the number of nodes allows

virtual topologies to be fully populated as meshes, cubes,

or hypercubes, LDF as shown in Algorithm 1 works

perfectly.

B. Forwarding on Virtual Topologies with Any Number
of Nodes

Forwarding on virtual topologies is similar to routing

in physical interconnects. In the case of a fully popu-

lated two-dimensional MFCG, LDF can be reduced to

the classic turn model [12] that was designed for 2-D

meshes. However, the key difference is that a virtual

topology is very dynamic and often partially populated.

For this reason, each node frequently changes its posi-

tion from one topology to another. It is important that

deadlock-free forwarding be enabled on virtual topolo-

gies (MFCG and CFCG) with any number of nodes.

We achieve that by strictly ordering all nodes in a

lowest dimension first manner. For a virtual topology

G with dimension k, the lower order dimensions are

first populated with available nodes. Only the highest

dimension, k − 1, is allowed to be partially populated.

Assume that a virtual topology G has M as its highest

ranked node, where M = (M0,M1, ...,Mk−1). With all

nodes ordered this way, we extend the LDF algorithm

slightly. It allows forwarding only when the next des-

tination D is a number smaller than or equal to M .

An extra condition, “if (D ≤ M)”, is introduced to

Algorithm 1 before a request is forwarded. With this

extension, if forwarding paths of a set of requests did

not violate this extra condition, there would not be a

deadlock because their forwarding paths are determined

by Algorithm 1. For a possible deadlock to occur, one

request must have violated this condition once in its

path. This is not possible because the nodes are strictly

ordered and no node can have a rank higher than M (by

definition). Therefore, it prevents any circle in request

forwarding. The listing of the extended LDF algorithm is

not included here, due to the simplicity of this addition.

V. ANALYSIS OF RESOURCE MANAGEMENT AND

CONTENTION ATTENUATION

We conduct experiments on Jaguar at ORNL to

evaluate the impact of virtual topologies on resource

management and contention attenuation.

A. Scalable Resource Management
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Figure 5: Scalability Virtual Topologies for Memory

Management

Jaguar runs the Compute Node Linux operating sys-

tem. On each node, the /proc file system reports the
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memory footprint of all processes as the resident work-

ing set size (VmRSS). We create an ARMCI program

that reports VmRSS from all processes. This number

represents the total memory consumed by an ARMCI

process at runtime before any additional application-level

memory consumption.

We measure the impact of virtual topologies on mem-

ory resources. Our experiments are conducted with 12

processes per node. All processes start with a memory

consumption of about 612 MBytes. However, due to the

allocation of request buffers by the internal CHT, a mas-

ter process requires more memory for an increasing num-

ber of remote processes. The size of each buffer in CHT

is 16KB; and the number of buffers per process is 4.

Figure 5 shows the memory consumption of master pro-

cesses, using different virtual topologies. As expected,

the memory requirement of FCG increases linearly. On

12,288 processes, FCG has a memory consumption of

1,424 MBytes, an increment of 812 MBytes, on top

of 612 MBytes that is needed to run a few processes.

The other three virtual topologies provide much better

scalability in terms of memory resources. Compared

to FCG, MFCG, CFCG, and hypercube cut down the

increment in memory consumption significantly, by 7.5,

16.6, and 45 times, respectively.

B. Contention Attenuation

Virtual topologies are also designed to address the

other critical challenge, hot-spot contention in the

GAS runtime. We evaluate contention for all one-sided

ARMCI operations, and observe that virtual topologies

are beneficial to the contention caused by lock, accumu-

late, noncontiguous data transfer, and atomic operations.

Herein presented are results for two representative op-

erations, noncontiguous vector data transfer and atomic

Fetch-&-Add operations.

1) Description of Contention Experiments: We define

hot-spot contention as the percentage of processes in

a program that are contending for communication to a

single process, or access to a single data element. It is

understood that such contention can arise from sources

outside of a program, e.g., from other programs or

system services. But, for practical purposes, we consider

those beyond the scope of this study, and focus on hot-

spot contention within a program.

We use programs with 1,024 processes for contention

assessment, 4 processes per node across 256 nodes.

These numbers provide a reasonable balance between the

need of many nodes to exhibit contention and the need

of clarity in visualizing all data points of the results.

In these programs, each process (except those on the

same node with Rank 0), prepares its data as needed

(vectored or strided data in the case of noncontiguous

data transfer operations), and then performs one or more

one-sided operations to Rank 0. This is then repeated

for 20 iterations. The average time for these iterations is

taken as the time to complete an operation between the

respective process and Rank 0.

Measurements are collected under three different con-

tention scenarios. In the first scenario, each process

sequentially performs its own one-sided operations to

Rank 0, repeats for 20 iterations, and records the time.

At the same time, all other processes are idle in a barrier.

This effectively measures the performance of one-sided

operations between Rank 0 and all other processes, with-

out any contention. In the second scenario, each process

sequentially performs the same number of operations to

Rank 0, for the same number of iterations. However,

in the meantime, one in every nine processes performs

the same operations to Rank 0, while the remaining

processes are idle in a barrier. Therefore this corresponds

to 11% contention. The third scenario is very similar to

the second one, except that one in every five processes

concurrently invokes one-sided operations to Rank 0.

This then corresponds to 20% contention.

2) Noncontiguous Data Transfer Operations: We

conduct experiments to measure the performance of

vectored put and get operations as representatives of non-

contiguous data transfer functions. Figure 6 shows the

time of vectored put operations from all remote processes

to Rank 0. Comparisons are provided among varying

levels of contention (no contention, 11% contention, and

20% contention).

Figures 6 (a) and (d) show the comparisons under no

contention. Several performance behaviors are revealed

by this figure. First, the use of MFCG, CFCG and Hyper-

cube increases the time to complete noncontiguous data

transfer operations between Rank 0 and other processes.

Second, even though all processes are one step away

from Rank 0 in FCG, the time to complete noncontigu-

ous data transfers gradually increases with the process

rank. This suggests that the distance between a processes

and Rank 0 in the underlying physical topology would

play a role and contribute to the increased performance.

This increment of time is magnified by the use of MFCG,

CFCG and Hypercube. In particular, the results from

Hypercube indicate that using a topology with very high

dimensions for minimal memory consumption does not

provide a good tradeoff to the performance. Third, with

MFCG, the performance numbers from all processes

form several distinct curves, representing differences in

their (virtual-) topological relationship with respect to

Rank 0. The same can be observed for CFCG and
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Figure 6: Vectored Data Transfer Operations Under Varying Levels of Contention

Hypercube as shown in Figure 6 (d).

Figures 6 (b), (c), (e), and (f) show performance

comparisons with increased contention. Hypercube is not

included in (e) and (f) because it takes too long to get a

complete set of numbers. While contention increases the

time to complete noncontiguous data transfer operations

for all cases, it is evident that all virtual topologies

exhibit contention resilience. While the performance of

vectored put operations is degraded by nearly two orders

of magnitude due to contention inside FCG. With 20%

contention, it becomes faster to complete noncontiguous

data transfer operations for nearly all processes when

using MFCG, compared to FCG. Comparing Figures 6

(b) and (c) it is interesting to note that MFCG also

reduces the variations among all processes at higher hot-

spot contention. The operation time for the group of

processes in the middle has been brought down. This

counterintuitive observation is because of the execution

behavior of ARMCI CHT. When more processes are

actively forwarding requests, they stay in the polling

mode for handling requests and therefore have better

response time in average. In summary, these results

demonstrate that virtual topologies, such as MFCG and

CFCG, can attenuate the pressure of many contend-

ing noncontiguous data transfer operations, and lead to

graceful resilience to contention.

3) Atomic Fetch-&-Add Operations: We measure the

performance of fetch-&-add as a representative of atomic

operations. Figure 7 shows the time for fetch-&-add

operations from all remote processes to Rank 0. Com-

parisons are provided among different virtual topologies,

and among varying levels of contention (no contention,

11% contention, and 20% contention).

Figures 7 (a) and (d) show the comparisons under no

contention. Similar observations can be made for atomic

operations as revealed by Figures 6 (a) and (d). To be

brief, these include (1) the use of MFCG, CFCG and

Hypercube increases the time to finish atomic operations

under no contention; (2) the time of an atomic operation

increases with a higher ranked process, suggesting a

correspondence to the distance between the process and

Rank 0 in the underlying physical topology; and (3)

the performance numbers of atomic operations from all

processes form several distinct groups, representing their

relationship in the virtual topologies.

Figures 7 (b), (c), (e), and (f) show comparisons

with increased contention. Again, hypercube was not

included in (e) and (f). While contention increases the

time to complete atomic operations for all cases, it is

also evident that all virtual topologies exhibit contention

resilience. With 20% contention, it becomes faster to

complete atomic operations for nearly all processes using

MFCG than FCG. Under the same level of contention,

even with CFCG, the time for fetch-&-add is shorter for

a majority of processes compared to the same with FCG.

These results again demonstrate that virtual topologies,

such as MFCG and CFCG, can greatly attenuate the

pressure of contending atomic operations.
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Figure 7: Fetch-&-Add Operations Under Varying Levels of Contention

VI. PERFORMANCE EVALUATION WITH

APPLICATIONS

We have shown that virtual topologies can be very

beneficial to reduce memory footprint and attenuate

contention that would occur to hot-spot processes. It

is important to find out how and when these features

can be beneficial to real applications. To this aim, we

conduct experiments on Jaguar at ORNL to evaluate

virtual topologies with real applications.

A. NAS LU Application

The LU application in the NAS parallel benchmark

suite [13] has been ported to the ARMCI runtime. It can

scale to hundreds or a couple of thousand processes. We

evaluate the performance impact of virtual topologies

to LU at this scale. Figure 8 shows the performance

of LU using all four virtual topologies on a varying

number of processes. As shown in the figure, virtual

topologies (MFCG, CFCG, and Hypercube) perform

better or similar to FCG. At a lower number of processes,

the benefit of virtual topologies is slightly higher. Two

observations can be made about these results. First,

the LU application does not suffer much from hot-spot

contention. Second, the reduction in memory footprint

does not directly lead to the reduction in execution time,

which is quite reasonable. On the other hand, these

results are encouraging because they demonstrate that,

despite the additional forwarding steps on ARMCI oper-

ations such as non-contiguous data transfer and atomic

accumulation, virtual topologies still bring comparable

or better performance for applications such as LU.
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Figure 8: The Performance of NAS LU

B. A Large-Scale Application: NWChem

We evaluate virtual topologies using two elec-

tronic structure methods in a large-scale application

NWChem [9]: the SiOSi3 method for Density Functional

Theory (DFT) and the water model of Coupled Cluster

(CC) in its CCSD(T) incarnation. Figure 9 shows the per-

formance of NWChem with different virtual topologies.

The performance of SiOSi3 on all virtual topologies is

shown in Figure 9(a). Among the four topologies, MFCG

and CFCG clearly performs better than the default FCG.

MFCG reduces the total execution time by as much

as 48%. Hypercube, because of its extra number of

forwarding steps, actually leads to worse performance

than FCG. These results suggest that SiOSi3 is very

prone to hot-spot contention, in which case MFCG is

the best virtual topology to mitigate the impact.

Figure 9(b) shows the performance of CCSD(T) water
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model when using FCG and MFCG. FCG generally

performs better than MFCG, except in one case at 10,000

cores. This result suggests that the total execution time

for the water model does not benefit from virtual topolo-

gies such as MFCG. The primary benefit of MFCG is

the ability to significantly reduce memory consumption

of ARMCI low-level runtime library (as detailed in

Section V-A). This spares much more memory to be used

by applications and help them achieve better scaling.

These application evaluation results demonstrate that

MFCG can achieve the best balance of memory con-

sumption, the need of request forwarding, and contention

attenuation for the GAS runtime. With much reduced

memory consumption at the runtime level, MFCG in

general performs comparably to the default FCG. Par-

ticularly when an application is experiencing hot-spot

contention, MFCG can mitigate the impact of contention

and lead to significantly reduced total execution time.

VII. RELATED WORK

Topologies for communication networks have been

well documented in the textbooks [14], [15]. Exploiting

scalable topologies for high performance communication

networks has also been studied extensively in the liter-

ature, such as those in [16], [17], [18]. Our research

represents an innovative use of classic topologies. By

imposing mesh and cube topologies on top of small fully

connected graphs (FCG), we introduced meshed FCGs

(MFCG) and cubic FCGs (CFCG) to formalize chal-

lenging issues faced by today’s petascale programming

models.

Numerous algorithms were investigated to support

deadlock-free message routing in interconnection net-

works. In their classic paper, Dally et al. [19] pro-

posed deadlock-free message routing algorithms, such

as dimension-order routing, for multiprocessor intercon-

nection networks using the concept of virtual channels.

Duato et al. [20] investigated deadlock-free adaptive

multicast routing algorithms on worm-hole networks

using a path-based routing model. Lin and Lionel [21]

compared different multicast worm-hole routing algo-

rithms, such as dual-path routing and multi-path rout-

ing, for multicomputers with 2D-mesh and hypercube

topologies. Our work builds on top of the dimension-

order routing algorithm, and proposes the deadlock-free

LDF (lowest dimension first) algorithm. LDF only needs

to forward an ARMCI request once per dimension in

MFCG, CFCG, and Hypercube. In addition, it allows

partially populated MFCG and CFCG on any number of

network nodes.

Many efforts studied the scalability of resource man-

agement for other contemporary programming models.

Sur et al. [22] examined the memory scalability of

various MPI implementations on the InfiniBand network.

Koop et al. [23] exploited the use of message coalescing

to reduce the memory requirements for MPI on Infini-

Band clusters. Chen et al. [24] optimized the commu-

nication for UPC applications through a combination

of techniques including redundancy elimination, split-

phase communication, and communication coalescing.

Our work differs from these earlier studies by intro-

ducing new virtual topologies to reveal the challenges

of resource management and contention in the ARMCI

Global Address Space runtime system. To the best of

our knowledge, this is the first in literature to exploit the

concept of virtual topology for systematic investigation

of scalability and contention issues in Global Address

Space programming models.

VIII. CONCLUSION

In conclusion, we have systematically studied the

resource management and contention issues in a GAS

run-time system, ARMCI, on the petascale Jaguar Cray

XT5 system at ORNL. First, we introduce the concept

of virtual topology to represent the management of

communication resources in ARMCI as directed graphs,

and substantiate it with two new virtual topologies,

MFCG and CFCG, as well as Hypercube. Second, we

design and develop lowest dimension first forwarding to

ensure deadlock-free communication in ARMCI using

MFCG and CFCG on any number of nodes. Third, we

investigate and extensively evaluate the performance of

all three virtual topologies, MFCG, CFCG, and Hyper-

cube, and demonstrate that MFCG is the best choice

in accomplishing scalable resource management and

contention attenuation.

In the future, we look forward to further optimization

of the GA model and ARMCI on petascale systems.

We are investigating large-scale applications that can

leverage more memory at the application level for better

total execution time. We also plan to study the applica-

bility of virtual topologies on other petascale platforms

with different physical topologies, e.g., BlueGene/P [25],

[26]. Furthermore, we plan to investigate the benefits of

virtual topologies in the context of PGAS languages such

as UPC [4] and Co-Array Fortran [5].

Acknowledgments
This work was funded in part by NSF award CNS-

1059376, by UT-Battelle grant (UT-B-4000087151), and

by National Center for Computational Sciences. This

research used resources of the National Center for Com-

putational Sciences at Oak Ridge National Laboratory,

which is supported by the Office of Science of the U.S.

243



 0

 50

 100

 150

 200

 250

 300

 0  2000  4000  6000  8000  10000  12000  14000

T
o

ta
l E

xe
cu

ti
o

n
 t

im
e 

(s
ec

)

Cores

NWChem DFT SiOSi3

FCG
MFCG
CFCG
Hypercube

(a) SiOSi3

 1000

 2000

 3000

 4000

 5000

 6000

 20000 14000 8000 2000

T
o

ta
l E

xe
cu

ti
o

n
 T

im
e 

(s
ec

)

Cores

NWChem CCSD Water Model

FCG
MFCG

(b) CCSD(T) (H2O)11

Figure 9: NWChem Execution Time

Department of Energy under Contract No. DE-AC05-

00OR22725.

REFERENCES

[1] “Top 500 supercomputing sites,” http://www.top500.org.
[2] LLNL, “ASC Sequoia,” https://asc.llnl.gov/

computing resources/sequoia/.
[3] NCSA, “Blue Waters: Sustained Petascale Computing,”

http://www.ncsa.illinois.edu/BlueWaters/.
[4] “Upc specifications, v1.2,” http://www.gwu.edu/∼upc/

publications/LBNL-59208.pdf.
[5] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey, “A multi-

platform co-array fortran compiler,” Sept.-3 Oct. 2004, pp. 29–40.
[6] “Report on experimental language X10,” 2008,

http://dist.codehaus.org/x10/documentation/languagespec/x10-
170.pdf.

[7] “Global arrays toolkit,” http://www.emsl.pnl.gov/docs/global.
[8] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. K.

Panda, “High Performance Remote Memory Access
Communication: The Armci Approach,” International
Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 233–253, 2006. [Online]. Available:
http://hpc.sagepub.com/cgi/content/abstract/20/2/233
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