

Performance Characterization and Optimization of
Parallel I/O on the Cray XT

Weikuan Yu, Jeffrey S. Vetter, H. Sarp Oral
Oak Ridge National Laboratory

Oak Ridge, TN 37831
{wyu,vetter,oralhs}@ornl.gov

Abstract
This paper presents an extensive characterization,

tuning, and optimization of parallel I/O on the Cray XT
supercomputer, named Jaguar, at Oak Ridge National
Laboratory. We have characterized the performance
and scalability for different levels of storage hierarchy
including a single Lustre object storage target, a single
S2A storage couplet, and the entire system. Our
analysis covers both data- and metadata-intensive I/O
patterns. In particular, for small, non-contiguous data-
intensive I/O on Jaguar, we have evaluated several
parallel I/O techniques, such as data sieving and two-
phase collective I/O, and shed light on their
effectiveness. Based on our characterization, we have
demonstrated that it is possible, and often prudent, to
improve the I/O performance of scientific benchmarks
and applications by tuning and optimizing I/O. For
example, we demonstrate that the I/O performance of
the S3D combustion application can be improved at
large scale by tuning the I/O system to avoid a
bandwidth degradation of 49% with 8192 processes
when compared to 4096 processes. We have also
shown that the performance of Flash I/O can be
improved by 34% by tuning the collective I/O
parameters carefully.

1 Introduction

Systems with unprecedented computational power
are continuously pushing the frontier of high
performance computing (HPC). Various sites have
already launched efforts to build systems that can
perform a thousand trillion floating point operations
per second (1015 flops) [18, 23]. Furthermore, the U.S.
Department of Energy has also launched initiatives to
prepare for the future era of exa-scale computing [4].
On such large-scale systems, scientific applications,
such as those in astrophysics, climate, fusion,
combustion, biology, and chemistry, are very data-
intensive, requiring adequate I/O capability. In
addition, to cope with various forms of system
reliability issues, applications need to checkpoint their
intermediate results to the storage system, which
further increases the need for scalable and efficient I/O.

In fact, oftentimes, checkpoint operations are charged
to users as allocated CPU hours, so they are desired to
be as transparent and fast as possible. Hence, it is
important for the scientists to understand the system’s
I/O software and storage architecture on their target
platforms.

Jaguar is a Cray XT supercomputer platform at the
Oak Ridge National Laboratory; it is equipped with a
significantly large storage system. Jaguar provides
computational services for a broad spectrum of
applications, such as GTC for fusion [20], Parallel
Ocean Program (POP) for ocean modeling, and
Chimera for nuclear physics, among others. Not
surprisingly, a team of researchers have performed an
early performance evaluation of Jaguar [6]; they
examined the majority of performance features of the
processor, memory, and message passing system. This
study, as well as several other studies on the I/O
performance of Cray XT platforms [19, 27], has
investigated the I/O subsystem using micro-
benchmarks. These microbenchmarks have provided
relevant information for scientific applications, such as
peak system throughput, and the impact of Lustre file
striping patterns. However, few insights are provided
on how to correlate micro-benchmark results with the
organization of the storage system, or their relevance to
the applications’ I/O performance.

In this paper, we present an extensive
characterization of the performance of parallel I/O on
Jaguar, and accordingly, the benefits of tuning and
optimizing scientific application and benchmarks.
First, using regular contiguous I/O patterns, we
characterize the I/O performance of individual storage
units, such as a single OST and a single storage
couplet, S2A 9550 from Data Direct Networks, Inc
[13]. Second, we evaluate the scalability trends of the
entire system, in terms of both peak I/O bandwidth and
the latency of metadata operations like parallel file
open and creation. Third, we characterize the strengths
and pitfalls of using parallel I/O techniques–data
sieving and two-phase collective I/O–for small and
non-contiguous data accesses on Jaguar. Finally, based
on our characterization, we demonstrate that it is
possible to optimize the I/O performance of

benchmarks and applications. In one case, we have
demonstrated that the I/O performance of S3D
combustion application can be improved by using a
shared file, avoiding a bandwidth drop of 49% for
8,192 processes. In another case, we have shown that
the performance of flash I/O is improved by 34% by
carefully tuning collective I/O parameters.

The rest of the paper is organized as follows. In
the next section, we provide an overview of Jaguar and
the configuration of its I/O subsystem. In Section 3,
we provide a detail evaluation, characterization and
tuning of Jaguar’s I/O performance. In Section 4, we
demonstrate the tuning and optimization of I/O patterns
for applications and benchmarks over Jaguar. Section 5
concludes the paper.

2 Jaguar and Its I/O Subsystem

In this section, we provide an overview of Jaguar
and its I/O subsystem.

2.1 An Overview of Jaguar

Figure 1 Cray XT System Architecture of

Jaguar (Courtesy of Cray)

Jaguar is ranked as the second fastest
supercomputer as of June 2007 [3]. It is a combination
of Cray XT3 and Cray XT4 technologies. Cray XT3
and Cray XT4 represent a line of massively parallel
processor (MPP) products from Cray. They have
similar architectures, except that XT4 is equipped with
higher speed memory (DDR2-667MHz) and its
SeaStar2 interconnect has higher sustained bandwidth.

The basic building block of Jaguar is a Processing
Element (Compute PE or Service PE), as shown in
Figure 1. Each PE has a dual-core AMD processor
along with 2GB/core of memory, an integrated
memory controller, HyperTransport links, and a
dedicated communication chip–SeaStar/SeaStar2.
Jaguar inherited its system software from a sequence of
systems developed at Sandia National Laboratories and
University of New Mexico: ASCI Red [33], the Cplant

[24], and Red Storm [8]. Jaguar Compute PEs run a
lightweight operating system called Catamount. The
Catamount kernel runs only one single-threaded
process and does not support demand-paged virtual
memory. On the other hand, service PEs (i.e., login,
I/O, network, and system PEs) run Linux to provide a
user-familiar environment for application development
and for hosting system and performance tools. Portals
[10] is used for flexible, low-overhead inter-node
communication on Cray XT. It delivers data from user
space to user space between processes without kernel
buffering.

2.2 Configuration of the Jaguar I/O
Subsystem

Figure 2: A Diagram of the S2A 9550 Couplet

and its LUN configuration on Jaguar

Storage Hardware – The Jaguar I/O subsystem is
provided by 18 Silicon Storage Appliance (S2A) 9550
storage targets [12] from Data Direct Network, Inc,
often referred to as DDN S2A 9550 couplets. Each
couplet has a capacity of 32 TB as shown in Figure 2.
Every couplet is composed of two singlets, each
containing a Parallel Parity Processing Engine (P3E)
and a number of Disk Controller Engines (DCE).
Within a couplet, there are 16 tiers of storage disks,
offering storage as 16 LUNs (Logical Unit Number).
P3E horizontally stripes a serial data stream into
parallel segments to an array of DCEs, which in turn
provides vertical striping of its data segments. Through
vertical striping, every LUN spans two tiers of disks.
All sixteen tiers share the same set of data channels to
reach DCEs, P3Es and the fibre channel interfaces to
the external hosts. On Jaguar, each LUN has a capacity
of 2TB and a 4KB block size. The write-back cache is
set to 1MB in each DCE.

File Systems -- Jaguar uses Lustre [11] for its IO
subsystem. Lustre is an object-based parallel file
system composed of four components: Object Storage
Targets (OST), Metadata Servers (MDS), Object
Storage Servers (OSS), and clients. Further details on
Lustre are available in [11]. Jaguar is configured with

three Lustre file systems, providing the scratch storage
space for experimental data: scr144, scr72a and scr72b.
72 service nodes are configured as OSSes for these 3
file systems. In addition, each file system has its own
dedicated MDS node. Every LUN is configured as a
single OST for one of three Lustre file systems. Figure
3 shows the mapping of LUNs to the services nodes
and Lustre file systems. The biggest file system,
scr144, is equipped with 144 OSTs, i.e. 8 LUNs from
every S2A 9550 storage devices, with a storage
capacity of 288TBs; the other two, scr72a and scr72b,
each with 72 OSTs - 8 LUNs each from 9 of S2A 9550
targets. In other words, each OSS node is configured
with 4 OSTs. Two of these OSTs are for scr144, the
remaining two OSTs for scr72a and scr72b,
respectively.

Figure 3: Assignments of OSTs (LUNs) for

Lustre File systems on Jaguar

Parallel I/O libraries -- Parallel processes from
compute PEs can directly invoke POSIX read/write
functions or call through an MPI-IO library for I/O
services. Cray provides a proprietary MPI-IO [30]
implementation–referred to as AD_Sysio due to its
leverage of the SYSIO library. There is also an open-
source MPI-IO library called OPAL, which has been
deployed as an alternative package on Jaguar. OPAL
[39] is designed to provide a Lustre-specific
implementation of the ADIO interface inside MPI-IO,
enabling a number of good features such as arbitrary
striping of MPI files and stripe-aligned domain
partitioning. We have used this library for some of our
experiments.

3 Parallel I/O Characterization on
Jaguar

In this section, we examine the characteristics of
individual storage components, the scalability of the
entire storage system, the strengths and pitfalls of I/O
techniques for small and non-contiguous I/O, and the
scalability of metadata operations in terms of parallel
file open and creation. The default Cray MPI-IO
implementation is used for the majority of the
experiments unless otherwise noted.

3.1 Contiguous, Independent I/O

Contiguous, independent I/O is one of the most
common I/O patterns for scientific applications
running on Jaguar. This scenario includes the pattern in
which all processes writes/reads their own datasets
to/from either separated files or separated regions of a
larger shared file. We measure the performance of
Jaguar storage using the IOR benchmark [2] from
Lawrence Livermore National Laboratory. In addition,
applications also have small input files, generally read
by the leader process (rank 0) at the beginning of the
execution, and then broadcasted to all other processes.
Because these input files are of a small number and
have a very low data volume, we omit these scenarios.

3.1.1 Single OST

Singe OST

200

250

300

350

400

450

1 2 4 8 16 32
No. of Processes

Separated Write Separated Read

Shared Write Shared Read

Figure 4: Performance of Single OST

In the single-OST experiments, a varying number
of parallel processes are concurrently reading from or
writing to a single OST, i.e. a LUN in a DDN couplet.
The transfer size per client is set to vary between 4 and
64 MB. The total data volume is 512MB per process.
Figure 4 shows the measurement results for both a
shared file and separated files. The I/O bandwidth is
not sensitive to transfer sizes in this experiment, so
only results using a transfer size of 4MB are shown. In
the case of a shared file, the maximum read or write
bandwidths are measured at 406 MB/s, which come
close to the peak bandwidth of a single OST with
4Gbps fibre channel links. Comparing the read and
write bandwidths, it is evident that the write bandwidth
has a much more graceful scaling trend under the hot-
spot pressure from many processes. In addition, we
have measured the bandwidth of single-OST using
different Lustre stripe sizes. It is observed that the
stripe size does not affect the I/O bandwidth within a
single OST (data not shown). Also shown in the figure
are the bandwidth results with separated files on a
single OST. Again, the write bandwidth is more

graceful to hot-spot pressure. Both reads and writes can
reach close to the peak bandwidth per OST
(406MB/sec).

3.1.2 Single DDN Couplet

To measure the performance of a single DDN
couplet, all files are striped across 8 LUNs, i.e. all 16
tiers of a couplet. Figure 5(L) shows the bandwidth
results of a single couplet with different Lustre file
stripe sizes (1MB, 4MB, 16MB, and 64MB). Reads
and writes are both measured with 32, 64, and 128
processes. As shown in the figure, the stripe sizes 1MB
and 4MB are able to deliver the best performance,

while 4MB stripe size is slightly better overall. Figure
5(R) shows the scalability of a single couplet with a
varying number of processes. As shown in this figure,
parallel reads provides better peak bandwidth
compared to writes. The aggregated bandwidth per
couplet increases initially with the increasing number
of processes. The peak bandwidths for both reads and
writes are reached with 16 processes. However, neither
can sustain with a strong scaling on the number of
processes. As seen earlier with single-OST
experiments, the read bandwidth is again more
susceptible to the pressure from an increasing number
of processes.

Single DDN Couplet

0

500

1000

1500

2000

2500

3000

1M 4M 16M 64M

Lustre Stripe Size

Write 32 Write 64 Write 128

Read 32 Read 64 Read 128

Single DDN Couplet

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64 128

No. of Processes

Shared Write Shared Read
Separated Write Separated Read

Figure 5: Single DDN Couplet: (L) Impact of Stripe Size (R) Performance Scalability

Figure 5(R) also shows the performance of a
single couplet with separated files, using the stripe size
of 4MB. In contrast to the single OST results, when the
small number of processes is less than 64, the
performance of reads is significantly better than that of
writes. However, as the number of processes increases,
both curves reach the plateau around 2500MB/sec.
This resulting bandwidth is lower than the aggregation
from 8 distinct LUNs – 3224MB/sec at 406MB/sec
each. This means that a DDN couplet does not achieve
linear scaling with respect to the number of tiers, due
to the contention for the shared channels, engines, and
external links when all tiers are utilized. Nonetheless,
this number is in line with earlier observations made
by the storage vendor [15].

3.1.3 System

We have also measured the scalability trends of
the entire storage system, using the largest file system,
scr144. The aggregated I/O bandwidths are measured
when reading/writing files that are striped across
different number OSTs, with 1024 processes. In the
separated-file mode, each file is created to stripe across
four OSTs. But all processes together access the same

number of OSTs as the shared file is striped to. Figure
6 shows the performance comparisons of the two
different modes with an increasing number of OSTs.
Note that I/O with a shared file performs better than
that with separated files when the number of OSTs is
greater than 96.

System Scalability

0

10000

20000

30000

40000

50000

16 32 48 72 96 120 144

No. of OSTs

Shared file write Shared file read
File-per-Proc write File-per-Proc read

Figure 6: System Performance Scalability

These results suggest that the metadata overhead
associated with separated files, though small initially,
presents a scalability hurdle to the overall I/O

bandwidth. In addition, the bandwidth of reads scales
better compared to that of write when the number of
OSTs is more than 96. Writes incur additional process
costs, such as obtaining locks, allocating storage space,
and the creation of objects. Even though a reserved
pool of storage space and objects is provided in Lustre,
the impact becomes pronounced with many widely
striped files. Also note that, when files are located
across a large number of OSTs/LUNs, the achieved
peak bandwidth per OST is around 300MB/sec for
both reads and writes. Our measurements are taken
with 1024 processes, based on the fact that too many
processes can lead to performance degradation – a
phenomenon we showed in earlier figures and also
observed by others from other sites with similar Cray
XT platforms (c.f. Figure 1 and [19]).

3.2 Small, Non-Contiguous I/O

Small and non-contiguous I/O is another common
pattern for scientific applications, especially when
applications use higher-level, hierarchical data
structures, such as multi-dimensional arrays with
complex data decompositions among parallel
processes. These higher-level abstractions typically
translate into fine-grained, hierarchical, often non-
contiguous, data accesses [31]. Such patterns can result
in I/O bandwidths that are orders of magnitude lower
than the peak of the physical storage hardware [28, 29].
Data sieving and collective I/O are strategies
developed to improve the performance of small and
non-contiguous I/O [17]. We obtained a program from
Argonne National Laboratory that can characterize the
benefits of these techniques. This program creates a 3-
D global array, and decomposes the data along every
dimension for I/O. This results in many small and non-
contiguous I/O operations. The program allows three
options for I/O: direct, data-sieving, and collective I/O.
In the direct mode, every process directly performs
many small I/O operations according to the
offset/length of data chunks. The program measures
the I/O bandwidth results as the average from 10
iterations. The same program is executed multiple
times to filter out noticeable outliers due to other
concurrent I/O loads.

3.2.1 Data Sieving

Data sieving is developed for small and non-
contiguous I/O on a single process. It allocates an
intermediate buffer, performs I/O on a contiguous
region, and then extracts the needed data chunks. This
can avoid many I/O operations on many small data

chunks. With holes between the data chunks, the writes
are implemented as read-modify-write to avoid
overwriting the holes.

Figure 7 (L) shows the performance results with
different process counts and different array sizes (1283,
2563, and 5123). Several observations can be made
about the strengths and weaknesses of data sieving on
Jaguar. First, the I/O performance for small, non-
contiguous I/O is very low on Jaguar as shown by the
direct mode. Second, the performance of writes is
much lower than that of reads because all processes are
trying to gain exclusive write permission to a small
region, therefore contending for exclusive write locks
at the Lustre file system layer. Third, the I/O
performance increases with an increasing array size for
both direct and data-sieving modes; for the same array
size, increasing process counts leads to poorer
performance. These are expected because the average
data size gets smaller for the latter but bigger for the
former. Fourth, data sieving does improve the
performance of reads as expected, but in contrast, it
leads to performance degradation for writes. For both
reads and writes, data sieving triggers the system call
flock() to lock the I/O segment for maintaining data
consistency. However, flock() has a costly
implementation on the current catamount kernel for
Jaguar. Because reads do not involve internal lock
contention, the benefits of reading larger data chunks
can offset the cost of a single lock system call.
However, for the writes, while paying the cost of
flock(), it does not benefit from larger data chunks
because the internal file system lock contention–for
exclusive write permission on the overlapped data
chunks–remains the same, if not worse. For the writes
to gain the same benefits as the reads, a file system
optimization is needed to eliminate the internal write
locks when a file region is already locked by a
previous flock() call. The unusually high cost of flock()
system call is only a side effect of the catamount
system used for the Cray XT. It does not happen on
regular Linux platforms.

In addition, we have measured the effects of data
sieving buffer size for this program on Jaguar, and the
results are shown in Figure 7 (R). By increasing the
default data-sieve buffer size of 512KB to 8MB, the
performance of writes can be improved by 4.5 times,
and that of reads can be improved by 54%. Therefore,
larger buffer sizes are beneficial for data sieving over
Jaguar if this is possible by the application’s memory
requirement. Though 8MB is good for our test
program, an appropriate size is mostly application
dependent.

Data Sieving

0.1

1

10

100

1000

direct-
write

direct-
read

direct-
write

direct-
read

sieve-
write

sieve-
read

sieve-
write

sieve-
read

Nprocs=128 Nprocs=256 Nprocs=128 Nprocs=256

B
an

dw
id

th
 (M

B
/s

ec
)

128^3 256^3 512^3
Data Sieving (Nprocs=64, 256^3)

1

10

100

1000

256K 512K 1M 2M 4M 8M 16M 32M

Buffer Size

Write Read

Figure 7: Data Sieving: (L) Comparisons to Direct Mode; (R) Increasing Buffer Size

3.2.2 Collective I/O

Collective I/O is a technique developed for small,
non-contiguous I/O across a group of processes. The
collective I/O protocol implements interleaved phases
of data exchange and file I/O (reads/writes) on the
linearly partitioned file domains. It is designed to
aggregate small I/O operations into large I/O requests
for better performance. With the same program used in
the data sieving experiments, we characterized the
benefits of collective I/O as Figure 8 shows. While
increasing array sizes leads to better I/O bandwidth, the
same array size with more processes–that is finer data
chunks–does not lead to degraded I/O performance.
These are expected because collective I/O aggregates
small I/O requests for better I/O performance, and
some variations in small data chunk sizes can also be
smoothed out.

Collective IO

1

10

100

1000

10000

100000

coll-write coll-read coll-write coll-read

Nprocs=128 Nprocs=256

B
an

dw
id

th
 (M

B
/s

ec
)

128^3 256^3 512^3

Figure 8: Benefits of Collective I/O

3.3 Parallel File Open

Besides the need for scalable bandwidth, there is
also an increasing need on metadata scalability for
large-scale applications. In particular, the problem of
creating and opening files in parallel across tens of

thousands of processes is a significant scalability
challenge. For example, a team from DOE laboratories
is working on extending the current POSIX IO
interface with routines that can facilitate scalable
implementation of parallel open [16].

Using the scr72b file system over Jaguar, we have
measured the scalability of creating/opening files in
parallel across an increasing number of OSTs. Figure 9
shows the time taken for opening a shared file across
all processes and the same for opening one file per
process. In our tests, all files are created with its first
OST corresponds to the first LUN of the first couplet.
As shown in the figure, for either mode, the time
increases dramatically with the number of processes, as
well as with the increasing number of OSTs. The one-
file-per-proc mode is about an order of magnitude
more costly than the shared-file mode.

As mentioned earlier, the results in Figure 9 were
obtained with all files starting from the first OST of the
file system. A common execution mode on Lustre is to
give a parameter ‘-1’ for the starting OST, which
leaves this choice open for the operating system to
make a decision dynamically. Instead of leaving the
choice for the operating system, we emulated a
dynamic, yet balanced distribution of the first OST
based on the rank of processes. Using the OPAL
library, we have measured the scalability of the
dynamic method. Figure 10 shows the scalability with
dynamic balanced distribution as compared to the
earlier results when the first OST is statically
determined. When all the OSTs are within a single
DDN couplet, the static mode performs better than the
dynamic mode. However, the dynamic mode is much
more scalable when a file is striped cross multiple
DDN couplets–more than 8 OSTs. Even when the files
striped across all 72 OSTs in scr72b, the dynamic
mode still reduces the parallel open time by 25%.
These results suggest that, when files are striped less
than 8 OSTs, there is a trade-off between using the
static mode to achieve efficient parallel file open and

the need of more OSTs for better bandwidth. For files
with large strips, the default dynamic mode for the first

OST is always beneficial.

Parallel Open (Nprocs=512)

0

100

200

300

400

500

600

700

8 16 32 40 48 72

No. of OSTs

Shared Separated

Parallel Open

1

10

100

1000

1 2 4 8 16 32 64 128 256 512

No. of Processes

Shared Separated

Figure 9: Scalability of Parallel File Open: (L) With increasing OSTs; (R) With increasing processes

4 Improving the Performance of
Different Scientific I/O Patterns

In this section, we demonstrate several case
studies in tuning and optimizing the parallel I/O
performance in scientific applications and benchmarks.

4.1 Independent I/O Optimization: a
Case Study with Combustion

Combustion simulation represents a critical
domain of the scientific applications because of the
great dependence of the world’s energy production on
combustion. Even with numerous efforts in renewable
energy resources such as solar and hydrogen power,
the combustion still produces 85% of the total energy
for the world. In addition, the aggravating impacts of
green house gases call for more efficient and cleaner
combustion technologies. S3D, as a leading
combustion application developed Sandia National
Laboratories, performs the direct numerical simulation
of turbulent combustion [26]. It is also an INCITE
(Innovative and Novel Computational Impact on
Theory and Experiment Program, Department of
Energy, U.S.) application on Jaguar at Oak Ridge
National Laboratory.

S3D is based on a high-order accurate, non-
dissipative numerical scheme and solves the full
compressible Navier-Stokes, total energy, species and
mass continuity equations coupled with detailed
chemistry. S3D is parallelized using a three-
dimensional domain decomposition and MPI
communication. Each MPI process is in charge of a
piece of the three dimensional domain. All MPI
processes have the same number of grid points and the
same computational load. A complete run of a S3D

simulation can take millions of computation hours to
finish. To save its intermediate simulation results, the
original S3D code writes its output from each process
into individual files, periodically at every simulation
step, which creates an enormous amount of data for the
storage system, nearly a terabyte per hour across 24K
processes with a checkpoint interval of every half an
hour.

0

100

200

300

400

500

600

700

1 2 4 5 6 8 16 32 40 48 64 72

No. of OSTs

static dynamic

Figure 10: Parallel File Open with Different
Selections on the First OST

In view of the scalable file open/creation with a
shared file, we have implemented an optimization for
S3D to do I/O through a shared file. Figure 11(L)
shows the delivered I/O bandwidth to S3D at the
application-level. The overall bandwidth is measured
as the total amount of application data divided by the
time to create the files and write the data. With the
default mode of separated files, the delivered
application-level bandwidth reaches a plateau at
33GB/sec, but drops down to 15GB/sec for 8192
processes. In contrast to the abrupt performance drop
with a large number of processes, the shared file
implementation achieves a sustained I/O bandwidth, up

to 35GB/sec. We have measured the time to open the
file(s), which Figure 11(R) illustrates. We observed
that much of the performance drop is due to the
increased time in opening/creating the separated files,
in the default S3D implementation. Note that there is

no global barrier between the file creation and output,
so different processes are creating files and writing
their output concurrently. Thus the time for file output
is not strictly the subtraction of file creation time from
the total time.

S3D Effective Bandwidth

0

8000

16000

24000

32000

40000

128 256 512 1024 2048 4096 8192

No. of Processes

Separated Files Shared File

File Open Time

0

1

2

3

4

5

128 256 512 1024 2048 4096 8192
No. of Processes

Separated Files Shared File

Figure 11: S3D performance: (L) I/O Bandwidth; (R) File Open Time

4.2 Collective I/O Tuning

Besides the benefits of I/O aggregating, the
extended two-phase collective I/O protocol also
provides a number of tuning parameters, including the
buffer size for the I/O aggregation (collective buffer
size) and the number of processes that are responsible
for the aggregation (the number of I/O aggregators).
We have selected the following programs to
demonstrate the benefits of tuning collective I/O.

MPI-Tile-IO – MPI-Tile-IO [37] is an MPI-IO
benchmark that tests the performance of tiled data
accesses. In this application, data I/O is non-contiguous
and issued in a single step using collective IO. It tests
the performance of tiled access to a two-dimensional
dense dataset, simulating the type of workload that
exists in some visualization and scientific applications.
In our experiments, each process renders a 1x1 tile
with 1024x768 pixels. The size of each element is 32
bytes, leading to a file size of 48*N MB, where N is
the number of processes.

BT-IO – NAS BT-IO [1] is an I/O benchmark that
tests the output capability of NAS BT (Block-
Tridiagonal) parallel benchmark. It was developed at

NASA Ames Research Center. Its data set undergoes
diagonal multi-partitioning and is distributed among
MPI-processes. The data structures are represented as
structured MPI datatypes and written to a file
periodically. There are several different BT-IO
implementations, which vary on how its file IO is
carried out among all the processes. In the full mode,
BT-IO performs collective I/O for file output; in the
simple mode, all processes write out their small I/O
requests.

Flash I/O – Flash is an application that simulates
astrophysical thermonuclear flashes. It is developed in
part at the University of Chicago by the DOE-
supported ASC Alliance Center for Astrophysical
Thermonuclear Flashes. The Flash I/O [32] benchmark
is the I/O portion of the Flash program that measures
the performance of its parallel HDF5 [32] output. The
MPI-IO interface is used internally by the HDF5
library. Three different output files are produced in
Flash I/O: a checkpoint file, a plotfile with centered
data, and a plotfile with corner data. These files are
written through the HDF5 [7] data format.

4.2.1 Number of IO Aggregators

MPI-Tile-IO (Nprocs=256)

0

2000

4000

6000

8000

32 64 128 256

No. of IO Aggregators

BT-IO (Class C, Nprocs=1024)

0

1000

2000

3000

4000

5000

128 256 378 512 768 1024
No. of IO Aggregators

Figure 12: MPI-Tile-IO with Varying Number of
I/O aggregators

Figure 13: BT-IO with Varying Number of I/O
Aggregators

Figures 12, 13 and 14 show the I/O performance
of MPI-Tile-IO, BT-IO and Flash I/O, respectively,
with different number of I/O aggregators. As shown in
Figure 12, MPI-Tile-IO does gain performance from an
increasing number of I/O aggregators. MPI-Tile-IO
needs more I/O aggregators to store the data of 48MB
per process (as introduced earlier). However, for BT-
IO, the best I/O bandwidth is achieved with 576

processes, which represents a good balance of tradeoffs
between the number of processes, the granularity of
file domains, and the associated communication cost
for aggregation. Flash I/O was executed with two
different block sizes 16- and 32-bytes. For an
execution of Flash I/O with 2048 processes, 256
aggregators are optimal when the block size is 16bytes;
while 512 or 1024 is sufficient when block size is
32bytes.

Flash IO (Nprocs=2048)

0

2000

4000

6000

8000

10000

12000

128 256 512 1024 2048
No. of IO Aggregators

Blocksize=16 Blocksize=32

MPI-Tile-IO (Nprocs=256)

0

4000

8000

12000

16000

20000

4M 8M 16M 32M 64M 128M
Collective Buffer Size

Figure 14: Flash I/O with Varying Number of
I/O aggregators

Figure 15: MPI-Tile-IO with Increasing
Collective Buffer

4.2.2 Collective Buffer Size

Figures 15, 16, and 17 show the I/O performance
of MPI-Tile-IO, BT-IO and Flash I/O, respectively,
with varying sizes of collective buffer. For Flash I/O,
the performance is measured on the checkpoint file
with the data block size to be 32bytes. A comparison to
non-collective I/O mode is also shown for Flash I/O in
Figure 17. Both MPI-Tile-IO and Flash I/O benefit
from increased collective buffer, while 32MB appears
to be the optimal for them. However, BT-IO benefits
only slightly from increased collective buffer. This is
because the I/O of BT-IO is carried out in 40 different
iterations. For BT-IO Class C, there is only about
168MB of I/O data in each step. This results in a file
domain less than 4MB for each I/O aggregator.

Therefore, a very large collective buffer does not
benefit BT-IO.

5 Related Work and Conclusions

There is a rich set of literature on the performance
characterization of HPC systems. Many studies were
carried out to study the inter-process communication,
the peak computing power, and the comparisons
amongst different interconnect technologies or
different large-scale deployments. For example, [9, 21,
22, 25, 35, 36] and [29] have studied the
communication characteristics, the performance
tradeoffs as well as the comparisons among different
interconnect technologies, including Myrinet,
Quadrics, InfiniBand, and 1/10Gigabit Ethernet. [5, 6,

34, 35] and [6] have studied the system performance of
massive parallel systems including the Cray XT and
Blue Gene/L. However, these studies typically do not
address the I/O performance of the system. The work
most closely related to ours is [14, 19, 38].
Particularly, [14] and [19] report the I/O performance
of two popular Cray XT platforms, Red Storm and
Jaguar, respectively. Both of them have studied more
on the strong scaling of the peak I/O performance. In
contrast, we focus more on varying I/O patterns, as
well as collective I/O. The precursor of our work has
been presented in [38].

In this paper, we have extensively characterized
the parallel I/O performance on the Jaguar
supercomputer. Our characterization covered the
performance and scalability of the individual storage
units, as well as the entire system. We have examined
the best stripe sizes over Jaguar, and showed that the
file distribution pattern across the DDN storage
couplets can dramatically impact the aggregated
performance. In addition, we have also examined the
scalability of metadata- and data-intensive operations.
Our results have demonstrated that, for parallel file
open, the shared file mode has the best scalability
compared to the separated file mode. Moreover, we
have investigated the performance impacts of parallel
I/O techniques for handling small and non-contiguous
I/O, including data sieving and collective I/O. We

documented that, with overlapped file segments, data
sieving from concurrent processes can lead to
performance degradations. Increasing the size of data
sieving buffer can improve the performance, but the
performance of writes is hindered by the internal lock
contentions at the Lustre file system layer.

Finally, we have demonstrated how to leverage the
insights from our characterizations to tune and
optimize the I/O performance of scientific benchmarks
and applications. We have shown that the I/O
scalability of S3D combustion application over 8192
processes can be sustained through a simple, yet very
beneficial optimization. We also have illustrated how
collective I/O tuning parameters can impact the
performance of different scientific I/O benchmarks. In
particular, we have shown that the performance of
Flash I/O can be improved by 34% with careful tuning
of the collective I/O parameters.

Acknowledgments

This research is sponsored by the Office of
Advanced Scientific Computing Research; U.S.
Department of Energy. The work was performed at the
Oak Ridge National Laboratory, which is managed by
UT-Battelle, LLC under Contract No. DE-AC05-
00OR22725. We also thank Dr. Rajeev Thakur for the
3-D array collective I/O test benchmark.

BT-IO (Class C, Nprocs=144)

0

1000

2000

3000

4000

5000

4MB 8MB 16MB 32MB 64MB 128MB

Collective Buffer Size

Flash IO (Nprocs=1024, Checkpoint File)

0

4000

8000

12000

16000

No-Coll 4MB 8MB 16MB 32MB 64MB 128MB
Collective Buffer Size

Figure 16: BT-IO with Increasing Collective
Buffer

Figure 17: Flash I/O with Increasing Collective
Buffer

6 References
[1] FLASH I/O Benchmark Routine -- Parallel HDF 5,
[2] IOR Benchmark,

http://www.llnl.gov/asci/purple/benchmarks/limited/ior.
[3] TOP 500 Supercomputers, http://www.top500.org/.
[4] Simulation and Modeling at the Exascale for Energy,

Ecological Sustainability and Global Security (E3SGS),
Town Hall Meetings,
http://hpcrd.lbl.gov/E3SGS/main.html, 2007.

[5] N. R. Adiga, G. Almasi, G. S. Almasi, et al., An overview
of the BlueGene/L Supercomputer, in Proceedings of
the 2002 ACM/IEEE conference on Supercomputing

Baltimore, Maryland: IEEE Computer Society Press,
2002.

[6] S. R. Alam, R. F. Barrett, M. R. Fahey, J. A. Kuehn, J. M.
Larkin, R. Sankaran, and P. H. Worley, Cray XT4: An
Early Evaluation for PetaScale Scientific Simulation, in
ACM/IEEE conference on High Performance
Networking and Computing (SC07), Reno, NV, 2007.

[7] N. J. Boden, D. Cohen, and others, Myrinet: A Gigabit-
per-Second Local Area Network, IEEE Micro, pp. 29-
35, Feb 1995.

[8] R. Brightwell, W. Camp, B. Cole, E. DeBenedictis, R.
Leland, J. Tomkins, and A. B. MacCabe, Architectural
specification for massively parallel computers: an

experience and measurement-based approach: Research
Articles, Concurr. Comput. : Pract. Exper., vol. 17, pp.
1271-1316, 2005.

[9] R. Brightwell, D. Dourfler, and K. D. Underwood, A
Comparison of 4X InfiniBand and Quadrics Elan-4
Technology, in Proceedings of Cluster Computing, '04,
San Diego, California, 2004.

[10] R. Brightwell, R. Riesen, B. Lawry, and A. B. Maccabe,
Portals 3.0: Protocol Building Blocks for Low Overhead
Communication, in Proceedings of the 2002 Workshop
on Communication Architecture for Clusters (CAC),
2002.

[11] Cluster File System, Lustre: A Scalable, High
Performance File System,

[12] DataDirect Network, S2A Nearline SATA Solution
Overview, 2005.

[13] DDN, Products: S2A9550,
[14] M. Fahey, J. Larkin, and J. Adams, I/O Performance on

a Massively Parallel Cray XT3/XT4, in 22nd IEEE
International Parallel & Distributed Processing
Symposium (IPDPS'08), Miami, FL, 2008.

[15] D. Filliger, Personal Communication, 2007.
[16] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H.

Chen, Direct Numerical Simiulation of Turbulent
Combustion: Fundamental Insights towards predictive
Models, Journal of Physics: Conference Series, pp. 65-
79, 2005.

[17] High End Computing Extenstions Working Group
(HECEWG), Manpage - openg (group open),
http://www.opengroup.org/platform/hecewg/uploads/40/
10899/openg.pdf.

[18] HPCWire, NSB Approves Funds for Petascale
Computing Systems,
http://www.hpcwire.com/hpc/1715754.html, 2007.

[19] J. Laros, L. Ward, R. Klundt, S. Kelly, J. Tomkins, and
B. Kellogg, Red Storm IO Performance Analysis, in
Cluster, Austin, TX, 2007.

[20] Z. Lin, S. Ethier, T. S. Hahm, and W. M. Tang, Size
Scaling of Turbulent Transport in Magnetically
Confined Plasmas, Phys. Rev. Lett., vol. 88, p. 195004,
Apr 2002.

[21] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. P. Kini,
W. Yu, D. Buntinas, P. Wyckoff, and D. K. Panda,
Performance Comparison of MPI implementations over
Infiniband, Myrinet and Quadrics, in Proceedings of
Supercomputing '03 (SC '03), 2003.

[22] J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas,
S. P. Kini, P. Wyckoff, and D. K. Panda, Micro-
Benchmark Performance Comparison of High-Speed
Cluster Interconnects, IEEE Micro, vol. 24, pp. 42-51,
January-February 2004.

[23] Los Alamos National Laboratory, High-Performance
Computing: RoadRunner,
http://www.lanl.gov/roadrunner/, 2006.

[24] K. Pedretti, R. Brightwell, and J. Williams, Cplant"
Runtime System Support for Multi-Processor and
Heterogeneous Compute Nodes, in Proceedings of the
IEEE International Conference on Cluster Computing:
IEEE Computer Society, 2002.

[25] F. Petrini, W.-c. Feng, A. Hoisie, S. Coll, and E.
Frachtenberg, The Quadrics network: High-performance

clustering technology, IEEE Micro, vol. 22, pp. 46-57,
January/February 2002.

[26] R. B. Ross, Parallel I/O Benchmarking Consortium,
[27] H. Shan and J. Shalf, Using IOR to Analyze the I/O

Performance of XT3, in Cray User Group (CUG),
Seattle, WA, 2007.

[28] R. Thakur and A. Choudhary, An Extended Two-Phase
Method for Accessing Sections of Out-of-Core Arrays,
Scientific Programming, vol. 5, pp. 301-317, Winter
1996.

[29] R. Thakur, W. Gropp, and E. Lusk, Data Sieving and
Collective I/O in ROMIO, in Proceedings of the Seventh
Symposium on the Frontiers of Massively Parallel
Computation, 1999, pp. 182-189.

[30] R. Thakur, W. Gropp, and E. Lusk, On Implementing
MPI-IO Portably and with High Performance, in
Proceedings of the 6th Workshop on I/O in Parallel and
Distributed Systems, 1999, pp. 23-32.

[31] R. Thakur, W. Gropp, and E. Lusk, Optimizing
noncontiguous accesses in MPI– IO, Parallel
Computing, vol. 28, pp. 83-105, 2002.

[32] The National Center for SuperComputing, HDF5 Home
Page,

[33] G. M. Timothy, S. David, and R. W. Stephen, A
TeraFLOP Supercomputer in 1996: The ASCI TFLOP
System, in Proceedings of the 10th International Parallel
Processing Symposium: IEEE Computer Society, 1996.

[34] J. S. Vetter, S. R. Alam, T. H. Dunigan, Jr.,, M. R.
Fahey, P. C. Roth, and P. H. Worley, Early Evaluation
of the Cray XT3, in IEEE International Parallel &
Distributed Processing Symposium (IPDPS), Rhodes
Island, Greece, 2006.

[35] J. S. Vetter and F. Mueller, Communication
Characteristics of Large-Scale Scientific Applications
for Contemporary Cluster Architectures, in IPDPS,
2002.

[36] K. Voruganti and P. Sarkar, An Analysis of Three
Gigabit Networking Protocols for Stroage Area
Networks, in Proceedings of International Conference
on Performance, Computing, and Communications,
2001.

[37] P. Wong and R. F. Van der Wijngaart, NAS Parallel
Benchmarks I/O Version 2.4, NASA Advanced
Supercomputing (NAS) Division NAS-03-002, 2002.

[38] W. Yu, H. S. Oral, J. Vetter, and R. Barrett, Efficiency
Evaluation of Cray XT Parallel IO Stack, in Cray User
Group Meeting (CUG 2007, Seattle, Washington, 2007.

[39] W. Yu, J. S. Vetter, and R. S. Canon, OPAL: An Open-
Source MPI-IO Library over Cray XT, in International
Workshop on Storage Network Architecture and
Parallel I/O (SNAPI'07), San Diego, CA, 2007.

