
Network-Friendly One-Sided Communication Through Multinode
Cooperation on Petascale Cray XT5 Systems

Xinyu Que† Weikuan Yu†‡ Vinod Tipparaju‡ Jeffrey S. Vetter‡ Bin Wang†

Department of Computer Science† Computer Science & Mathematics‡

Auburn University, AL 36849 Oak Ridge National Laboratory

{xque,wkyu,bzw0012}@auburn.edu {tipparajuv,vetter}@ornl.gov

Abstract—One-sided communication is important to
enable asynchronous communication and data movement
for Global Address Space (GAS) programming models.
Such communication is typically realized through direct
messages between initiator and target processes. For petas-
cale systems with 10,000s of nodes and 100,000s of cores,
these direct messages require dedicated communication
buffers and/or channels, which can lead to significant
scalability challenges for GAS programming models. In
this paper, we describe a network-friendly communication
model, multinode cooperation, to enable indirect one-sided
communication. Compute nodes work together to handle
one-side requests through (1) request forwarding in which
one node can intercept a request and forward it to a
target node, and (2) request aggregation in which one
node can aggregate many requests to a target node. We
have implemented multinode cooperation for a popular
GAS runtime library, Aggregate Remote Memory Copy
Interface (ARMCI). Our experimental results on a large-
scale Cray XT5 system demonstrate that multinode coop-
eration is able to greatly increase memory scalability by
reducing communication buffers required on each node. In
addition, multinode cooperation improves the resiliency of
GAS runtime system to network contention. Furthermore,
multinode cooperation can benefit the performance of
scientific applications. In one case, it reduces the total
execution time of an NWChem application by 52%.

Keywords- GAS; ARMCI; Multinode Cooperation; Re-
quest Aggregation;

I. INTRODUCTION

GAS (Global Address Space) or PGAS (Partitioned

Global Address Space) models support data access

to local and remote memory through simple shared

memory styled access. Because of the attractiveness

of their simple access model, PGAS languages such

as Unified Parallel C (UPC) [2] and Co-Array Fortran

(CAF) [10], and GAS libraries such as Global Arrays

(GA) Toolkit [1] are becoming increasingly popular.

X10 [3] from IBM and UPC [14] have also pioneered

a slightly different category of PGAS model, termed

Asynchronous Partitioned Global Address Space model.

All the above mentioned GAS languages and libraries

use the services of one-sided communication library

(also referred to as the GAS Runtime) for their commu-

nication needs. GAS languages normally convert their

data transfers through compilation techniques into one-

sided communication messages on distributed memory

architectures. They have a translation layer that trans-

lates memory access to various one-sided messages,

with which programmers no longer have to orchestrate

complicated message passing schemes among many

pairs of parallel processes.

One-sided communication is typically realized

through direct messages between initiator and target

compute nodes. To realize efficient and asynchronous

one-sided communication primitives, communication

buffers and/or channels need to be preallocated for

processes to initiate an operation without the involve-

ment of the targeted process. On petascale systems with

10,000s of nodes and 100,000s of cores, these direct

communication buffers and/or channels will amount to

a hefty memory requirement, and impose a critical

scalability challenge for GAS programming models.

Another serious challenge to GAS programming

models is the potential contention that could be caused

by many concurrent one-sided messages to a single

target node. Because one-side messages are directly

sent to the same target, network paths of these requests

will converge at one or more network endpoints. In

PGAS programming models, this is quite likely when

thousands of processes simultaneously access one data

element in the global address space. Such scenarios

can cause severe network contention, placing significant

burdens on the physical network. For example, the

Seastar2+ network adopted by the Cray XT5 systems

will resort to a throttling mechanism to handle network

congestion, typically causing serious slowdown of the

entire network and jeopardizing system productivity.

In this paper, we describe multinode cooperation, a

network-friendly communication model that supports

indirect one-sided communication, and overcomes the

challenges caused by direct one-sided communication

between any pair of initiator and target nodes. In multin-

2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4395-6/11 $26.00 © 2011 IEEE

DOI 10.1109/CCGrid.2011.62

352

ode cooperation, compute nodes form a multinode group

and work together to handle one-sided communication

requests. Their cooperation occurs in two ways: (1)

request forwarding in which one node can intercept

a request and forward it to the target node, and (2)

request aggregation in which one node can aggregate

many requests to the same target node. With multinode

cooperation, compute nodes no longer have to create

one set of communication buffers for all possible pairs

of peer processes. Instead, they divide the requirement

of communication buffers amongst themselves in a co-

operative manner. When a request reaches one node in a

multinode group, it will be forwarded to the target node,

and handled accordingly. Through request aggregation,

multinode cooperation also exploits the presence of

multiple requests to the same target node. It consolidates

them together to reduce network contention, thereby

alleviating the pressure to the underlying physical net-

work.

We have implemented multinode cooperation for

a popular GAS run-time library, Aggregate Remote

Memory Copy Interface (ARMCI). Our experimental

results on large-scale Cray XT5 systems demonstrate

that multinode cooperation is able to greatly increase

the memory scalability by reducing communication

buffers. In addition, multinode cooperation increases the

resiliency of GAS runtime system in handling network

contention caused by transient and irregular commu-

nication patterns. Furthermore, multinode cooperation

is shown to significantly improve the performance of

scientific applications. In one case, it reduces the total

execution time of an NWChem application by 52%.

The rest of the paper is organized as follows. Sec-

tion II discusses background and related work. Sec-

tion III describes the design and implementation of

multinode cooperation. Experimental results are pro-

vided in Section IV. Finally, Section V concludes the

paper.

II. BACKGROUND AND RELATED WORK

A. An Overview of ARMCI

ARMCI has recently been enabled for Cray XT5

using the native portals communication library [17].

ARMCI guarantees that its one-sided operations are

fully unilateral, i.e., may complete regardless of the

actions taken by the remote processes. In particular,

polling the application by remote processes (implicitly

when making a library call, or explicitly by calling pro-

vided polling interface) is not required for communica-

tion progress. This is realized by introducing a commu-

nication helper thread (a.k.a communication server) at

each compute node. This communication helper thread

is created by the lowest ranked process (master) on a

node. An area of shared memory is allocated for these

processes. The communication server handles remote

one-sided requests on behalf of all local processes, and

exchanges data with them through the shared memory.

Similar to what described earlier, the communication

server pre-allocates buffers and related data structures

for remote requests, in order to support direct one-sided

communication for all operations (particularly for lock,

unlock, accumulate, and noncontiguous data transfer

operations) and allow one process to asynchronously

initiate an operation without the involvement of the

targeted process.

B. Related Work

The scalability of communication runtime involves a

variety of complicated design issues, including process

management, selection of connection models, data com-

munication, communication buffer management, as well

as flow control. The design and implementation of MPI

on Portals was first described by Brightwell et al. [7].

This has been one of the reference implementations for

other programming models on top of Portals, in which

communication protocols for different size messages

are elaborated. Bonachea et al. [6] recently ported

GASNet to the Portals communication library on the

Cray XT platform to support UPC and other GAS

models. Generic issues such as enabling communication

operations, handling requests/replies, and flow control

were discussed. Tipparaju et al. [17] designed and

implemented a scalable ARMCI communication library

and demonstrated its strength in enabling GA and a real

world scientific application, NWChem.

Many other efforts studied the communication scal-

ability of programming models. Sur et al. [16] and

Shipman et al. [15] studied the use of shared receive

queue to increase the scalability of MPI communication

resources. Koop et al. [13] exploited the use of message

coalescing to reduce the memory requirement for MPI

on InfiniBand clusters. Chen et al. [9] optimized com-

munication UPC through a combination of techniques

including redundancy elimination, split-phase commu-

nication, and communication coalescing. Chen et al. [8]

investigated the use of compiler techniques that could

automatically schedule data transfers for non-blocking

communication, thereby achieving better computation

and communication overlap. Yu et al. [18] proposed

cooperative server clustering to improve the scalability

of the ARMCI. This work is based on recent efforts

from Tipparaju et al. [17] and Yu et al. [18] for a

network friendly one-sided communication model with

353

better scalability. We extend our previous work to sup-

port request aggregation and systematically evaluate the

benefits of multinode cooperation in terms of memory

requirement and network contention.

III. DESIGN AND IMPLEMENTATION OF MULTINODE

COOPERATION

As described in Section II-A, ARMCI realized one-

sidedness of its operations through a communication

server (CS), which is a thread created by the lowest

ranked process at each compute node. Every com-

munication server pre-allocates communication buffers

for potential requests from all remote peer processes.

With only two 16-KB buffers per process, it would

require 1024 MB to support parallel programs with

32,000 processes, and 32 GB for future programs with

a million processes. Clearly, a more scalable solution is

needed for petascale supercomputer and future exascale

machines.

Multinode cooperation is intended to address the scal-

ability challenge of communication buffers, as well as

the associated network contention, caused by one-sided

messages in ARMCI’s original direct communication

model. In this section, we first discuss the software

architecture of multinode cooperation. Then we describe

the flow of request forwarding and request aggregation

of multinode cooperation in detail.

A. Software Architecture of Multinode Cooperation

���

�����	
��
�

������
	

���������
	
������� ���
��
��	�����	�

��
���
�	�
�
���

����
���	����

��	� �
	�!���
	

"	�������
"������
	�

�����

#��
��
������	�
�
����
$��%&
#�'

����	�����
���������
	�
$()� ��'

$�
�����&
�	��	�*�	�&
�
�����'
(���+�
�
���	�����
	
��
�
�
��

�������
%
�,����	�

Figure 1: Software Architecture of Multinode Cooper-

ation

Figure 1 shows the software architecture of multin-

ode cooperation. On a system that supports scientific

applications over GAS programming models, such as

NWChem, ARMCI will support the required one-sided

operations, including data transfer, atomic and locks,

memory management, and synchronization. Multinode

cooperation extends ARMCI with an indirect communi-

cation model for transmitting one-sided requests in these

operations. It includes two important key techniques:

request forwarding and request aggregation.

Multinode cooperation fundamentally addresses the

scalability issues of direct one-sided request messages.

Instead of allocating one set of buffers for all remote

processes on each node, multiple nodes form a co-

operative multinode group to allocate buffers. Com-

munication servers on these nodes divide incoming

requests from outside processes amongst themselves.

For example, for a program with N processes, one

communication server roughly has to preallocate N −1
sets of communication buffers in the original ARMCI.

When a K-node group is formed through multinode

cooperation, one communication server will only need

to preallocate (N−1)/K sets of communication buffers.

Because of the division of requests among servers,

a multinode group effectively reduces each server’s

communication buffer requirement by the size of the

multinode group. The servers in a multinode group then

cooperate and handle one-sided requests from processes

outside the group. When one request reaches any server

in the multinode group, it will be forwarded to the actual

target server.

With multinode cooperation, most of one-sided com-

munication requests are no longer sent directly to the

destination communication server. This brings in an-

other beneficial feature. The risk of network contention

caused by many requests to a single hot-spot target

node is significantly alleviated, because requests are first

buffered by cooperative nodes in a multinode group, and

aggregated if they arrive closely with each other in time.

Request aggregation is described in more detail below.

B. Request Forwarding and aggregation

The original ARMCI has a very simple communi-

cation model to support direct one-sided operations.

Figure 2(a) shows the flow of request and reply between

a pair of processes (Pr and Pt). The communication

server CST (co-located with Pt) receives the request

from Pr on behalf of Pt. As the requested opera-

tion completes, CST returns a corresponding reply or

acknowledgment (ack/rep) to Pr. This forms a direct

request/reply pair and a simplified flow control scheme

between Pr and CST .

The key of multinode cooperation is its indirect

request communication model. This is achieved through

request forwarding and request aggregation. Figure 2(b)

shows the flow of requests and replies in multinode

cooperation. Three processes (Pr0, Pr1, and Pr2) are

354

������

���

��	�

��
���� ���

����

�������

����

���

����

����

�����

� ����

��

��	�

� �

����� �

��
������

�����

���

��

�� ��������� �����

��

��
��

���

���

���

���������

��
����

��
����

��
����

�
������������	�����
������� �!��"�#���

�$����	���������
��!�%�
���"%%��%
&����
!��#��&�����������
&���

Figure 2: Request Handling in ARMCI and Multinode

Cooperation

initiating three one-sided requests (R0, R1, and R2) to

a target process (Pt), through the communication server

(CSI) at the same intermediate node. CSI receives

these requests, and detects that they are targeting for

the same communication server CST . So these requests

are aggregated together into a single request and sent

to CST . Only one acknowledgment is needed for the

aggregation request. CST receives a combined request,

and processes the embedded requests separately. In the

end, it sends back individual replies or acknowledg-

ments back to three requesting processes.

Request forwarding can be viewed as a special case

of the same diagram, where requests are not allowed to

be aggregated together. When a request arrives at CSI ,

it is immediately forwarded to CST . There must be a

separate acknowledgment for every request message.

Event-Driven Aggregation Window – To allow re-

quest aggregation, a communication server must hold on

to one request and wait for the arrival of more requests.

When requests arrive closely within each other, there are

plenty of opportunities to aggregate requests. However,

the communication server should not keep a request

for too long when no more requests arrive in time.

On the other hand, the communication server cannot

busy wait for the arrival of new requests, which would

consume a lot of CPU cycles. We address this issue

through an event-driven aggregation window. Upon the

arrival of a new request, the communication server

records its timestamp. It is then blocked, waiting for

the arrival of more requests. Every portals message

generates an event on the communication server, and

wakes up the communication server to perform possible

request aggregation. A request will be forwarded when

the aggregation window expires. An extra event is in-

troduced to wake up the communication server when no

portals messages are communicated. Within a multinode

group, an empty message is periodically initiated by

a communication server to its peer. This message will

generate an event to wake up blocked communication

servers, thereby breaking a potential stalemate caused

by a held request.

IV. PERFORMANCE EVALUATION

We have conducted an extensive set of experiments to

evaluate multinode cooperation on Jaguar at ORNL. Our

measurements include (1) the performance of ARMCI

one-sided operations; (2) the amount of memory con-

sumption; (3) the impact to network contention; and

(4) the performance of application benchmarks. In all

experiments, we compare the original ARMCI with the

implementation of multinode cooperation. Two modes

of multinode cooperation are included: one that sup-

ports only request forwarding without aggregation (No
Aggregation), and the other that supports both request

forwarding and aggregation (With Aggregation).

A. ARMCI One-sided Operations

ARMCI offers a rich set of one-sided communica-

tion primitives for GAS programming models. These

include (1) contiguous and noncontiguous data transfer

operations, (2) atomic operations, (3) locks, and (4)

synchronization operations. While multinode coopera-

tion is intended to address challenges faced by direct

one-sided communication in the original ARMCI, it

is important to measure the performance impact of

multinode cooperation to these one-sided operations.

1) Contiguous Data Transfer Operations: ARMCI

supports contiguous data transfer operations, including

direct put and direct get. On the Cray XT5, these di-

rect put/get operations transfer contiguous data directly

between source and destination memory, using native

portals put and get operations on the Seastar2+ network.

No one-sided requests are sent for these operations, and

communication servers are not involved for these oper-

ations. We measure the performance of direct put/get

operations across 16 nodes, each with 12 processes.

These nodes form four groups of cooperative nodes.

Figure 3 shows the latency and bandwidth performance

comparison between ARMCI and multinode coopera-

tion.

It is clear that our design of multinode cooperation

has very little impact on the performance of contiguous

data transfer operations. Note that, for succinctness, we

only show the performance for direct put operations.

The comparison is the same for direct get operations.

355

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1M256K64K16K4K

M
B

/s
ec

MesgSize (Bytes)

ARMCI_Put Bandwidth

Orig
No Aggregation
With Aggregation

(a) ARMCI Put Bandwidth

 0

 50

 100

 150

 200

 250

4K1K 256 64 16 4

L
at

en
cy

 (
u

se
c)

MesgSize (Bytes)

ARMCI_Put Latency

Orig
No Aggregation
With Aggregation

(b) ARMCI Put Latency

Figure 3: ARMCI Put Latency and bandwidth

 0

 5

 10

 15

 20

 25

 30

 35

 40

4k2k1k 512 256 128

M
B

/s
ec

MesgSize (Bytes)

ARMCI_PutS Bandwidth

Orig
No Aggregation
With Aggregation

(a) ARMCI PutS

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

4k2k1k 512 256 128

M
B

/s
ec

MesgSize (Bytes)

ARMCI_GetS Bandwidth

Orig
No Aggregation
With Aggregation

(b) ARMCI GetS

Figure 4: Bandwidth of Noncontiguous Operations

2) Noncontiguous Data Transfer Operations: Mul-

tidimensional data arrays are commonly adopted by

scientific applications for numerical analysis and matrix

calculation. When such an array is decomposed into

many parallel processes, each process typically owns a

noncontiguous set of data elements. ARMCI supports

the movement of such noncontiguous data through

vectored I/O and strided I/O. The former is a generalized

I/O format that describes noncontiguous data segments

with a series of <addr, length> pairs; the latter is an

optimization when segments are of the same length and

distance from each other.

We have measured the performance of ARMCI

strided data transfer. Our experiments are conducted

on sixteen nodes each with 11 processes. Processes

on the first node are paired with, and initiate one-

sided ARMCI PutS (and ARMCI GetS) operations to,

their counterparts on the last node. Figure 4 shows

the performance results of ARMCI for short messages,

with and without multinode cooperation. ARMCI PutS

requests are usually large and contain data inside. So

they cannot be merged. Large requests with data need

to be forwarded to the target server seperately as the

size of aggregation buffer is limited. This leads to sig-

nificant bandwidth degradation for ARMCI PutS oper-

ations as shown by No Aggregation. On the other hand,

ARMCI GetS requests have to retrieve data separately.

This leads to very low bandwidth for ARMCI GetS

operations in general. But there is no difference be-

tween the original ARMCI and multinode cooperation.

These results indicate that, while the performance of

noncontiguous data put operations is affected by the

overhead of request forwarding, request aggregation can

significantly cut down such overhead, and bring the

performance close to the original ARMCI.

3) Atomic and Synchronization Operations: ARMCI

supports a number of atomic and synchronization oper-

ations for GAS models. These include lock, accumulate,

and fetch-&-add. The lock operation acquires a specified

mutex on the target process on behalf of an initiating

process. The accumulate operation atomically updates

one or more variables on the target process. The fetch-

&-add operation retrieves an integer variable at a remote

location, and at the same time atomically updates the

356

value by an integer.

We measure the performance of these operations

across 16 nodes. These nodes are grouped into four

sets of cooperative nodes. All processes are paired with

each other for atomic and synchronization operations.

In order to evaluate the performance of multinode

cooperation, we tested different numbers of processes

(4, 8, and 11) per node. For example, a process on Node

0 initiates lock, accumulate, or fetch-&-add operations

1000 times (after the first 50 warm-up operations) to its

counterpart on Node 15. The average time is calculated

as the time for an operation.

Figure 5 shows the performance results for all three

operations. Again, without request aggregation, multin-

ode cooperation does not deliver the same performance

compared to the original ARMCI. However, request

aggregation significantly reduces the overhead of re-

quest forwarding by combining the forwarding costs of

multiple requests into one.

Taken together, our microbenchmark evaluation re-

sults indicate that, while indirect one-sided communi-

cation from multinode cooperation causes performance

overhead to atomic and synchronization operations, re-

quest aggregation helps reduce the overhead of request

forwarding. The resulting performance for all three

operations in multinode cooperation is very close to that

of the original ARMCI.

B. Memory Consumption

Jaguar runs the Compute Node Linux operating

system. On each node, the /proc file system reports

the memory footprint of all processes as the resident

working set size (VmRSS). We create a simple ARMCI

program that reports VmRSS from all processes. This

number represents the total memory consumed by an

ARMCI process at runtime before any additional mem-

ory usage at the application-level.

We measure the memory footprint of all ARMCI

processes. Our experiments are conducted with 12 pro-

cesses per node. All processes start with a memory

consumption of about 612 MBytes. However, due to the

allocation of request buffers by the internal communica-

tion server, each master process requires more memory

for an increasing number of remote processes. The size

of each buffer is 16KB; and the number of buffers per

process is 4. Figure 6 shows the memory consump-

tion of master processes. The memory consumption

of the original ARMCI increases linearly. On 12,288

processes, it reaches 1,424 MBytes, an increment of 812

MBytes. On the other hand, the memory consumption

of multinode cooperation reaches 720 MBytes and 725

MBytes, from a base of 604.3 MBytes under the No

 0

 50

 100

 150

 200

 250

 300

 350

 400

1184

E
xe

cu
ti

o
n

 T
im

e
(u

se
c)

No. of Processes/Node

Orig
No Aggregation
With Aggregation

(a) ARMCI Lock

 0

 50

 100

 150

 200

 250

 300

 350

 400

1184

E
xe

cu
ti

o
n

 T
im

e
(u

se
c)

No. of Processes/Node

Orig
No Aggregation
With Aggregation

(b) ARMCI Accumulate

 0

 50

 100

 150

 200

 250

 300

 350

 400

1184

E
xe

cu
ti

o
n

 T
im

e
(u

se
c)

No. of Processes/Node

Orig
No Aggregation
With Aggregation

(c) ARMCI Fetch & Add

Figure 5: Performance of Atomic and Synchronization

Operations

Aggregation mode, and a base of 604.8 MBytes under

the With Aggregation mode, respectively. Compared

to the original ARMCI, multinode cooperation cuts

down memory consumption significantly by about seven

times. To enable request aggregation, multinode coop-

eration consumes a little more memory, that is used

as a small number of additional aggregation buffers.

This test demonstrates that, compared to the original

ARMCI, multinode cooperation can dramatically reduce

communication buffers, thereby improving the memory

scalability of ARMCI.

357

 600

 800

 1000

 1200

 1400

 1600

 0 2000 4000 6000 8000 10000 12000 14000

M
B

yt
es

No. of Processes

Orig
No Aggregation
With Aggregation

Figure 6: Benefits to Memory Consumption

C. Benefits of Multinode Cooperation to Network Con-
tention

Multinode cooperation is also designed to address

network contention in the GAS runtime. We evaluate

contention for all one-sided ARMCI operations, and

observe that multinode cooperation is beneficial to the

contention caused by noncontiguous data transfer and

atomic operations. Herein presented are results for two

representative operations, atomic Fetch-&-Add and non-

contiguous strided data transfer operations.

1) Contention Resilience Experiments: We define

contention as the percentage of processes in a program

that are contending for communication to a single

process, or for access to a single data element. It

is understood that contention can arise from sources

outside of a program, e.g., from other programs or

system services. But, for practical purposes, we consider

those beyond the scope of this study, and focus on

contention within one program.

We use programs with 1,024 processes for contention

evaluation, 4 processes per node across 256 nodes.

These numbers provide a reasonable balance between

the need of many nodes to exhibit contention and the

need of clarity in visualizing all data points of the

results. In these programs, each process (except those on

the same node with Rank 0), prepares its data as needed

(vectored or strided data in the case of noncontiguous

data transfer operations), and then performs one or more

one-sided operations to Rank 0. This is then repeated

for 20 iterations. The average time for these iterations

is taken as the time to complete the operations between

these processes and Rank 0.

Measurements are taken under three different con-

tention scenarios. In the first scenario, each process

sequentially performs its own one-sided operations to

Rank 0, repeats for 20 iterations, and records the time.

At the same time, all other processes are idle in a

barrier. This effectively measures the performance of

one-sided operations between Rank 0 and all other pro-

cesses, without any contention. In the second scenario,

each process sequentially performs the same number of

operations to Rank 0, for the same number of iterations.

However, in the meantime, one in every five processes

performs the same operations to Rank 0, while re-

maining processes are idle in a barrier. Therefore this

corresponds to 20% contention.
2) Atomic Fetch-&-Add: We measure the perfor-

mance of fetch-&-add as a representative of atomic

operations. Figure 7 shows the time for fetch-&-add

operations from all remote processes to Rank 0. Com-

parisons are provided between ARMCI and multinode

cooperation (with and without aggregation).
Figure 7(a) shows the comparison under no con-

tention. A couple of observations can be made from

this figure. First, multinode cooperation increases the

time to complete fetch-&-add operations between Rank

0 and other processes. Second, the time to complete

fetch-&-add gradually increases with the process rank.

This increment of time is magnified with multinode

cooperation due to request forwarding.
Figures 7(b) shows the comparison under 20% con-

tention. While contention increases the time to complete

atomic fetch-&-add operations for all cases, better con-

tention resilience can be observed for both modes of

multinode cooperation. Without multinode cooperation,

the performance of fetch-&-add is degraded by nearly

two orders of magnitude due to contention caused by di-

rect one-sided request messages. Under 20% contention,

it becomes faster to complete fetch-&-add operations

for nearly all processes with multinode cooperation.

It is also interesting to note that multinode coopera-

tion reduces the variation among all processes at 20%

contention. These results demonstrate that multinode

cooperation can mitigate the converging pressure from

many atomic operations to a single process, and lead to

graceful contention resilience.
3) Strided Data Transfer: We conduct experiments

to measure the performance of strided put as a rep-

resentative of noncontiguous data transfer operations.

Comparisons are provided for strided put operations

with different size messages.
Figure 8 shows the time to complete strided put

in ARMCI with and without multinode cooperation.

Similar to Figure 7, several observations can be made

from these results. First, multinode cooperation exhibits

better contention resilience compared to the original

ARMCI. Second, with request aggregation, ARMCI

shows much better resilience compared to the mode

with request forwarding only. Third, comparing (a) and

358

 10

 100

 1000

 10000

 100000

 1e+06

 1024 896 768 640 512 384 256 128

T
im

e
(u

se
c)

Process Rank

Orig
No Aggregation
With Aggregation

(a) Contention = 0%

 10

 100

 1000

 10000

 100000

 1e+06

 1024 896 768 640 512 384 256 128

T
im

e
(u

se
c)

Process Rank

Orig
No Aggregation
With Aggregation

(b) Contention = 20%

Figure 7: Contention of Fetch-&-Add Operations

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1024 896 768 640 512 384 256 128

T
im

e
(u

se
c)

Process Rank

Orig
No Aggregation
With Aggregation

(a) Message size = 72 bytes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1024 896 768 640 512 384 256 128

T
im

e
(u

se
c)

Process Rank

Orig
No Aggregation
With Aggregation

(b) Message size = 512 bytes

Figure 8: The Impact of Contention to ARMCI PutS Operations

(b) in the figure, we conclude that the benefit is more

significant for larger size one-sided requests.

D. NAS LU Application Benchmark

The LU application in the NAS parallel benchmark

suite [5] has been ported to the ARMCI runtime com-

munication protocol. It can scale to hundreds or a couple

of thousand processes. We also evaluate the perfor-

mance impact of multinode cooperation on NAS appli-

cations at this scale. Figure 9 shows the performance of

LU on a varying number of processes. As shown in the

figure, the performance results of multinode cooperation

are generally on par with that of the original ARMCI.

On the other hand, there is a small amount of extra

overhead to enable request aggregation.

We evaluate multinode cooperation using an elec-

tronic structure method in a large-scale application

NWChem [12], the SiOSi3 method for Density Func-

tional Theory (DFT). Figure 10(a) shows the perfor-

mance of SiOSi3 on 100 to 12,800 processes. Multinode

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

1,536768384192

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

No. of Processes

Orig
No Aggregation
With Aggregation

Figure 9: Performance of NAS LU

cooperation clearly performs better than the original

ARMCI.

The combination of request forwarding and request

aggregation can reduce the total execution time by as

much as 52%.

359

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000 12000 14000

T
o

ta
l E

xe
cu

ti
o

n
 t

im
e

(S
ec

)

No. of Processes

NWChem DFT SiOSi3

Orig
No Aggregation
With Aggregation

Figure 10: NWChem SiOSi3 Benchmark

V. CONCLUSION

We have introduced multinode cooperation as a

network-friendly model that supports one-sided com-

munication requests indirectly. Instead of allocating

communication buffers to prepare for requests from all

potential peer processes, multinode cooperation allows

multiple nodes to form a cooperative group and work

together to process one-sided communication requests.

We have implemented multiple cooperation, and evalu-

ated its benefits in terms of memory consumption and

contention resilience, as well as its impact to various

ARMCI one-side operations on the petascale Jaguar

Cray XT5 system at ORNL.

Our experimental results have demonstrated that

multinode cooperation can significantly reduce memory

consumption. It also improves ARMCI’s resilience to

network contention caused by transient and irregular

communication patterns. Moreover, multinode cooper-

ation can improve the performance of scientific appli-

cations, e.g., reducing the execution time of a NWChem

DFT method by 52%.

In the future, we look forward to further optimization

of ARMCI on petascale systems. We intend to study

the applicability of multinode cooperation to other one-

sided communication runtime such as GASNet [6],

and the performance of ARMCI multinode cooperation

on petascale platforms with different physical network

topologies, such as BlueGene/P [11], [4].

Acknowledgment

This work was funded in part by NSF Awards

CNS-1059376 and CNS-0917137, and by UT-Battelle

Grants UT-B-4000087151 and UT-B-4000086682. This

research used resources of the National Center for Com-

putational Sciences at Oak Ridge National Laboratory,

which is supported by the Office of Science of the U.S.

Department of Energy under Contract No. DE-AC05-

00OR22725.

REFERENCES

[1] Global arrays toolkit. http://www.emsl.
pnl.gov/docs/global.

[2] Upc specifications, v1.2. http://www.gwu.edu/∼upc/
publications/LBNL-59208.pdf.

[3] Report on experimental language X10, 2008.
http://dist.codehaus.org/x10/documentation/
languagespec/x10-170.pdf.

[4] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn,
C. McCurdy, J. Rogers, P. Roth, R. Sankaran, J. S.
Vetter, P. Worley, and W. Yu. Early evaluation of
ibm bluegene/p. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, Piscataway,
NJ, USA, 2008. IEEE Press.

[5] D. H. Bailey, L. Dagum, E. Barszcz, and H. D. Simon.
Nas parallel benchmark results. In Supercomputing
’92: Proceedings of the 1992 ACM/IEEE conference
on Supercomputing, pages 386–393, Los Alamitos, CA,
USA, 1992. IEEE Computer Society Press.

[6] Dan Bonachea, Paul Hargrove, Welcome M., and Kather-
ine Yelick. Porting gasnet to portals: Partitioned global
address space (pgas) language support for the cray xt.
In CUG ’09: Cray User Group Meeting, 2009.

[7] Ron Brightwell, Rolf Riesen, and Arthur B. Maccabe.
Design, implementation, and performance of mpi on por-
tals 3.0. The International Journal of High Performance
Computing Applications, 17(1), 2003.

[8] Wei-Yu Chen, Dan Bonachea, Costin Iancu, and Kather-
ine Yelick. Automatic nonblocking communication for
partitioned global address space programs. In ICS ’07:
Proceedings of the 21st annual international conference
on Supercomputing, pages 158–167, New York, NY,
USA, 2007. ACM.

[9] Wei-Yu Chen, Costin Iancu, and Katherine Yelick. Com-
munication optimizations for fine-grained upc applica-
tions. In PACT ’05: Proceedings of the 14th Interna-
tional Conference on Parallel Architectures and Com-
pilation Techniques, pages 267–278, Washington, DC,
USA, 2005. IEEE Computer Society.

[10] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey. A
multi-platform co-array fortran compiler. pages 29–40,
Sept.-3 Oct. 2004.

[11] IBM BG/P Team. Overview of the IBM Blue Gene/P
project. IBM Journal of Research and Development,
52(1/2):199–220, January 2008.

360

[12] Ricky A. Kendall, Edoardo Aprà, David E. Bern-
holdt, Eric J. Bylaska, Michel Dupuis, George I. Fann,
Robert J. Harrison, Jialin Ju, Jeffrey A. Nichols, Jarek
Nieplocha, T. P. Straatsma, Theresa L. Windus, and
Adrian T. Wong. High performance computational chem-
istry: An overview of NWChem a distributed parallel
application. Computer Physics Communications, 128(1-
2):260–283, June 2000.

[13] Matthew J. Koop, Terry Jones, and Dhabaleswar K.
Panda. Reducing connection memory requirements of
mpi for infiniband clusters: A message coalescing ap-
proach. In CCGRID ’07: Proceedings of the Seventh
IEEE International Symposium on Cluster Computing
and the Grid, pages 495–504, Washington, DC, USA,
2007. IEEE Computer Society.

[14] A. Shet, V. Tipparaju, and R. Harrison. Asynchronous
programming in upc: A case study and potential for
improvement. In Workshop on Asynchrony in the PGAS
Programming Model Collocated with ICS 2009, Sept.
2009.

[15] G.M. Shipman, T.S. Woodall, R.L. Graham, A.B. Mac-
cabe, and P.G. Bridges. Infiniband scalability in open
mpi. pages 10 pp.–, April 2006.

[16] Sayantan Sur, Lei Chai, Hyun-Wook Jin, and Dha-
baleswar K. Panda. Shared receive queue based scalable
mpi design for infiniband clusters. In IPDPS, 2006.

[17] Vinod Tipparaju, Edoardo Apra, Weikuan Yu, and Jef-
frey S. Vetter. Enabling a highly-scalable global address
space model for petascale computing. In Computing
Frontiers ’09, 2010.

[18] Weikuan Yu, Xinyu Que, Vinod Tipparaju, R.L. Graham,
and J.S. Vetter. Cooperative server clustering for a
scalable gas model on the cray xt5. In Proceedings
of International Supercomputing Conference, Hamburg,
Germany, May 2010.

361

