

Xen-Based HPC: A Parallel I/O Perspective

Weikuan Yu, Jeffrey S. Vetter

Computer Science and Mathematics
Oak Ridge National Laboratory

Oak Ridge, TN 37831-6173
{wyu,vetter}@ornl.gov

Abstract

Virtualization using Xen-based virtual machine environment

has yet to permeate the field of high performance computing (HPC).
One major requirement for HPC is the availability of scalable and
high performance I/O. Conventional wisdom suggests that
virtualization of system services must lead to degraded performance.
In this presentation, we take on a parallel I/O perspective to study
the viability of Xen-based HPC for data-intensive programs. We
have analyzed the overheads and migration costs for parallel I/O
programs in a Xen-based virtual machine cluster. Our analysis
covers PVFS-based parallel I/O over two different networking
protocols: TCP-based Gigabit Ethernet and VMM-bypass
InfiniBand. Our experimental results suggest that network
processing in Xen-based virtualization can significantly impact the
performance of Parallel I/O. By carefully tuning the networking
layers, we have demonstrated the following for Xen-based HPC I/O:
(1) TCP offloading can help achieve low overhead parallel I/O; (2)
parallel reads and writes require different network tuning to achieve
good I/O bandwidth; and (3) Xen-based HPC environment can
support high performance parallel I/O with both negligible
overhead and little migration cost.

1 Introduction

Recent years have witnessed a resurgence in the use of
various virtual machine environments, such as VMware [29],
UML [8] and Xen [6]. The widespread adoption of multi-core
processors also paves the way, and, in a sense, encourages the
revival of virtualization in order to feed the multiple cores
with more independent parallelized executions, achieve better
resource utilization, and provide service consolidation. One
technique known as para-virtualization [33], popularized by
the Xen system, offers virtualization with low overhead. Xen
has attracted a lot of attention from both the academic domain
and the enterprise market.

Previous studies [12, 36] have also shown that
virtualization could provide benefits to high performance
computing (HPC) applications. But the HPC community has
been slow to adopt virtualization due, in part, to the belief that
virtualization will lead to the performance degradation of HPC
applications. One of the major requirements of HPC
applications is the need of scalable and high performance
parallel I/O. For example, the Gyrokinetic Toroidal Code
(GTC [17])−an application for fusion−can require a
throughput of several 10s of gigabytes per second, so even
slight performance degradations in I/O can hinder performance

significantly. Much remains to be answered on how viable the
Xen-based HPC environment could be for such data-intensive
parallel applications.

Figure 1 I/O Software Stacks for HPC Applications

Figure 1 shows a diagram of software layers in typical
HPC platforms that support data-intensive HPC applications.
Collectively, these layers form the portable abstractions for
I/O accesses. At the top end, scientific applications perform
I/O through middleware libraries such as Parallel netCDF
[16], HDF5 [32] and MPI-IO [31], often cooperatively among
many processes. The mid-level libraries, represented by MPI-
IO, are directly implemented on top of file systems. The
internal ADIO interface [30] of MPI-IO allows specialized
optimizations that are tuned for various file systems. Towards
the bottom of the stack, parallel file systems transfer I/O
requests and file data across networks and storage devices.
Xen-based virtualization introduces dramatic changes (and
associated impacts) to two of the performance critical layers
in this stack, i.e. I/O (file system) and networking. Thus, to
answer the question of whether parallel I/O is viable through
these software layers in a Xen-based HPC environment, it
requires an in-depth re-examination of the entire software
stack, especially the underlying networking subsystems and
the parallel file systems.

In this paper, we take on a parallel I/O perspective to
study the viability issue of Xen-based HPC, hereafter referred
to as Xen-HPC I/O. We carried out a detailed analysis of
parallel I/O programs’ virtualization overhead and migration
cost. Our analysis includes studies on the virtualization
overhead of parallel I/O over two different network stacks,
Gigabit Ethernet and InfiniBand, as well as the cost to
parallel I/O programs during migration. In the analysis of

Parallel File Systems

ADIO

Data Models (HDF, NetCDF)

Applications

MPI-IO

Network (GigE, IB)

performance overhead, we have evaluated multiple scenarios
including parallel I/O with separate files per process and a
shared file. Our performance results indicated that, over
GigaBit Ethernet, parallel I/O could achieve low overhead
(about 10 to 29% bandwidth losses) for write operations, but
not for read. Detail profiling studies revealed that network
tuning could improve parallel read bandwidth by as much as
4 times. Moreover, InfiniBand [14] (IB) can achieve
negligible overhead for both reads and writes in Xen virtual
machines. This is due to the zero-copy communication
capability offered by the IB RDMA and the VMM-bypass
techniques adopted in Xen/IB [18] implementation.

We have also analyzed the migration cost of parallel
programs. Our results suggest that application-transparent
parallel I/O migration can be achieved on the fly (live
migration), with very little cost. This is a unique strength of
Xen-based environment for data-intensive parallel I/O
applications, because the earlier migration approaches, such
as TICK [11] and BLCR [9], have to close all the open file
descriptors before a migration or restart. In summary, this
paper makes the following contributions regarding Xen-HPC
I/O.

• Xen virtual machines can achieve low overhead parallel
I/O over TCP through offloading.

• IB can help Xen virtual machines achieve near-to-
native parallel I/O performance.

• Transparent and live migration of Xen-HPC I/O
applications is achievable at little cost.

The rest of the paper is organized as follows. In the next
section, we provide an overview of PVFS [3] and our
experimental virtual cluster for Xen-HPC I/O evaluation.
Then, in Section 3, we present a performance characterization
of Xen-HPC I/O over TCP, as well as the performance
profiling and tuning of Xen-HPC I/O over TCP. In Section 4,
we describe the performance of Xen-HPC I/O over IB [13].
In Section 5, we describes our analysis of the migration cost.
Finally, we conclude the paper in Section 7 after an overview
of related work in Section 6.

2 PVFS-based Parallel I/O in Virtual Clusters

2.1 An Overview of Parallel Virtual File System,
(PVFS)

PVFS [3] is a lockless, user-level parallel file system. It
is currently at its second generation. Figure 2 shows a
diagram of PVFS system components: clients, metadata
servers and I/O servers. Both the servers and client can reside
completely in the user space. Moreover, PVFS enables
distributed metadata server for scalable metadata operations.
As also shown in Figure 2, a client opens and creates a file
through a metadata server (step 1). It may choose another
metadata server as shown by the dashed line. As a result of
Step 1, a metafile is created for the new file and a handle is

returned to the client. With the file attributes from the
metafile handle, this client then creates datafiles in a striped
manner through I/O servers (steps 2 and 3). The same
metafile handle can be propagated to other clients and used to
perform parallel I/O accesses. Through striped and parallel
I/O, PVFS enables scalable aggregated bandwidth from many
I/O servers.

Figure 2 PVFS System Architecture

2.2 A Xen-HPC I/O Environment for Virtualized
Parallel I/O

To gain insights into the effectiveness of virtual
environments, such as Xen [6], for data-intensive HPC
applications, one needs to understand their impacts to parallel
I/O. We have configured a cluster of 24 Linux blades as a
testing virtual environment. Each node in this cluster is
equipped with an Intel Xeon 2.6 GHz processor, 512KB
cache, 1GB physical memory, and a 7200RPM, ATA/100
Western Digital hard disk WD800JB. All nodes are
connected to a 48-port Gigabit Ethernet network, and a 144-
port IB [13] network using PCI-X [28] SDR host channel
adaptors.

Figure 3 A Xen-HPC I/O Environment for Parallel I/O
Applications

Figure 3 shows a diagram of our experimental testbed
for Xen-HPC I/O applications. A PVFS file system is
configured with five I/O servers and a metadata server. They
are running over native Linux, version 2.6.16. In this paper,
in contrast to enterprise deployments with virtualized servers,
we focus on evaluating the virtualized HPC environment
where only computing nodes are virtualized, so native Linux
is used here for the servers to provide non-virtualized disk
I/O performance [10]. A varying number of Xen Virtual
Machines (VM) is created over the virtual machine monitors
(VMM, a.k.a hypervisor) on other nodes. Xen VM is
available for user accesses, so called domain U (DomU). All

DomUs go through a privilege domain called domain 0
(Dom0) to gain accesses to hardware resources. Each of the
physical nodes has only a single CPU. The theme of Xen
para-virtualization is the combination of a thin hypervisor and
a privilege domain (Dom0) for efficient virtualization. As
shown in Figure 3, DomUs in the virtual cluster perform I/O
accesses to the PVFS file system via Gigabit Ethernet or IB.
Parallel I/O programs are running on the Xen-based virtual
cluster. PVFS-2.6.1 is used in this configuration. So we
create only one VM per physical node to avoid performance
disturbance between two DomUs on a single CPU. MPICH2-
1.0.3 [5] and MVAPICH2-0.9.3 [26] are used for TCP and IB
[14] experiments, respectively.

3 Xen-HPC I/O with TCP

We conducted a performance analysis of parallel I/O
using the IOR benchmark [1], version 2.9.1. IOR is a
benchmark that tests the performance of various parallel I/O
patterns including independent I/O to separate files,
independent I/O to a shared file, as well as collective I/O.
Each process in IOR writes to or reads from a contiguous
block of buffer (up to the entire memory available) to the
parallel file system. Our goals were to find out the best IOR
performance over Xen virtual machines (DomU), as well as
the virtualization overhead compared to native Linux and
Xen Dom0. To this purpose, we tested the performance of
IOR with parallel I/O to both separated files and a shared file.
We considered that collective I/O is highly dependent on data
contiguity and compositions, so an evaluation of collective
I/O performance would require a different study using
applications with various patterns, thus was not included in
this presentation.

3.1 Baseline Performance for Xen-HPC I/O

We tested the performance of parallel I/O over Xen/TCP
using the default networking configuration of Xen-3.0.3.
128MB was chosen as the block size of each process in IOR.
5 iterations were performed for both writes and reads. IOR
also provides a parameter for specifying the transfer size,
which is the size of data in each I/O call. With a conventional
understanding that large request sizes can improve I/O
performance, we experimented with a series of request sizes
from the default, 256KB, to 2MB. Then we chose 1MB as the
fixed transfer unit size. Figure 4 shows the performance of
parallel writes over different execution environment using
separated files and a shared file, respectively. Parallel writes
using both separated files and a shared file scale well with the
increasing number of processes. Parallel writes from Xen
DomUs have about 10-29% and 5-32% bandwidth losses
compared to native Linux and Xen Dom0, respectively.
Figure 5 shows the performance of parallel reads using
separated files and a shared file, respectively. Parallel reads
using both separated files and a shared file perform quite
poorly compared the performance of parallel write. Parallel

reads in DomU perform slightly worse than the same in
Dom0.

3.2 Impact of Memory-based Storage
In measuring the baseline performance measurement, the

PVFS I/O servers were configured with the backend ext3 disk
file system. Data were directly served from the servers’
buffer cache. So it is unlikely that the low performance of
under 100MB/sec was related to disk performance. However,
to make sure that it is also not due to the processing of ext3
disk file systems, we repeated the same parallel read
experiments using a memory-based file system, tmpfs, for
PVFS storage. Figure 6 shows the results with memory-based
storage. The performance of parallel reads is improved
slightly. However, it remains low for small number of
processes. This suggests that the cause of low read
performance is neither due to the server’s local file system
nor due to the server’s disks.

3.3 Xen-HPC I/O with TCP Optimizations
The release of Xen-3.0.4 provided a generic support for

TCP offloading including checksum offloading, TCP
segmentation, as well as scatter/gather support. We took this
release and evaluated the performance of IOR reads and
writes with the offloading options turned on and off. Note
that, the PVFS servers were configured over native Linux
2.6.16, in which segmentation and checksum offloading were
enabled by default.

 Figure 7 shows the performance of IOR reads and
writes with and without TCP segmentation and checksum
offloading. While offloading TCP segmentation and
checksum is beneficial to parallel writes, but parallel reads
remain indifferent to this tuning. Taken into the fact that TCP
segment offloading functions only on the sender side, it is
understandable that such tuning has no effects on parallel
reads, which is largely dependent on the receiver side TCP
processing. Based on these results, we believed that the low
read performance was not due to the file system processing or
the disk storage, and the offloaded TCP protocol did not help
the problem either.

3.4 Tuning Parallel Read with Oprofile
We considered to pursue a performance profiling with

Oprofile [2] to further examine the performance of parallel
read. Oprofile is a profiling tool that takes advantage of
hardware counters provided from different CPU architectures
and provides detailed statistics on programs and operating
system instruction counts, cache misses, TLB and memory
accesses, as well as the timing of individual functions and
libraries. Oprofile support for Xen was developed by HP and
available since Xen-3.0.3. We profiled Xen Dom0 using two
hardware counters, GLOBAL_POWER_EVENTS and
BSQ_CACHE_REFERENCE. The former provides a counter on

IOR Write to Separate Files

0

50

100

150

200

250

2 4 6 8 10 12 14 16
No. of Processes

Linux Xen-Dom0 Xen-DomU

IOR Write to Shared file

0

50

100

150

200

250

2 4 6 8 10 12 14 16
No. of Processes

Linux Xen-Dom0 Xen-DomU

 Figure 4 TCP-based Parallel Write over Linux, Xen Dom0 and DomU

IOR Read from Separate Files

0

30

60

90

120

150

2 4 6 8 10 12 14 16
No. of Processes

Linux Xen-Dom0 Xen-DomU

IOR Read from Shared File

0

30

60

90

120

150

180

2 4 6 8 10 12 14 16
No. of Processes

Linux Xen-Dom0 Xen-DomU

Figure 5 TCP-based Parallel Read over Linux, Xen Dom0 and DomU

DomU Parallel Read with tmpfs-based PVFS2

0

20

40

60

80

100

120

140

2 4 6 8 10 12 14 16
No. of Processes

separated files-ext3 shared files-ext3
separated files-tmpfs shared file-tmpfs

0

50

100

150

200

250

2 4 6 8 10 12 14 16
No. of Processes

DomU-write offload DomU-write no offload
DomU-read offload DomU-read no offload

Figure 6 DomU Parallel Read over TCP with Memory-

Based Storage
Figure 7 DomU IOR Performance with TCP
Segmentation and Checksum Offloading

the time when the process is not stopped, and was used with a
mask 0x1 to profile the execution time; the latter measures
the cache references as seen by the bus unit, and was used
with a mask 0x7 for L1 misses and 0x100 for L2 misses.

Table 1 Cache Misses for IOR
Total Count Read Write

L1 Cache Misses 88933 53991

L2 Cache Misses 4261 3860

The profiling results with BSQ_CACHE_REFERENCE
identified some differences in the cache behaviors of IOR
reads and writes. Table 1 shows the total L1 and L2 cache
misses for IOR with 16 processes. Based on this
phenomenon, we tested a variety of IOR transfer sizes from
1KB to 1MB, to check whether reduced memory footprint
would lead to better cache behavior and improve the
performance. Figure 8 shows the performance of IOR read
when the transfer size varies between 16KB and 1MB. The
default curve with 256KB socket buffer size and window
scaling (Sock=256KB, w/ WS) indicates that the best
performance is achieved at 64KB, which is 4 times more than
the performance with transfer sizes of 128KB and bigger.

However, we could not observe significant differences in
cache behaviors between IOR reads with these transfer sizes.
On the other hand, the timing profile with the hardware
counter GLOBAL_POWER_EVENTS indicated that a larger
portion of the time was spent in kernel-level network
processing with 1MB IOR transfer size, compared to 64KB.
Then, we further tuned the performance of parallel reads with
various TCP options. Other curves in Figure 8 show the
results. We found that, besides the conventional option of
using large socket buffers, it was also beneficial to disable
TCP window scaling for parallel reads. Both these options
significantly improve the IOR read performance with a
transfer size of 128KB. However, neither can improve the
performance for even bigger transfer sizes. We speculate that
this be constrained by the internal PVFS configuration. In
addition, Figure 9 shows that the performance of parallel
reads with the 64KB transfer size. The read bandwidth scales
up linearly to more than 400MB/sec at 8 processes, and then
reaches its plateau with more processes.

4 Xen-HPC I/O over IB
IB [13] is a high performance, low latency interconnect

technology for computer clusters. It has rapidly gained its
presence in various leading supercomputing sites in the world
[4]. IB [13] support for Xen [6] is recently developed at IBM
by Liu et al.[18]. The Xen release 3.0.2-2 patched with
VMM-bypass IB [18] support was used in these experiments.
Xen/IB implementation delegates user-accessible memory
regions to DomU in order to support RDMA communication
without going through Xen VMM, so-called VMM-bypass. It
was also demonstrated as a viable approach to offer high

performance parallel communication for scientific
applications [12]. However, it is yet to be examined whether
IB is ready for data-intensive applications in Xen-HPC I/O
environments.

In this section, we describe the performance evaluation
of Xen/IB virtual machines in terms of their parallel I/O
performance. Our experiments were conducted using the
same IOR parameters as described in Section 3.1. Figure 10
shows the performance of parallel writes over different
execution environment using separated files and a shared file,
respectively. For both cases, parallel writes scale well till
reaching a plateau around 260 MB/sec. The performance
comparisons between DomU and native Linux showed that
virtualization overhead is negligible, by and large within 3%.
Notably, through repeated testing, the performance of parallel
writes from Dom0 is consistently higher than that of native
Linux by a little margin, which may be an indication of light-
weight implementation of Xen Dom0 and VMM. Figure 11
shows the performance of parallel reads using separated files
and a shared file, respectively. Parallel reads scale similarly
to parallel write. Again, there is little virtualization overhead
when comparing DomU and native Linux.

These results suggest that the VMM-bypass Xen/IB
implementation is effective in exposing native parallel I/O to
Xen-based virtual machines. The strengths of Xen/IB are
ultimately due to the IB hardware’s bandwidth capacity and
its RDMA mechanism. RDMA eliminates multiple data
copies at the networking layer and relieves processors from
costly network processing and data handling. Note that we
were not able to enhance the performance of Xen-HPC I/O
over Xen/IB by tuning the IOR parameters. This is reasonable
because the bulk of network processing over IB occurs on the
network interface, unlike the TCP case where (for parallel
read) the bulk of processing for message reception happens in
the kernel of the operating system. Nonetheless, this does
suggest that Xen-HPC I/O over IB may have room for
improvement on the performance of parallel reads. However,
this awaits a further examination of the implementation of
PVFS on the IB network.

5 Live Migration for Parallel I/O Programs

Nowadays many HPC applications face the need of
migration either to avoid the exponentially decreasing mean-
time-between-failure (MTBF) or to achieve good balancing
of applications among different partitions of HPC platforms
[4]. Due to the difficulty of maintaining open file descriptors,
many checkpointing/migration tools require the open files to
be closed before checkpointing/migration can take place [9].
This makes it more difficult for data-intensive HPC
applications to achieve run-time migration. The migration
capability of virtual machines came as a possible remedy to
this situation because the entire OS is migrating along with
the application. No extra effort is needed for saving open file
descriptors. Thus the migration capability of virtual machines

IOR Read to a Shared File

0

100

200

300

400

500

16KB 32KB 64KB 128KB 256KB 512KB 1MB

Transfer Size

Sock=256KB w/ WS Sock=256KB w/o WS
Sock=1MB w/ WS Sock=1MB w/o WS

IOR Read to a Shared File

0

100

200

300

400

500

4 6 8 10 12 14 16
No. of Processes

DomO-Read DomU-Read

Figure 8 Tuning IOR over TCP Figure 9 IOR Read with Increasing Processes

IOR Write to Separate Files

40

80

120

160

200

240

280

2 4 6 8 10 12 14 16
No. of Processes

Linux Xen-Dom0 Xen-DomU

IOR Write to A shared file

40

80

120

160

200

240

2 4 6 8 10 12 14 16
No. of Processes

Linux Xen-Dom0 Xen-DomU

Figure 10 Parallel Write over InfiniBand on Linux, Xen-Dom0 and Xen-DomU

IOR Read from Separate Files

40

80

120

160

200

240

2 4 6 8 10 12 14 16
No. of Processes

Linux Xen-Dom0 Xen-DomU

IOR Read from A Shared File

40

80

120

160

200

240

2 4 6 8 10 12 14 16
No. of Processes

Linux Xen-Dom0 Xen-DomU

Figure 11 Parallel Read over InfiniBand on Linux, Xen-Dom0 and Xen-DomU

Parallel Migration Time

0

2

4

6

8

10

12

240MB 380MB 500MB

DomU Memory Size

DomU w/o BT-IO DomU with BT-IO

200

220

240

260

280

300

320

340

360

0-Proc 2-Procs 4-Procs 8-Procs

No of Processes Migrated

Int=1min Int=2min Int=4min

Figure 12 DomU with Different Memory Sizes Figure 13 BT-IO with Different Migration Intervals

can be a useful alternative to other fault tolerance tools such
as TICK [11] and BLCR [9]. Using NAS I/O benchmark, we
have analyzed and quantified the cost and scalability trend for
the migration of parallel I/O programs.

NAS BT-IO [35] is an I/O benchmark that tests the I/O
capability of NAS BT (Block-Tridiagonal) parallel
benchmark. It is developed at NASA Ames Research Center.
The data structures are represented as structured MPI
datatypes and written to a file periodically. We run BT-IO,
class A, both on 9 processes (one per virtual machine per
physical node). A varying number of BT-IO processes were
migrated at the run time and the total execution time was
collected. The migration experiments were conducted over
Gigabit Ethernet. The parallel live migration was carried out
using a migration script via MPI. The total migration time
and the BT-IO execution time were collected.

Figure 12 shows the migration time for DomU with
different memory sizes. DomU with more memory leads to
longer migration time. The migration time for DomU with a
running BT-IO program is also longer compared to that
without BT-IO. Note that the migration time actually remains
the same when a different number of DomUs are migrated
(variations not shown). Nonetheless, the migration of many
more virtual machines is likely to present a challenge to the
bandwidth capacity of Gigabit Ethernet. We believe that
future migration support of Xen VM over IB will relieve this
concern because of its high bandwidth. Figure 13 shows the
execution time of BT-IO when an increasing number of
processes are being migrated at different frequencies, once
every 1 to 4 minutes. At 4 minutes interval, the cost of
migration, i.e. the increased BT-IO execution time due to
migration, stays within 5% of the total execution time when
no processes are migrated.

6 Related Work
Reducing the performance overhead associated with

virtualization has been investigated in various studies. For
example, Xen [6] and Denali [33, 34] have attempted the idea
of para-virtualization to achieve light-weight virtualization.
Virtualization has led to an extended path for hardware
accesses from virtual machines. For example, Sugerman et al.
[29] have described the network virtualization overhead in
the VMware architecture, and strategies to reduce it by way
of reducing the cost of emulated I/O access to virtual devices.
Menon et al. [21] has documented the networking access
overhead. Menon et al. [20] have further proposed
optimizations, such as TCP segmentation offloading [19, 22],
checksum offloading and scatter-gather DMA, for improved
network virtualization. High speed interconnects, such as IB
[13] and Myrinet [23], adopt an OS-bypass mechanism for
direct device access from user-applications. However, user
applications in virtual environment are segregated further
from hardware devices with the addition of VMM. Liu et al.
[18] have attempted the idea of VMM-bypass I/O to enable

direct hardware device accesses, i.e. RDMA, from
applications in Xen virtual machines.

Research in [12, 36] studied the feasibility of high
performance computing in virtualized environment. Huang et
al. [13] proposed a case for high performance computing
platform composed of Xen-based virtual machines and IB
support. Their work showed the cost of virtualization is rather
light for scientific kernel benchmarks such as NAS Parallel
Benchmarks [25]. However, it is not yet shown how parallel
I/O would scale in that environment, nor can it be applicable
to parallel I/O over legacy network protocols such as TCP.
Youseff et al. [36] studied the applicability of Xen for high
performance computing. It remains open what overhead the
Xen virtual environment would bring to the parallel I/O
programs. Neither of the studies has addressed the cost of
migration and its scalability.

Checkpointing/migration support was developed for the
purpose of load balancing and fault tolerance. Several recent
efforts exploited such support for high performance
applications, for example, TICK [11], BLCR [9] and MC3
[15]. These implementations support application
migration/restart by virtual of system-level checkpointing. It
remains to be demonstrated how effective they can support
migration of parallel I/O programs. Because file descriptors
are contained within operating system, which cannot be
migrated along with the applications, BLCR specifically
states that checkpointing for open files is not supported [11].
Work in [24] have presented an IPMI-based [14] system
health monitoring framework to provide proactive fault
tolerance for HPC applications. Our work is complementary
to [24] in addressing the migration cost and scalability of
HPC programs with intensive parallel I/O.

7 Conclusions

In this paper, we have presented a parallel I/O
perspective on the issue of how viable Xen-based HPC
environment would be to data-intensive parallel programs.
We have shown that parallel I/O in Xen DomU can achieve
good performance over both IB and TCP (with tuning). We
have also highlighted a process for performance tuning to
achieve good parallel read bandwidth. Moreover, we have
demonstrated that the Xen-based virtual environment can
provide a scalable and light-weight live migration support for
parallel I/O programs.

In the future, we also intend to carry out a
comprehensive study on collective I/O performance using a
set of collective I/O programs that stress the parallel file
system with both non-contiguous I/O [7] and structured data
models such as HDF5 [32] and Parallel netCDF[16]. We also
intend to investigate how large-scale data-intensive
applications can take advantage of high performance I/O and
light-weight migration in Xen-based virtual environment.

References

[1] "IOR Benchmark."
http://www.llnl.gov/asci/purple/benchmarks/limited/ior.

[2] "Oprofile, A System Profiler for Linux ".
http://oprofile.sourceforge.net/news/.

[3] "The Parallel Virtual File System, Version 2."
http://www.pvfs.org/PVFS.

[4] "TOP 500 Supercomputers." http://www.top500.org/.
[5] Argonne National Laboratory, "MPICH2." http://www-

unix.mcs.anl.gov/mpi/mpich2/.
[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.Ho, R.

Neugebauer, I. Pratt, and A.Warfield, "Xen and the Art of
Virtualization.," 19th ACM Symposium on Operating Systems
Principles, 2003.

[7] A. Ching, A. Choudhary, W.-k. Liao, R. B. Ross, and W. Gropp,
"Noncontiguous I/O through PVFS," IEEE Cluster Computing,
Chicago, IL, 2002.

[8] J. Dike, "User Mode Linux," http://user-mode-linux.sourceforge.net.
[9] J. Duell, P. Hargrove, and E. Roman, "The Design and Implementation of

Berkeley Lab's Linux Checkpoint/Restart," Technical Report Berkeley
Lab 2002.

[10] L. C. a. R. Gardner, "Measuring CPU Overhead for I/O Processing in
the Xen Virtual Machine Monitor," The USENIX Annual Technical
Conference, Short Paper, 2005.

[11] R. Gioiosa, J. C. Sancho, S. Jiang, and F. Petrini, "Transparent
Incremental Checkpointing at Kernel Level: A Foundation for Fault
Tolerance for Parallel Computers," Proceedings of ACM/IEEE
SC'2005, Seattle, WA, 2005.

[12] W. Huang, J. Liu, B. Abali, and D. K. Panda, "A Case of High
Performance Computing with Virtual Machines," The 20th ACM
International Conference on Supercomputing (ICS '06), 2006.

[13] InfiniBand Trade Association, "InfiniBand Architecture Specification,
Release 1.2.."

[14] Intel, "Intelligent Platform Management Interface."
http://www.intel.com/design/servers/ipmi/.

[15] H. Jung, D. Shin, H. Han, J. W. Kim, H. Y. Yeom, and J. Lee, "Design
and Implementation of Multiple Fault-Tolerant MPI over Myrinet
(M3)," ACM/IEEE Supercomputing, Seattle, WA, 2005.

[16] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, and R.
Latham, "Parallel netCDF: A High Performance Scientific I/O
Interface," Proceedings of the Supercomputing '03, 2003.

[17] Z. Lin, S. Ethier, T. S. Hahm, and W. M. Tang, "Size Scaling of
Turbulent Transport in Magnetically Confined Plasmas," Phys. Rev.
Lett., vol. 88, pp. 195004, 2002.

[18] J. Liu, W. Huang, B. Abali, and D. K. Panda, "High Performance
VMM-Bypass I/O in Virtual Machines," The USENIX Annual
Technical Conference, 2006.

[19] S. Makineni and R. Iyer, "Architectural characterization of TCP/IP
packet processing on the Pentium M microprocessor," the 10th
International Symposium on High Performance Computer Architecture,
2004.

[20] A. Menon, A. L. Cox, and W. Zwaenepoel, "Optimizing Network
Virtualization in Xen," The USENIX Annual Technical Conference,
2006.

[21] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W.
Zwaenepoel, "Diagnosing Performance Overheads in the Xen Virtual
Machine Environment," First ACM/USENIX Conference on Virtual
Execution Environments (VEE'05), 2005.

[22] D. Minturn, G. Regnier, J. Krueger, R. Iyer, and S. Makineni,
"Addressing TCP/IP Processing Challenges Using the IA and IXP
Processors," Intel Technology Journal, 2003.

[23] I. Myricom, "Myrinet Express (MX): A high-performance, low-level,
message passing interface for Myrinet."

[24] A. Nagarajan and F. Mueller, "Proactive Fault Tolerance for HPC with
Xen Virtualization," Technical Report, January, 2007.

[25] NASA, "NAS Parallel Benchmarks." http://www.nas.nasa.gov-
/Software/NPB/.

[26] Network-Based Computing Laboratory, "MVAPICH: MPI for
InfiniBand on VAPI Layer." http://nowlab.cse.ohio-
state.edu/projects/mpi-iba/.

[27] P. H. Carns and W. B. Ligon III and R. B. Ross and R. Thakur, "PVFS:
A Parallel File System For Linux Clusters," Proceedings of the 4th
Annual Linux Showcase and Conference, Atlanta, GA, 2000.

[28] PCI-SIG, "PCI I/O Virtualization." http://www.pcisig.com/.
[29] J. Sugerman, G. Venkitachalam, and B. Lim, "Virtualizing I/O devices

on VMware Workstation's Hosted Virtual Machine Monitor," The
USENIX Annual Technical Conference, 2001.

[30] R. Thakur, W. Gropp, and E. Lusk, "An Abstract-Device Interface for
Implementing Portable Parallel-I/O Interfaces," Proceedings of
Frontiers '96: The Sixth Symposium on the Frontiers of Massively
Parallel Computation, 1996.

[31] R. Thakur, W. Gropp, and E. Lusk, "On Implementing MPI-IO Portably
and with High Performance," Proceedings of the 6th Workshop on I/O
in Parallel and Distributed Systems, 1999.

[32] The National Center for SuperComputing, "HDF5 Home Page."
[33] A. Whitaker, M. Shaw, and S. Gribble, "Denali: Lightweight virtual

machines for distributed and networked applications," the USENIX
Annual Technical Conference, Monterey, CA, 2002.

[34] A. Whitaker, M. Shaw, and S. Gribble, "Scale and Performance in the
Denali Isolation Kernel," Operating Systems Design and
Implementation, 2002.

[35] P. Wong and R. F. Van der Wijngaart, "NAS Parallel Benchmarks I/O
Version 2.4," Technical Report NAS-03-002, NASA Advanced
Supercomputing (NAS) Division 2002.

[36] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, "Paravirtualization for
HPC Systems.," Workshop on Xen in High-Performance Cluster and
Grid Computing, 2006.

