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Abstract 

 
Virtualization using Xen-based virtual machine environment 

has yet to permeate the field of high performance computing (HPC). 
One major requirement for HPC is the availability of scalable and 
high performance I/O. Conventional wisdom suggests that 
virtualization of system services must lead to degraded performance. 
In this presentation, we take on a parallel I/O perspective to study 
the viability of Xen-based HPC for data-intensive programs. We 
have analyzed the overheads and migration costs for parallel I/O 
programs in a Xen-based virtual machine cluster. Our analysis 
covers PVFS-based parallel I/O over two different networking 
protocols: TCP-based Gigabit Ethernet and VMM-bypass 
InfiniBand. Our experimental results suggest that network 
processing in Xen-based virtualization can significantly impact the 
performance of Parallel I/O. By carefully tuning the networking 
layers, we have demonstrated the following for Xen-based HPC I/O: 
(1) TCP offloading can help achieve low overhead parallel I/O; (2) 
parallel reads and writes require different network tuning to achieve 
good I/O bandwidth; and (3) Xen-based HPC environment can 
support high performance parallel I/O with both negligible 
overhead and little migration cost. 

1 Introduction 

Recent years have witnessed a resurgence in the use of 
various virtual machine environments, such as VMware [29], 
UML [8] and Xen [6]. The widespread adoption of multi-core 
processors also paves the way, and, in a sense, encourages the 
revival of virtualization in order to feed the multiple cores 
with more independent parallelized executions, achieve better 
resource utilization, and provide service consolidation. One 
technique known as para-virtualization [33], popularized by 
the Xen system, offers virtualization with low overhead. Xen 
has attracted a lot of attention from both the academic domain 
and the enterprise market. 

Previous studies [12, 36] have also shown that 
virtualization could provide benefits to high performance 
computing (HPC) applications. But the HPC community has 
been slow to adopt virtualization due, in part, to the belief that 
virtualization will lead to the performance degradation of HPC 
applications. One of the major requirements of HPC 
applications is the need of scalable and high performance 
parallel I/O. For example, the Gyrokinetic Toroidal Code 
(GTC [17])−an application for fusion−can require a 
throughput of several 10s of gigabytes per second, so even 
slight performance degradations in I/O can hinder performance 

significantly. Much remains to be answered on how viable the 
Xen-based HPC environment could be for such data-intensive 
parallel applications. 

 
Figure 1 I/O Software Stacks for HPC Applications 

Figure 1 shows a diagram of software layers in typical 
HPC platforms that support data-intensive HPC applications. 
Collectively, these layers form the portable abstractions for 
I/O accesses. At the top end, scientific applications perform 
I/O through middleware libraries such as Parallel netCDF 
[16], HDF5 [32] and MPI-IO [31], often cooperatively among 
many processes. The mid-level libraries, represented by MPI-
IO, are directly implemented on top of file systems. The 
internal ADIO interface [30] of MPI-IO allows specialized 
optimizations that are tuned for various file systems. Towards 
the bottom of the stack, parallel file systems transfer I/O 
requests and file data across networks and storage devices. 
Xen-based virtualization introduces dramatic changes (and 
associated impacts) to two of the performance critical layers 
in this stack, i.e. I/O (file system) and networking. Thus, to 
answer the question of whether parallel I/O is viable through 
these software layers in a Xen-based HPC environment, it 
requires an in-depth re-examination of the entire software 
stack, especially the underlying networking subsystems and 
the parallel file systems. 

In this paper, we take on a parallel I/O perspective to 
study the viability issue of Xen-based HPC, hereafter referred 
to as Xen-HPC I/O. We carried out a detailed analysis of 
parallel I/O programs’ virtualization overhead and migration 
cost. Our analysis includes studies on the virtualization 
overhead of parallel I/O over two different network stacks, 
Gigabit Ethernet and InfiniBand, as well as the cost to 
parallel I/O programs during migration. In the analysis of 
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performance overhead, we have evaluated multiple scenarios 
including parallel I/O with separate files per process and a 
shared file. Our performance results indicated that, over 
GigaBit Ethernet, parallel I/O could achieve low overhead 
(about 10 to 29% bandwidth losses) for write operations, but 
not for read. Detail profiling studies revealed that network 
tuning could improve parallel read bandwidth by as much as 
4 times. Moreover, InfiniBand [14] (IB) can achieve 
negligible overhead for both reads and writes in Xen virtual 
machines. This is due to the zero-copy communication 
capability offered by the IB RDMA and the VMM-bypass 
techniques adopted in Xen/IB [18] implementation. 

We have also analyzed the migration cost of parallel 
programs. Our results suggest that application-transparent 
parallel I/O migration can be achieved on the fly (live 
migration), with very little cost. This is a unique strength of 
Xen-based environment for data-intensive parallel I/O 
applications, because the earlier migration approaches, such 
as TICK [11] and BLCR [9], have to close all the open file 
descriptors before a migration or restart. In summary, this 
paper makes the following contributions regarding Xen-HPC 
I/O. 

• Xen virtual machines can achieve low overhead parallel 
I/O over TCP through offloading. 

• IB can help Xen virtual machines achieve near-to-
native parallel I/O performance. 

• Transparent and live migration of Xen-HPC I/O 
applications is achievable at little cost. 

The rest of the paper is organized as follows. In the next 
section, we provide an overview of PVFS [3] and our 
experimental virtual cluster for Xen-HPC I/O evaluation. 
Then, in Section 3, we present a performance characterization 
of Xen-HPC I/O over TCP, as well as the performance 
profiling and tuning of Xen-HPC I/O over TCP. In Section 4, 
we describe the performance of Xen-HPC I/O over IB [13]. 
In Section 5, we describes our analysis of the migration cost. 
Finally, we conclude the paper in Section 7 after an overview 
of related work in Section 6. 

2 PVFS-based Parallel I/O in Virtual Clusters 

2.1 An Overview of Parallel Virtual File System, 
(PVFS) 

PVFS [3] is a lockless, user-level parallel file system. It 
is currently at its second generation. Figure 2 shows a 
diagram of PVFS system components: clients, metadata 
servers and I/O servers. Both the servers and client can reside 
completely in the user space. Moreover, PVFS enables 
distributed metadata server for scalable metadata operations. 
As also shown in Figure 2, a client opens and creates a file 
through a metadata server (step 1). It may choose another 
metadata server as shown by the dashed line. As a result of 
Step 1, a metafile is created for the new file and a handle is 

returned to the client. With the file attributes from the 
metafile handle, this client then creates datafiles in a striped 
manner through I/O servers (steps 2 and 3). The same 
metafile handle can be propagated to other clients and used to 
perform parallel I/O accesses. Through striped and parallel 
I/O, PVFS enables scalable aggregated bandwidth from many 
I/O servers.  

 
Figure 2 PVFS System Architecture 

2.2 A Xen-HPC I/O Environment for Virtualized 
Parallel I/O 

To gain insights into the effectiveness of virtual 
environments, such as Xen [6], for data-intensive HPC 
applications, one needs to understand their impacts to parallel 
I/O. We have configured a cluster of 24 Linux blades as a 
testing virtual environment. Each node in this cluster is 
equipped with an Intel Xeon 2.6 GHz processor, 512KB 
cache, 1GB physical memory, and a 7200RPM, ATA/100 
Western Digital hard disk WD800JB. All nodes are 
connected to a 48-port Gigabit Ethernet network, and a 144-
port IB [13] network using PCI-X [28] SDR host channel 
adaptors.  

 
Figure 3 A Xen-HPC I/O Environment for Parallel I/O 
Applications 

Figure 3 shows a diagram of our experimental testbed 
for Xen-HPC I/O applications. A PVFS file system is 
configured with five I/O servers and a metadata server. They 
are running over native Linux, version 2.6.16. In this paper, 
in contrast to enterprise deployments with virtualized servers, 
we focus on evaluating the virtualized HPC environment 
where only computing nodes are virtualized, so native Linux 
is used here for the servers to provide non-virtualized disk 
I/O performance [10]. A varying number of Xen Virtual 
Machines (VM) is created over the virtual machine monitors 
(VMM, a.k.a hypervisor) on other nodes. Xen VM is 
available for user accesses, so called domain U (DomU). All 



 

 

DomUs go through a privilege domain called domain 0 
(Dom0) to gain accesses to hardware resources. Each of the 
physical nodes has only a single CPU. The theme of Xen 
para-virtualization is the combination of a thin hypervisor and 
a privilege domain (Dom0) for efficient virtualization. As 
shown in Figure 3, DomUs in the virtual cluster perform I/O 
accesses to the PVFS file system via Gigabit Ethernet or IB. 
Parallel I/O programs are running on the Xen-based virtual 
cluster. PVFS-2.6.1 is used in this configuration. So we 
create only one VM per physical node to avoid performance 
disturbance between two DomUs on a single CPU. MPICH2-
1.0.3 [5] and MVAPICH2-0.9.3 [26] are used for TCP and IB 
[14] experiments, respectively. 

3 Xen-HPC I/O with TCP 

We conducted a performance analysis of parallel I/O 
using the IOR benchmark [1], version 2.9.1. IOR is a 
benchmark that tests the performance of various parallel I/O 
patterns including independent I/O to separate files, 
independent I/O to a shared file, as well as collective I/O. 
Each process in IOR writes to or reads from a contiguous 
block of buffer (up to the entire memory available) to the 
parallel file system. Our goals were to find out the best IOR 
performance over Xen virtual machines (DomU), as well as 
the virtualization overhead compared to native Linux and 
Xen Dom0. To this purpose, we tested the performance of 
IOR with parallel I/O to both separated files and a shared file. 
We considered that collective I/O is highly dependent on data 
contiguity and compositions, so an evaluation of collective 
I/O performance would require a different study using 
applications with various patterns, thus was not included in 
this presentation. 

3.1 Baseline Performance for Xen-HPC I/O 

We tested the performance of parallel I/O over Xen/TCP 
using the default networking configuration of Xen-3.0.3. 
128MB was chosen as the block size of each process in IOR. 
5 iterations were performed for both writes and reads. IOR 
also provides a parameter for specifying the transfer size, 
which is the size of data in each I/O call. With a conventional 
understanding that large request sizes can improve I/O 
performance, we experimented with a series of request sizes 
from the default, 256KB, to 2MB. Then we chose 1MB as the 
fixed transfer unit size. Figure 4 shows the performance of 
parallel writes over different execution environment using 
separated files and a shared file, respectively. Parallel writes 
using both separated files and a shared file scale well with the 
increasing number of processes. Parallel writes from Xen 
DomUs have about 10-29% and 5-32% bandwidth losses 
compared to native Linux and Xen Dom0, respectively. 
Figure 5 shows the performance of parallel reads using 
separated files and a shared file, respectively. Parallel reads 
using both separated files and a shared file perform quite 
poorly compared the performance of parallel write. Parallel 

reads in DomU perform slightly worse than the same in 
Dom0. 

3.2 Impact of Memory-based Storage 
In measuring the baseline performance measurement, the 

PVFS I/O servers were configured with the backend ext3 disk 
file system. Data were directly served from the servers’ 
buffer cache. So it is unlikely that the low performance of 
under 100MB/sec was related to disk performance. However, 
to make sure that it is also not due to the processing of ext3 
disk file systems, we repeated the same parallel read 
experiments using a memory-based file system, tmpfs, for 
PVFS storage. Figure 6 shows the results with memory-based 
storage. The performance of parallel reads is improved 
slightly. However, it remains low for small number of 
processes. This suggests that the cause of low read 
performance is neither due to the server’s local file system 
nor due to the server’s disks.  

3.3 Xen-HPC I/O with TCP Optimizations 
The release of Xen-3.0.4 provided a generic support for 

TCP offloading including checksum offloading, TCP 
segmentation, as well as scatter/gather support. We took this 
release and evaluated the performance of IOR reads and 
writes with the offloading options turned on and off. Note 
that, the PVFS servers were configured over native Linux 
2.6.16, in which segmentation and checksum offloading were 
enabled by default. 

 Figure 7 shows the performance of IOR reads and 
writes with and without TCP segmentation and checksum 
offloading. While offloading TCP segmentation and 
checksum is beneficial to parallel writes, but parallel reads 
remain indifferent to this tuning. Taken into the fact that TCP 
segment offloading functions only on the sender side, it is 
understandable that such tuning has no effects on parallel 
reads, which is largely dependent on the receiver side TCP 
processing. Based on these results, we believed that the low 
read performance was not due to the file system processing or 
the disk storage, and the offloaded TCP protocol did not help 
the problem either. 

3.4 Tuning Parallel Read with Oprofile 
We considered to pursue a performance profiling with 

Oprofile [2] to further examine the performance of parallel 
read. Oprofile is a profiling tool that takes advantage of 
hardware counters provided from different CPU architectures 
and provides detailed statistics on programs and operating 
system instruction counts, cache misses, TLB and memory 
accesses, as well as the timing of individual functions and 
libraries. Oprofile support for Xen was developed by HP and 
available since Xen-3.0.3. We profiled Xen Dom0 using two 
hardware counters, GLOBAL_POWER_EVENTS and 
BSQ_CACHE_REFERENCE. The former provides a counter on 
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 Figure 4 TCP-based Parallel Write over Linux, Xen Dom0 and DomU 

 
 

IOR Read from Separate Files

0

30

60

90

120

150

2 4 6 8 10 12 14 16
No. of Processes

Linux Xen-Dom0 Xen-DomU

 

IOR Read from Shared File

0

30

60

90

120

150

180

2 4 6 8 10 12 14 16
No. of Processes

Linux Xen-Dom0 Xen-DomU

 
Figure 5 TCP-based Parallel Read over Linux, Xen Dom0 and DomU 
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the time when the process is not stopped, and was used with a 
mask 0x1 to profile the execution time; the latter measures 
the cache references as seen by the bus unit, and was used 
with a mask 0x7 for L1 misses and 0x100 for L2 misses.  

Table 1 Cache Misses for IOR 
Total Count Read Write 

L1 Cache Misses 88933 53991 

L2 Cache Misses 4261 3860 

The profiling results with BSQ_CACHE_REFERENCE 
identified some differences in the cache behaviors of IOR 
reads and writes. Table 1 shows the total L1 and L2 cache 
misses for IOR with 16 processes. Based on this 
phenomenon, we tested a variety of IOR transfer sizes from 
1KB to 1MB, to check whether reduced memory footprint 
would lead to better cache behavior and improve the 
performance. Figure 8 shows the performance of IOR read 
when the transfer size varies between 16KB and 1MB. The 
default curve with 256KB socket buffer size and window 
scaling (Sock=256KB, w/ WS) indicates that the best 
performance is achieved at 64KB, which is 4 times more than 
the performance with transfer sizes of 128KB and bigger. 

However, we could not observe significant differences in 
cache behaviors between IOR reads with these transfer sizes. 
On the other hand, the timing profile with the hardware 
counter GLOBAL_POWER_EVENTS indicated that a larger 
portion of the time was spent in kernel-level network 
processing with 1MB IOR transfer size, compared to 64KB.  
Then, we further tuned the performance of parallel reads with 
various TCP options. Other curves in Figure 8 show the 
results. We found that, besides the conventional option of 
using large socket buffers, it was also beneficial to disable 
TCP window scaling for parallel reads. Both these options 
significantly improve the IOR read performance with a 
transfer size of 128KB. However, neither can improve the 
performance for even bigger transfer sizes. We speculate that 
this be constrained by the internal PVFS configuration. In 
addition, Figure 9 shows that the performance of parallel 
reads with the 64KB transfer size. The read bandwidth scales 
up linearly to more than 400MB/sec at 8 processes, and then 
reaches its plateau with more processes.  

4 Xen-HPC I/O over IB  
IB [13] is a high performance, low latency interconnect 

technology for computer clusters. It has rapidly gained its 
presence in various leading supercomputing sites in the world 
[4]. IB [13] support for Xen [6] is recently developed at IBM 
by Liu et al.[18]. The Xen release 3.0.2-2 patched with 
VMM-bypass IB [18] support was used in these experiments. 
Xen/IB implementation delegates user-accessible memory 
regions to DomU in order to support RDMA communication 
without going through Xen VMM, so-called VMM-bypass. It 
was also demonstrated as a viable approach to offer high 

performance parallel communication for scientific 
applications [12]. However, it is yet to be examined whether 
IB is ready for data-intensive applications in Xen-HPC I/O 
environments. 

In this section, we describe the performance evaluation 
of Xen/IB virtual machines in terms of their parallel I/O 
performance. Our experiments were conducted using the 
same IOR parameters as described in Section 3.1. Figure 10 
shows the performance of parallel writes over different 
execution environment using separated files and a shared file, 
respectively. For both cases, parallel writes scale well till 
reaching a plateau around 260 MB/sec. The performance 
comparisons between DomU and native Linux showed that 
virtualization overhead is negligible, by and large within 3%. 
Notably, through repeated testing, the performance of parallel 
writes from Dom0 is consistently higher than that of native 
Linux by a little margin, which may be an indication of light-
weight implementation of Xen Dom0 and VMM. Figure 11 
shows the performance of parallel reads using separated files 
and a shared file, respectively. Parallel reads scale similarly 
to parallel write. Again, there is little virtualization overhead 
when comparing DomU and native Linux.  

These results suggest that the VMM-bypass Xen/IB 
implementation is effective in exposing native parallel I/O to 
Xen-based virtual machines. The strengths of Xen/IB are 
ultimately due to the IB hardware’s bandwidth capacity and 
its RDMA mechanism. RDMA eliminates multiple data 
copies at the networking layer and relieves processors from 
costly network processing and data handling. Note that we 
were not able to enhance the performance of Xen-HPC I/O 
over Xen/IB by tuning the IOR parameters. This is reasonable 
because the bulk of network processing over IB occurs on the 
network interface, unlike the TCP case where (for parallel 
read) the bulk of processing for message reception happens in 
the kernel of the operating system. Nonetheless, this does 
suggest that Xen-HPC I/O over IB may have room for 
improvement on the performance of parallel reads. However, 
this awaits a further examination of the implementation of 
PVFS on the IB network. 

5 Live Migration for Parallel I/O Programs 

Nowadays many HPC applications face the need of 
migration either to avoid the exponentially decreasing mean-
time-between-failure (MTBF) or to achieve good balancing 
of applications among different partitions of HPC platforms 
[4]. Due to the difficulty of maintaining open file descriptors, 
many checkpointing/migration tools require the open files to 
be closed before checkpointing/migration can take place [9]. 
This makes it more difficult for data-intensive HPC 
applications to achieve run-time migration. The migration 
capability of virtual machines came as a possible remedy to 
this situation because the entire OS is migrating along with 
the application. No extra effort is needed for saving open file 
descriptors. Thus the migration capability of virtual machines 
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Figure 10 Parallel Write over InfiniBand on Linux, Xen-Dom0 and Xen-DomU 
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Figure 11 Parallel Read over InfiniBand on Linux, Xen-Dom0 and Xen-DomU 
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can be a useful alternative to other fault tolerance tools such 
as TICK [11] and BLCR [9]. Using NAS I/O benchmark, we 
have analyzed and quantified the cost and scalability trend for 
the migration of parallel I/O programs. 

NAS BT-IO [35] is an I/O benchmark that tests the I/O 
capability of NAS BT (Block-Tridiagonal) parallel 
benchmark. It is developed at NASA Ames Research Center. 
The data structures are represented as structured MPI 
datatypes and written to a file periodically. We run BT-IO, 
class A, both on 9 processes (one per virtual machine per 
physical node). A varying number of BT-IO processes were 
migrated at the run time and the total execution time was 
collected. The migration experiments were conducted over 
Gigabit Ethernet. The parallel live migration was carried out 
using a migration script via MPI. The total migration time 
and the BT-IO execution time were collected. 

Figure 12 shows the migration time for DomU with 
different memory sizes. DomU with more memory leads to 
longer migration time. The migration time for DomU with a 
running BT-IO program is also longer compared to that 
without BT-IO. Note that the migration time actually remains 
the same when a different number of DomUs are migrated 
(variations not shown). Nonetheless, the migration of many 
more virtual machines is likely to present a challenge to the 
bandwidth capacity of Gigabit Ethernet. We believe that 
future migration support of Xen VM over IB will relieve this 
concern because of its high bandwidth. Figure 13 shows the 
execution time of BT-IO when an increasing number of 
processes are being migrated at different frequencies, once 
every 1 to 4 minutes. At 4 minutes interval, the cost of 
migration, i.e. the increased BT-IO execution time due to 
migration, stays within 5% of the total execution time when 
no processes are migrated.  

6 Related Work 
Reducing the performance overhead associated with 

virtualization has been investigated in various studies. For 
example, Xen [6] and Denali [33, 34] have attempted the idea 
of para-virtualization to achieve light-weight virtualization. 
Virtualization has led to an extended path for hardware 
accesses from virtual machines. For example, Sugerman et al. 
[29] have described the network virtualization overhead in 
the VMware architecture, and strategies to reduce it by way 
of reducing the cost of emulated I/O access to virtual devices. 
Menon et al. [21]  has documented the networking access 
overhead. Menon et al. [20] have  further proposed 
optimizations, such as TCP segmentation offloading [19, 22], 
checksum offloading and scatter-gather DMA, for improved 
network virtualization. High speed interconnects, such as IB 
[13] and Myrinet [23], adopt an OS-bypass mechanism for 
direct device access from user-applications. However, user 
applications in virtual environment are segregated further 
from hardware devices with the addition of VMM. Liu et al. 
[18] have attempted the idea of VMM-bypass I/O to enable 

direct hardware device accesses, i.e. RDMA, from 
applications in Xen virtual machines.  

Research in [12, 36] studied the feasibility of high 
performance computing in virtualized environment. Huang et 
al. [13] proposed a case for high performance computing 
platform composed of Xen-based virtual machines and IB 
support. Their work showed the cost of virtualization is rather 
light for scientific kernel benchmarks such as NAS Parallel 
Benchmarks [25]. However, it is not yet shown how parallel 
I/O would scale in that environment, nor can it be applicable 
to parallel I/O over legacy network protocols such as TCP. 
Youseff et al. [36] studied the applicability of Xen for high 
performance computing. It remains open what overhead the 
Xen virtual environment would bring to the parallel I/O 
programs. Neither of the studies has addressed the cost of 
migration and its scalability. 

Checkpointing/migration support was developed for the 
purpose of load balancing and fault tolerance. Several recent 
efforts exploited such support for high performance 
applications, for example, TICK [11], BLCR [9] and MC3 
[15]. These implementations support application 
migration/restart by virtual of system-level checkpointing. It 
remains to be demonstrated how effective they can support 
migration of parallel I/O programs. Because file descriptors 
are contained within operating system, which cannot be 
migrated along with the applications, BLCR specifically 
states that checkpointing for open files is not supported [11]. 
Work in [24]  have presented an IPMI-based [14] system 
health monitoring framework to provide proactive fault 
tolerance for HPC applications. Our work is complementary 
to [24] in addressing the migration cost and scalability of 
HPC programs with intensive parallel I/O.  

7 Conclusions 

In this paper, we have presented a parallel I/O 
perspective on the issue of how viable Xen-based HPC 
environment would be to data-intensive parallel programs. 
We have shown that parallel I/O in Xen DomU can achieve 
good performance over both IB and TCP (with tuning). We 
have also highlighted a process for performance tuning to 
achieve good parallel read bandwidth. Moreover, we have 
demonstrated that the Xen-based virtual environment can 
provide a scalable and light-weight live migration support for 
parallel I/O programs. 

In the future, we also intend to carry out a 
comprehensive study on collective I/O performance using a 
set of collective I/O programs that stress the parallel file 
system with both non-contiguous I/O [7] and structured data 
models such as HDF5 [32] and Parallel netCDF[16]. We also 
intend to investigate how large-scale data-intensive 
applications can take advantage of high performance I/O and 
light-weight migration in Xen-based virtual environment.  
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