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Signal Emulation Attack and Defense for Smart
Home IoT
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Abstract—Internet of Things (IoT) is transforming every corner of our daily life and plays important roles in the smart home. Depending
on different requirements on wireless transmission, dedicated wireless protocols have been adopted on various types of IoT devices.
Recent advances in Cross-Technology Communication (CTC) enable direct communication across those wireless protocols, which will
greatly improve the spectrum utilization efficiency. However, it incurs serious security concerns on heterogeneous IoT devices. In this
paper, we identify a new physical-layer attack, cross-technology signal emulation attack, where a WiFi device eavesdrops a ZigBee
packet on the fly, and further manipulates the ZigBee device by emulating a ZigBee signal. To defend against this attack, we propose
two defense strategies with the help of an anchor. Particularly, the passive defense strategy focuses on misleading the ZigBee signal
eavesdropping, while the proactive approach develops a real-time detection mechanism on distinguishing between a common ZigBee
signal and an emulated signal. We implement the complete attacking process and defense strategies with TI CC26x2R LaunchPad,
USRP-N210 platform, and smart LED light bulbs, as well as a self-designed prototype, where a general light bulb can be turned on/off by
a Nexus 5 smartphone directly. Extensive experiments have demonstrated the existence of the attack, and the feasibility, effectiveness,
and accuracy of the proposed defense strategies.

Index Terms—Internet of Things, Signal Emulation Attack, Cross-Technology Communication
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1 INTRODUCTION

The proliferation of the Internet of Things (IoT) enables
ubiquitous connections among various wireless devices,
such as wearable health monitors, security locks, fitness
trackers, etc., for bettering our daily life [1, 2]. According to
a recent market report [3], it is expected the number of IoT
devices will reach to a total of 41.6billion by 2025. Among
different wireless technologies being used, ZigBee is one of
the dominant protocols used for smart home applications.
Many household appliances have equipped with ZigBee
chips for receiving commands from a multi-protocol gate-
way (ZigBee communication) and further being managed
by users’ mobile devices (WiFi communication). However,
the wireless transmission between the gateway and ZigBee
devices can be easily overheard by eavesdroppers, in the
sense that the smart home IoT devices have the potential
of being hacked in the wireless environment. Consider-
ing the dramatic growth of IoT used in home areas and
the critical functionalities that IoT has involved, the loss
could be immense. For example, attackers can turn on the
cooling on smart thermostats during winter, unlock the
smart garage door, and even turn off security camera for
break-in, by transmitting the eavesdropped ZigBee signal
directly without using the authorized gateway. Even worse,
as our experimental results demonstrate, existing upper-
layer cryptographic approaches do not work, and thus the
attacker can completely bypass the upper-level security
detection at ZigBee receivers.
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Besides ZigBee, WiFi and Bluetooth protocols also play
important roles in smart home applications. They all occupy
the Industrial, Scientific, and Medical (ISM) 2.4 GHz band,
generating a heterogeneous environment [4–7]. To tackle
the interoperability issue, Cross-Technology Communica-
tion (CTC) serves as a feasible solution by enabling di-
rect communication among devices across different wireless
technologies [8–10]. It can greatly avoid repeated data trans-
mission among different protocols, enhance the spectrum
efficiency in the already-crowded ISM band, and reduce the
cost of gateway deployment. However, this new paradigm
poses significant security challenges. One of them is:an at-
tacker with a different protocol can take advantages of CTC
to launch long-range attacks to IoT devices without being
identified. Even worse, the low-computational capabilities
of IoT devices hinders the deployment of computational-
intensive cryptographic approaches at higher layers for
detection. Taking WiFi to ZigBee CTC as an example, with a
much higher transmission power and mobility, WiFi devices
can generate a stronger signal with a greater transmission
range than ZigBee devices. As a result, WiFi devices can
successfully attack ZigBee devices from a further distance
without being found, making the attack more practical and
powerful. Given the increasing deployment of IoT devices,
it is critical to detect this type of attack and design effective
countermeasures.

In this paper, we identify a new attack named as Signal
Emulation Attack in the practical smart home scenario,
where a WiFi attacker first eavesdrops on the control mes-
sage by listening to the communication between ZigBee
devices and their gateway. Then, it embeds the control
message into its WiFi signal to manipulate the function-
ality of ZigBee devices. The emulated signal can pass the
demodulation process at the ZigBee receiver, and thus it is
infeasible to be detected. To protect the ZigBee devices, this
work proposes two defense strategies with the help of an
auxiliary anchor. We list our contribution as follows,
• We identify a new physical-layer attack, the signal
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Fig. 1: Experiment on the Vulnerability of ZigBee devices

emulation attack, in the heterogeneous environment.
• The proposed passive defense strategy prevents the

WiFi attacker from emulating a perfect ZigBee signal
by leveraging an anchor, i.e., a smartphone or a
software-defined radio (SDR) transmitter, who can
send the noise on the same spectrum as the ZigBee
signal.

• We also propose a proactive defense strategy to pro-
tect ZigBee receiver with the help of the anchor, i.e.,
a software-defined radio (SDR) WiFi receiver, which
can get the QAM symbols from the received signal
and determine whether the signal is coming from a
valid ZigBee source in a real-time manner.

• We perform extensive experiments to validate threats
of the signal emulation attack and further demon-
strate the effectiveness of two defense strategies.

• We design a real-world prototype and a smartphone
testbed to enable the smartphone to perform the
signal emulation attack, while defense strategies are
thoroughly evaluated in practical scenarios.

The rest of this paper is organized as follows. Sec.2
illustrates the motivation of signal emulation attack, to-
gether with the introduction of a threat model. Sec. 3 gives
some background information about the ZigBee receiver
and the WiFi transmitter, based on which we demonstrate
the details of the signal emulation attack in Sec. 4. As
the countermeasures, passive and proactive strategies are
proposed in Sec. 5 and Sec. 6, respectively. We give our
experimental confirmation of the signal emulation attack as
well as evaluation of two defense strategies in Sec. 7. Sec. 8
discusses related work, followed by the conclusion in Sec. 9.

2 MOTIVATION

From the attackers’ perspective, when performing attacks
to ZigBee devices, one of the major difficulties is the short
attacking range (approx. 10m). Due to the limited transmis-
sion power, attackers are identified within the line-of-sight
(LoS) range. In what follows, we conduct an experiment
to demonstrate the limitation of attacking ZigBee devices
using the ZigBee protocol, and further discuss the feasibility
and severeness of the WiFi-enabled emulation attack.

2.1 Experimental Results and Observations
2.1.1 Experiment Settings
As shown in Fig.1a, we use a Commercial off-the-shelf
(COTS) Sylvania ZigBee LED [11] light bulb as the IoT de-
vice. We let a gateway send “TURNING ON” and “TURNING

OFF” commands to the LED. The CC26x2R LaunchPad [12]
(ZigBee attacker) is deployed to eavesdrop on the com-
munication between the gateway and LED. The command
messages are stored and re-sent using both the launchPad
and USRP (WiFi attacker) as shown in Fig. 1b, where the
USRP sends an emulated signal based on the eavesdropped
ZigBee signal. Given the experimental results, we analyze
the advantages of using WiFi for launching the attack.

2.1.2 Payload Analysis

We use WireShark [13] to analyze the packets sent by the
gateway in Fig.1c. The CC26X2R LaunchPad is deployed to
send the eavesdropped ZigBee packet for attacking the LED.
Although the commands change over time, the ciphertext
form of “TURNING ON” shown in the “Data” field can still
be re-used on the LaunchPad for turning on the LED as
shown in Fig.1d. In our case, the receiver LED does not
verify the sequence numbers and frame counters, making
it already vulnerable to the replay attack. However, even if
the protocol enforces the verification to defend, this type of
attack is still possible because of the potential key leakage
issue during the initialization process [14–16] especially
when there is a new device added into the network [17].
Many cracking tools [18] can be used to steal the keys and
finally decrypt the received commands. Therefore, even if
ZigBee devices are using symmetric upper-layer encryption
schemes, such as AES-CCM, this type of attacker still can
change the sequence number and/or frame counters in the
decrypted message and then re-encrypt as a new message,
achieving the successful replay attack to ZigBee devices.

2.1.3 Attacking Performance Analysis

From the perspective ZigBee devices, given the above vul-
nerability, they may suffer even more serious attacks in
the heterogeneous environment consisting of malicious WiFi
attackers because of their advantages as follows.

• Attacking range: Adopting IEEE802.15.4 protocols,
the transmission power of ZigBee attackers is rel-
atively low at 5dBm, while a common smartphone
WiFi transmission power is 6-7 times more than that,
making the attacking range greatly improved.

• Attacker detection: The low transmission power of
ZigBee attackers prevents them from performing the
attack at Non Line-of-Sight (NLoS) locations. Thus,
they are at a higher risk of being detected. However,
the WiFi attacker can stay at NLoS locations to attack
ZigBee devices without being found.
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• Device ubiquity: Compared to WiFi devices that
pervasively exist in people’s daily life, devices with
ZigBee protocol are always fixed at certain places,
which reduces the feasibility for attacks.

From the attacker’s viewpoint, to verify the feasibility
and benefits brought by WiFi protocol, we extend the above
experiment by using a USRP to attack LED using both
ZigBee signal and WiFi emulated signal (detail will be
presented later). We also deploy a LaunchPad next to LED
to record received packets.

As shown in Table.1, both the symbol-error-rate (SER)
and packet-error-rate (PER) will increase in the LoS scenario
for both ZigBee and WiFi attackers, resulting in a significant
drop in attack success rate. When both attackers are closer
to the LED, their SER and PER remain similar. However,
the WiFi attacker has higher attacking success rate as the
distance increases to 15m and 20m. In addition, due to
the NLoS propagation feature of the WiFi signal, the WiFi
attacker can also launch the attack when hiding outside of
the house. According to the above discussion, WiFi attackers
are more powerful than ZigBee attackers in terms of 1)
longer attacking range; 2) NLoS capability; 3) ubiquity of
devices. Given these advantages, the resulting consequences
would be immense if no prevention mechanism is deployed.

TABLE 1: Symbol/Packet Level Performance (LoS)

Distance 5m 10m 15m 20m
SER (WiFi) 0.55% 0.4% 0.52% 1.23%
PER (WiFi) 0.75% 1.8% 4.1% 4.8%

SER (ZigBee) 0.51% 0.44% 1.34% 2.31%
PER (ZigBee) 1.1% 1.7% 6% 15.2 %

2.2 Threat Model
Motivated by the above observation, we focus on a physical-
layer signal emulation attack on ZigBee devices. Instead of
launching the attack using ZigBee devices, we consider a
WiFi attacker for longer attacking range and higher success
rate, for which it can hide somewhere (50m away) without
being found. Specifically, the entire signal emulation attack
consists of the following steps.
Step 1: Signal Eavesdropping. The WiFi attacker moves
close to ZigBee devices to eavesdrop on the communication
between ZigBee devices and their authorized gateway.
Step 2: Signal Emulation. The WiFi attacker “translates”
the eavesdropped ZigBee signals into its “own language”,
the emulated signal.
Step 3: Device Attacking. By ensuring the channel is not
occupied by ZigBee devices, the WiFi attacker sends the
emulated signal via its RF component for attacking purpose.

With this being said, the WiFi attacker follows the IEEE
802.11g standard for physical (PHY) and media access con-
trol layer (MAC) when launching the attack. We assume
it is able to eavesdrop on the overlapped frequency band
between WiFi and ZigBee within a close proximity. The WiFi
attacker has the ability of storing the historical knowledge
of ZigBee signals, such as eavesdropping time, location,
and amplitude. Given previously discussed advantages, the
WiFi attacker can be any device with a WiFi radio, which
sends signals with a higher power (approx. 8dB higher than
ZigBee) at any place within the transmission range. Due to
protocol differences, the WiFi capabilities are limited in the
following aspects: 1) WiFi attackers are unable to generate

a WiFi signal that is completely the same with the eaves-
dropped ZigBee signal; and 2) WiFi attackers are unable to
simply replay and amplify the eavesdropped ZigBee signal.

As for ZigBee devices, they follow the IEEE 802.15.4
standard. Mostly, they are fixed at specific locations, such
as kitchen, bedroom, and garage, where they communicate
with gateways as usual. In particular, they are unable to
detect the existence of WiFi attackers. Most importantly, we
assume they cannot distinguish the sources of received sig-
nals and can only execute the command as long as the signal
passes its security check (in the case where cryptographic
keys have been compromised).

3 PRELIMINARIES

Before stepping into the detailed design of signal emulation
attack, we first analyze its feasibility by reconsidering the
ZigBee transmitter/receiver and WiFi transmitter.

3.1 ZigBee Transmitter and Receiver
ZigBee devices work in the unlicensed 2.4 to 2.4835 GHz
ISM bands where 16 channels are allocated. Each channel
occupies 2 MHz bandwidth with 5 MHz spaced apart. They
apply Direct Sequence Spread Spectrum (DSSS) to improve
interference/noise resilience. At the transmitter, each origi-
nal ZigBee symbol (4 bits) is mapped to a 32-chip sequence
by being multiplied by a pseudo-random noise spreading
code. Offset Quadrature Phase Shift Keying (OQPSK) is
deployed as the modulation scheme, which maps every 2
DSSS chips to one of the 4 complex symbols. At the receiver,
after OQPSK decoding, the ZigBee receiver calculates the
Hamming distance between received 32-chip sequence and
all the 16 predefined 32-chip sequences, where each prede-
fined one corresponds to a ZigBee symbol. The predefined
chip sequence having the minimum Hamming distance is
chosen as the candidate. Meanwhile, the ZigBee receiver sets
a threshold. If the minimum Hamming distance is smaller
than the threshold, the received chip sequence is decoded to
the ZigBee symbol that the candidate represents. Otherwise,
the received chip sequence is discarded.

3.2 WiFi Transmitter
WiFi devices have a higher transmission power and longer
transmission range compared to ZigBee devices. They also
work in the 2.4GHz ISM band with 20 MHz bandwidth
for each channel, which results in the potential spectrum
overlapping between the WiFi and ZigBee signals. One
example is that the ZigBee signal occupied on channel 17
(2434−2436MHz) is completely overlapped with that of the
WiFi signal centered on the 2442 MHz (2432 − 2452MHz).
WiFi transmitters deploy complete different PHY techniques
compared to ZigBee transmitter. In our paper, we mainly
consider the following three differences.

3.2.1 Modulation scheme.
WiFi transmitter deploys 64-Quadrature Amplitude Modu-
lation (QAM) followed by the Orthogonal Frequency Divi-
sion Multiplexing (OFDM). Specifically, after preprocessing
(scrambling, encoding, and interleaving), every 6 data bits
are mapped to one of the 64 complex symbols on QAM
constellation. Every 48 complex symbols together with 4
pilot symbols and 12 null symbols, representing the signal
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on 64 subcarriers (each occupies 312.5 kHz bandwidth) re-
spectively, form an OFDM symbol [19] in frequency domain.
The 64-point Inverse Fast Fourier Transform (IFFT) is then
employed, changing the OFDM symbol from the frequency
domain to the time domain.

3.2.2 Cyclic Prefix (CP)
After IFFT, a guard interval (CP), which is the repetition of
the last 16 complex data, is added to the beginning, forming
a complete WiFi symbol with 80 complex data. The CP
together with OFDM helps WiFi signals combat multi-path
effect by inhibiting inter-symbol interference (ISI) between
adjacent OFDM symbols. ZigBee transmitter does not have
CP process.

3.2.3 Repetitive Short Training Sequences (STSs)
WiFi receiver calculates the carrier frequency offset (CFO)
from the center frequency via auto correlation among 10
repetitive STSs. Each STS contains 16 raw WiFi symbol.
Those repetitive STSs do not exist in the ZigBee signals.

In practice, the WiFi device can overhear the ZigBee
signal due to spectrum overlapping. However, it cannot
generate a signal that is completely the same as the ZigBee
signal. Fortunately, the DSSS demodulation allows a few
errors in received signals at the ZigBee receiver, which gives
attackers opportunities to control ZigBee devices. Based
on the above discussion, we list the main challenges in
launching signal emulation attack, 1) how to generate a WiFi
signal that is similar enough to the actual ZigBee signal? and
2) how to guarantee that the emulated signal can pass the
DSSS demodulation and be decoded correctly?

4 SIGNAL EMULATION ATTACK

To answer the above questions, we detail our design in the
signal emulation attack in this section.

4.1 Attack Overview
The signal emulation attack is shown in Fig.2. The WiFi
attacker eavesdrops on the signal from the communication
between ZigBee devices. Then, it generates a signal that is
similar to the eavesdropped one. As a result, the emulated
signal passes the DSSS demodulation process and the Zig-
Bee device executes the command from the WiFi attacker.

ZigBee Gateway

Wi-Fi Attacker

Emulation AttackChannel Listening

Wi-Fi Attacker
ZigBee Device ZigBee Device

Emulation Attack

ZigBee Transmission

Channel Eavesdropping 

Fig. 2: Cross-Technology Signal Emulation Attack

4.2 ZigBee Signal Eavesdropping
4.2.1 Overview
To launch the attack, the WiFi attacker needs to know the
ZigBee transmitter’s signal. Locating close to ZigBee de-
vices, the attacker passively senses the channel and records
the received ZigBee signal. However, with a 20 MHz sensing
bandwidth, the WiFi attacker also senses the signals from
other sources, especially the environmental WiFi signals.
Thus, the difficulty lies in how to recognize and further
capture the ZigBee signal from the received ones.

4.2.2 Short-Distance Eavesdropping

We first conduct an experiment to explain why the WiFi
attacker has to eavesdrop on the ZigBee signal from a short
distance to ZigBee devices. Two USRPs operating at the
Channel 11 (centered at 2405MHz) play roles of the ZigBee
transmitter and receiver, respectively. Their distance is set
to 0.5m, 1m and 1.5m and 2m, respectively. The ZigBee
transmitter randomly sends two signals each time. The real
component amplitude of the received signals is shown in
Fig.3, where the amplitude of the ZigBee signal decreases
with the increase of the distance. When the transmitter is 2m
away from the receiver, the ZigBee signal is overwhelmed
by the noise. However, the ZigBee signal can still be de-
coded by the ZigBee receiver due to the error tolerance of
DSSS. For the WiFi attacker, unfortunately, with completely
different PHY layer techniques, it cannot extract the ZigBee
signal from the noise. Therefore, the WiFi attacker has to
locate in the close proximity to ZigBee devices to eavesdrop
on the ZigBee signal.

Fig. 3: Received signal at ZigBee receiver

4.2.3 ZigBee Signal Distinguish and Extraction

WiFi attacker distinguishes the ZigBee signal from the view
of WiFi frame structure. After detecting a sufficiently high
amplitude, WiFi attacker temporarily stores the received
signal and calculates the CFO as,

fo =
1

16
arg

∑NSTS−1−16

n=0
t[n]t∗[n+ 16], (1)

where t[n] denotes the n-th STS sample and NSTS = 160
represents total STS samples. t∗ is the complex conjugate of
the t. If fo is above a given threshold, the received signal is
supposed to be the ZigBee signal. WiFi attacker stores it for
the further emulation. Otherwise, WiFi attacker assumes it
as a WiFi signal and begins to decode it.

(a) CFO (b) Accuracy

Fig. 4: Eavesdropping Performance at WiFi attacker
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An experiment is conducted to verify the above method.
Two USRPs send WiFi and ZigBee signals alternately while
another USRP plays the role of the WiFi receiver. The
distance between the transmitters and receiver is 0.6m,
1.5m and 2m. Each transmitter sends signals 100 times on
each location. We illustrate the CFO performance in Fig.4a.
The CFO of WiFi signal centralizes at 0 whereas the CFO
of ZigBee signal is far larger (e.g., Z60 denotes ZigBee
signal at 60cm and W100 denotes WiFi signal at 100cm).
Fig.4b shows the eavesdropping accuracy. The false positive
rate represents that the received WiFi signal is mistakenly
considered to be from the ZigBee transmitter whereas the
false negative rate denotes that the received ZigBee signal
is regarded as from another WiFi device. As we can see,
when the WiFi attacker sets its decision threshold for CFO to
around 0.001, it can effectively eavesdrop on ZigBee signal
while the WiFi signal receiving is not affected.

Note that WiFi attacker can effectively extract the ZigBee
signal without buffer overflow and extra cost as explained
in the following. (1), Because WiFi attacker locates near
to ZigBee devices, most RF samples with high amplitudes
should come from either WiFi or ZigBee devices instead of
other devices equipped with different wireless protocols. (2),
Since users’ operations to smart home ZigBee devices usu-
ally have the daily routines, WiFi attacker eavesdrops the
ZigBee signal during a fixed period. Hence, WiFi attacker
does not have to store the received signal all the time. (3),
CFO calculation is the necessary step in signal decoding,
there is no extra computational cost at the WiFi attacker.

Cyclic Prefixing FFT
QAM 

Quantization
Inverse of 

Preprocessing

Zigbee Signal
0101000...

WiFi Data bits

WiFi Attacker Transmitter

Emulated  Signal

......

Fig. 5: ZigBee Waveform Emulation

4.3 ZigBee Signal Emulation

The objective of the ZigBee signal emulation is to generate
a WiFi signal that is similar to the eavesdropped ZigBee
signal. As shown in Fig.5, the attacker processes the eaves-
dropped signal in a reverse direction to obtain the corre-
sponding WiFi data bits, which are sent to ZigBee devices
when launching the attack. We ponder the problem step by
step by comparing the difference between the ZigBee and
WiFi transmitters.

4.3.1 Cyclic Prefix Manipulation

Each WiFi symbol consists of 80 complex data, including
16 cyclic prefix data followed by the 64 effective data.
However, the ZigBee signal does not have such a charac-
teristic. Hence, given 80 eavesdropped data, the attacker
inevitably discards the first 16 data and chooses the rest 64
data as the emulation objective. We assume every 64 data
to be emulated constructs a sample. Meanwhile, we denote
z(n, s), where n = 1, 2, · · · , N and s = 1, 2, · · · , S, as the
n-th data in the s-th sample. We further assume there are S
samples in the eavesdropped ZigBee signal and N = 64.

4.3.2 Frequency Subcarrier Selection

To get the corresponding WiFi data bits for each raw sample,
a 64-point FFT is applied,

Z(k, s) =
∑N

n=1
z(n, s)e−j

2π
N nk, k = 1, 2, · · · ,K, (2)

where the FFT point Z(k, s) denotes the component on the
subcarrier k in the s-th raw sample in the frequency domain
and K = 64. Since each WiFi symbol occupies 20MHz
bandwidth with 64 subcarriers whereas 2MHz bandwidth is
occupied by the ZigBee signal, only 7 subcarriers ( 2

20 × 64)
of the WiFi signal are overlapped with the ZigBee signal.
The WiFi attacker emulates the eavesdropped signal by ma-
nipulating the components on 7 subcarriers. The question
becomes how to locate those subcarriers.

Since the signal on non-overlapped subcarriers is mostly
the noise, the signals on overlapped subcarriers is much
more powerful. Thus, a folding process is deployed to locate
them by considering the energy of the FFT points E(k, s),

E(k, s) = Z(k, s)Z∗(k, s), (3)

where Z∗(k, s) indicates the conjugate of Z(k, s). The en-
ergy E(k, s) forms a two-dimension matrix, where the
elements in the kth row indicate the energy of each raw
sample on the subcarrier k whereas those in the sth column
signify the energy on each subcarrier in the raw sample s.
Thus, a histogram ES(k) of E(k, s) is built according to the
following equation,

ES(k) =
∑S

s=1
E(k, s), k = 1, 2, · · · ,K, (4)

where ES(k) is the total energy of all the samples on the
subcarrier k. We sort ES(k) using the merge-sort algorithm
[20] to identify the location of 8 most powerful subcarriers.
The reason to choose 8 subcarriers instead of 7 is to ensure
that the spectrum occupied by the emulated signal com-
pletely overlaps that occupied by the ZigBee signal. Here,
subcarrier 29− 36 are chosen.

4.3.3 64-QAM Quantization Optimization

WiFi and ZigBee signals have different constellation struc-
tures. An example is shown in Fig. 6a, where blue circles
and red diamonds represent FFT points of the eavesdropped
signal and the 64-QAM constellation, respectively. To get
WiFi data bits, the WiFi attacker quantizes FFT points to 64-
QAM points. Such quantization results in irreversible dis-
tortion. WiFi attacker attempts to minimize the quantization
distortion.

(a) Constellation Comparison
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Fig. 6: 64-QAM Quantization Optimization
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Based on the Parseval’s theorem view [20], minimizing
the signal distortion in the time-domain under energy met-
ric is equivalent to minimizing the total deviation of fre-
quency components after quantization. Hence, our principle
is to choose the closest 64-QAM constellation point to each
of the FFT points in term of Euclidean distance. Without
considering constellation scale, the real and imaginary com-
ponents of the 64-QAM points, QRe and QIm, are chosen
from the set {-7, -5, -3, -1, +1, +3, +5, +7}, respectively. To
minimize quantization errors, a scalar α is introduced. We
have the following optimization problem,

min
α

∑SE

k=SS
(ZRe(k, s)− αQRe(m))

2
+

(ZIm(k, s)− αQIm(m))
2

α > 0, (5)

where ZRe(k, s) and ZIm(k, s) represent real and imaginary
components of the FFT point Z(k, s) respectively. SS and
SE denote the start and end locations of the chosen FFT
points, respectively. Let j =

√
−1. We have Z(k, s) =

ZRe(k, s)+jZIm(k, s). In particular, α(QRe(m)+jQIm(m))
indicates the 64-QAM point that is the nearest to the FFT
point Z(k, s). The optimization problem (5) aims to find
the optimal scalar α such that the total quantization error
between the chosen FFT points and their nearest QAM
points is minimized. However, we cannot solve the problem
directly since different QRe(m) and QIm(m) are chosen for
the same FFT point Z(k, s) given different scalar αs. For
example, we choose 3 FFT points from Fig.6a and mark
them as No. 1, 2, and 3 as shown in Fig. 6b. The scalar for
the red-diamond 64-QAM constellation is α = 1 while that
of the green-pentagram 64-QAM constellation is α = 1.2. In
Fig.6b, the basic QAM point QRe(m) and QIm(m) for No.3
FFT point does not change, which is −3− 3j. However, for
No.1 FFT point, it is changed from −3+3j to −1+3j while
from 3 + 5j to 1 + 5j for No.2 FFT point.

Algorithm 1: Quantization Error Minimization
Input: initial start and end of the scalar range αS and αE

basic 64 QAM constellation points QRe(m) and QIm(m),
m = 1, 2, · · · , 64

chosen FFT points from ZigBee signal samples
Z(k, s), k = SS, SS + 1, · · · , SE, s = 1, 2, · · · , S its
increasing gap δ = 1

error threshold η = 10−5

Output: α∗

1 ê = 0, e = 105;
2 while |ê− e| > η do
3 M = αE − αS/δ ;
4 ê = e ;
5 for i = 0; i < M do
6 αi = αS + i ∗ δ; ei = 0 ;
7 for i = 1; i ≤ 8 ∗ S do
8 for m = 1; m ≤ 64 do
9 D(i,m) = (ZRe(k, s)− αiQRe(m))2 +

(ZIm(k, s)− αiQIm(m))2

10 end
11 E(i) = min

0≤m≤64
D(i,m);

12 k = arg0≤i≤64 E(i);
13 ei = ei + E(k)
14 end
15 end
16 e = min

0≤i≤M
ei; k = arg0≤i≤M e;

17 αS = αk − δ/2; αE = αk + δ/2; δ = δ/10 ;
18 end
19 α∗ = αk ;
20 return α∗;

The above result indicates that an optimal scaler def-
initely exists that results in the least quantization error.

We propose a quick algorithm to find the optimal scalar.
As shown in Algorithm 1, we define a unit quantization
(Line 7 − 14) as the process that quantizes the FFT points
to the 64-QAM points given a scalar and calculates the
corresponding quantization error. Our key idea is that:
instead of processing each unit quantization given a fixed
scalar range [αS , αE ] with a fixed gap δ, we attempt to
minimize the number of unit quantization process with a
variable range and gap. As shown in Step 17, we shrink the
optimal scalar range and decrease the gap simultaneously.
Since the quantization error is a convex function of the
scalar, the global optimal scalar is unique [21]. After each
unit quantization, a current optimal scalar is found given
a scalar range and gap. The global optimal scalar must be
around the current one. Hence, after a few iterations, we can
get a global optimal scalar.

Next, we demonstrate how the proposed algorithm
speeds up the quantization process. Denote the number of
the iterations as Inum. To ease description, we apply the
symbol ′ on the upper right to represent the initial values
while the symbol ∗ to denote the values with the global op-
timal scalar. Without our algorithm, the unit quantization is
processed α′S−α

′
E

δ∗ times to minimize the quantization error
by choosing the optimal scalar. Our algorithm reduces the
times to α′S−α

′
E

δ′ + 10Inum, where δ∗ = δ′10−Inum as shown
in Step 17. In the case with more iterations, our algorithm
decreases the number of unit quantization processes by
about 10Inum times.

Fig. 7: Eavesdropped Signal Vs. Emulated Signal

After 64-QAM quantization, WiFi data bits are obtained
from the inverse process of the interleaver, convolution
encoding, and scrambler as in [8]. Those bits are stored in
the cache. The WiFi attacker launches the attack by sending
them to ZigBee devices.

Fig.7 compares the ZigBee and emulated signals in a
general case where ZigBee devices and WiFi attackers are
centered in different frequencies, e.g., ZigBee on 2405MHz
and WiFi on 2410MHz. The blue lines are the waveform
of the ZigBee signal and the orange line represents the
emulated signal. Those two waveforms are very similar
except those in the red rectangle due to cyclic prefix rules.
To achieve the goal of attacking the ZigBee receiver at its op-
eration frequency, the WiFi attacker allocates the subcarriers
13 − 20 to the emulated signal, which are 16 subcarriers’
ahead from the central subcarrier locations 29 − 36. Hence,
the waveform of the transmitted signal is shown as the
green lines in Fig.7.
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5 PASSIVE DEFENSE STRATEGY

5.1 Motivation
The intuition behind our passive defense strategy is that
“Quantitative Changes lead to Qualitative Changes”. By making
trouble to the eavesdropping process, we mislead the WiFi
attacker to generate the imperfect emulated signal, which
cannot pass the detection at the ZigBee receiver. The pro-
posed approach makes use of an auxiliary WiFi transmitter,
for which we refer as an anchor. As shown in Fig. 8, locating
near the ZigBee transmitter, the anchor transmits the AWGN
noise nz with the mean 0 and the variance σ2 when the
ZigBee device transmits the signal. The signal received at
both the ZigBee receiver and the WiFi attacker becomes,

z′(n, s) = z(n, s) + nz(n, s). (6)

ZigBee DeviceZigBee Gateway

Mobile Anchor

ZigBee Device

Wi-Fi Attacker

Channel Listening Attack & Defense

Wi-Fi Attacker

Discard

Emulation Attack

Wireless Transmission

Channel Eavesdropping 

Fig. 8: Passive Defense Model

5.2 Noise Effect to the WiFi Attacker
In the DSSS demodulation, ZigBee devices set a threshold
to the number of error chips between the received chip
sequence and the predefined ones. In other words, ZigBee
devices tolerate a few error chips for each received chip
sequence. Therefore, even if the ZigBee receiver receives a
signal with a slightly smaller signal-to-noise ratio (SNR),
it still can find one predefined chip sequence, which is
decoded to the corresponding ZigBee symbol. However,
different from the regular decoding process, the noise con-
cealed in the eavesdropped signal would propagate to the
signal emulation process at the WiFi attacker, resulting in
larger quantization distortion.

As in (6), the signal eavesdropped by the WiFi attacker
is a noised ZigBee signal z′(n, s). After the FFT operation,
the output is,

Z ′(k, s) = Z(k, s) +NZ(k, s), (7)

where NZ(k, s) is the FFT points of the AWGN in the
frequency domain. The WiFi attacker quantizes the FFT
point Z ′(k, s) to a QAM point based on Algorithm 1. Denote
the QAM point associated with the FFT point Z ′(k, s) as
Q′(k, s). After quantization, the square error e′(k, s) be-
tween the QAM point and the FFT point of raw signal is,

e′(k, s) = (ZRe(k, s)− αQ′Re(m))
2
+(ZIm(k, s)− αQ′Im(m))

2

However, if the anchor does not emit AWGN noise, the
square error e(k, s) for the FFT point Z(k, s) is,

e(k, s) = (ZRe(k, s)− αQRe(m))
2
+(ZIm(k, s)− αQIm(m))

2

(8)
The noise sent by the anchor tempts the WiFi attacker

to quantize the FFT point Z ′(k, s) to a different QAM
point Q′(k, s). The new QAM point is farther to the FFT
point Z(k, s) of the ZigBee signal without the added noise,
resulting in larger distortion in the emulated signal. To make

it more clear, we pick up the noisy FFT points with the
variance σ2

F in the first sample, s = 1, and draw them in
Fig. 9 where the optimal scalar is α = 1. σ2

F is the variance
in the frequency domain. For the AWGN, variances in the
time domain σ2 and frequency domain σ2

F form a linear
relationship. The blue marks in Fig. 9 denote the FFT points
without the anchor whereas the black marks represent the
FFT points with the added AWGN. We take the FFT point
k = 34 as an example, which is amplified at lower left.
When there is no added noise, the FFT point is quantized to
the QAM point −7 + j whereas the quantized QAM point
becomes −5 + j affected by the noise, which deviates the
FFT point. Such a false quantization results in higher quan-
tization error. The table in Fig. 9 further demonstrates our
idea: the quantization error becomes larger when the anchor
transmits the AWGN together with the ZigBee transmitter.
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Subcarrier Q(k, s) e(k, s) Q′(k, s) e′(k, s)

29 −1 + j 0.6466 −1− j 2.8371
30 −1− 3j 1.2294 1− 3j 0.8794
31 −1− 5j 0.2995 −1− 5j 0.2995
32 3− j 0.3377 3 + j 2.0649
33 5− 3j 1.0989 5− 3j 1.0989
34 −7 + j 0.3899 −5 + j 2.4421
35 −1− j 0.6528 1− j 5.5319
36 −1 + 5j 0.1200 −1 + 5j 0.1199

Fig. 9: Constellation Performance under AWGN Effect

Based on the Parseval’s theorem [22], the energy in
the time-domain is equalized to that in frequency-domain.
Hence, the larger quantization error in the frequency do-
main results in the larger signal distortion. When the ZigBee
device receives such a distorted signal, the chip error ex-
ceeds the threshold in DSSS. It discards the received signal.
Therefore, the passive defense strategy prevents the WiFi
attacker from controlling the ZigBee devices.

In practice, we assume that both the WiFi attacker and
the ZigBee transmitter change their transmission power
slowly. Even though the WiFi device adapts its transmission
power to the wireless environment, the noise with the
power comparable to the ZigBee signal does not trigger
the transmission power change at the WiFi device. The
ZigBee transmitter and the anchor work together to defend
against the signal emulation attack. The ZigBee transmitter
will not update its transmission power with the changes of
noise power from the anchor. Every time ZigBee receiver
successfully decodes the signal, it will send an acknowl-
edgment frame to the ZigBee transmitter [23]. If the ZigBee
transmitter gets the acknowledgment frame with the incor-
rect sequence number, it knows that the ZigBee receiver is
attacked and allows the anchor to increase its noise power. If
the ZigBee transmitter cannot receive the acknowledgment
frame after sending the ZigBee signal, it suggests that the
noise overwhelms the ZigBee signal reception and thus asks
the anchor to decrease its noise power. The above process
continues until the feasible noise power is found. To close
the defense loop, when the ZigBee transmitter receives the
acknowledgment frame with the incorrect sequence number
from the ZigBee receiver, it knows that the ZigBee receiver is
attacked and thus asks the anchor to send the AWGN noise
with the found noise power.
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6 PROACTIVE DEFENSE STRATEGY

The major shortage in the passive defense strategy is that
the added noise level cannot be too high. Otherwise, the
ZigBee receiver cannot decode the valid information from
the ZigBee transmitter neither. Besides, with the strong
computation capability, the WiFi attacker can launch the
signal emulation attack via the exhaustive search on its
constellation and periodically check the current state of the
ZigBee receiver. Hence, new defense strategies are needed.
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Mobile Anchor
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Wi-Fi Attacker

ZigBee DeviceZigBee Gateway
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Attack Detection
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Fig. 10: Proactive Defense Strategy

6.1 Motivation
As shown in Fig.10, the goal of this proactive defense
strategy is to distinguish whether the received signal is
from the WiFi attacker or the ZigBee transmitter in a real-
time manner. To achieve it, the anchor will first proactively
learn the behavior of both the WiFi attacker and the ZigBee
transmitter from previously received signals. When the new
signal is detected, the anchor classifies the signal source
based on the historic learning knowledge.

Note that our proactive approach is different from radio
frequency fingerprinting techniques [24–27], which lever-
age the uniqueness in the transmitted signal to localize or
identify the specific source based on the analog properties,
particularly the presence of analog components in the radio
transmission chain. However, our proactive scheme does
not differentiate devices. Instead, we use features to find
differences between protocols. Besides, our used metric will
only be evaluated within each signal (e.g., cosine difference)
compared to RF fingerprinting-based approaches applying
metrics for comparison of two same-protocol signals.

6.2 Feature Extraction
To identify the differences between the ZigBee signal and
emulated signal, the anchor extracts unique features from
received signals on both the time and frequency domain.

6.2.1 Time Domain Feature
The cyclic prefix is obtained by prepending a copy of the
last 16 complex data from the end to its beginning for the
emulated ZigBee sample. With this being said, a circular
signal structure appears, i.e., the first 16 data and last 16
data should be the same in each emulated sample. However,
the ZigBee signal does not have such property. Therefore,
the anchor can check whether the signal has such a circular
structure. In particular, the anchor sends the received signal
into the folding process after signal alignment. Because there
are 80 complex data in each emulated sample, the anchor
chooses 80 as the length of each column instead of 64.
Denote the folding matrix as F. Its element F (n, s) is the n-
th complex data in the s-th signal sample. To be consistent
with the previous discussion, there are in total of S signal
samples. Theoretically, if the signal comes from the WiFi

attacker, the n-th row vector is the same with the (n+64)-th
row vector in the folding matrix, i = 1, 2, · · · , 16. The cosine
distance, which finds the angle between two vectors, is
applied to measure the similarity between two row vectors.
The value of the cosine distance is close to 1 if the two
vectors are similar. To consider the similarity between the
first 16 row vectors and the last 16 corresponding ones, we
calculated the averaged cosine distance DF as follows,

DF =
1

16

16∑
n=1

∑S
s=1 F (n, s)F

∗(n+ 64, s)√∑S
s=1 F

2(n, s)
√∑S

s=1 F
2(n+ 64, s)

(9)

In addition, we simulate the cosine distance of both the
eavesdropped signal and the emulated signal as illustrated
in Fig. 11a, from which we see that the first 16 row vectors
of the emulated signal and their related vectors in the end
are almost the same. Different from this, the corresponding
vectors of the ZigBee signal are negatively correlated.

6.2.2 Frequency Domain Features
The largest difference between the eavesdropped and the
emulated signal is the constellation difference as shown in
Fig.6a. Since the emulated signal is a WiFi signal, its constel-
lation has a squared structure. However, the constellation of
the eavesdropped signal does not have such a performance.
Therefore, the constellation structure of the received signal
is considered for detection.

The 64-QAM constellation has constant normalized
fourth-order stimulants C40, C41 and C42 [28]. Given re-
ceived signal data z(n, s), the anchor estimates them as
follows,

C̃40 =
1

N ∗ S

S∑
s=1

N∑
i=n

z4(n, s)− 3C̃2
20

C̃41 =
1

N ∗ S

S∑
s=1

N∑
i=n

z3(n, s)z∗(n, s)− 3C̃20C̃21

C̃42 =
1

N ∗ S

S∑
s=1

N∑
i=n

|z4(n, s)| − |C̃20|2 − 2C̃2
21 (10)

In addition, the second-order moments C̃20 and C̃21 are
estimated,

C̃20 =
1

N ∗ S

S∑
s=1

N∑
i=n

z2(n, s), C̃21 =
1

N ∗ S

S∑
s=1

N∑
i=n

|z(n, s)|2.

Finally, the normalized second-order moments and fourth-
order stimulants are given as,

Ĉ2q = C̃2q/C̃
2
21, q = 0, 1, Ĉ4q = C̃4q/C̃

2
21, q = 0, 1, 2

(11)
Their theoretical values are C21 = 1, C20 = 0, C40 = C42 =
−0.6190 for the 64-QAM constellation.

By comparing the difference between the estimated
second-order/fourth-order stimulants and their theoretical
values, the anchor can roughly estimate the signal source. If
the difference is small, the signal is from the attacker. Oth-
erwise, it is from a ZigBee device. We deploy (C̃20 − C20)

2,
(|Ĉ40| − |C40|)2 and (C̃42 − C42)

2 to represent the above
features. The reason for the absolute value of C40 is to
avoid the effect brought by the signal phase rotation in
transmission [28]. Their performance is shown in Fig. 11b,
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(a) Cosine Distance (b) C40 Difference (c) C42 Difference (d) Maximum Energy (e) Minimum Energy
Fig. 11: Time-domain and Frequency-domain Features

and Fig. 11c, respectively, where the difference between the
second-order/fourth-order stimulants and their theoretical
values in the emulated signal is smaller than that in the
eavesdropped signal.

Besides the features related to stimulants, we consider
the energy of the points in the constellations. By investigat-
ing Fig. 6a again, we see that the quantization process am-
plifies the FFT points with the smallest energy and shrinks
the FFT points with the largest energy, resulting in their
energy changes. We show the comparison of the maximum
and minimum energy between the eavesdropped signal and
the emulated signal in Fig.11d and Fig.11e, respectively, all
of which validate our idea. Therefore, the maximum and
minimum energy of the points after FFT operation from the
received signal are chosen as the features.

6.3 Data Collection
In the training process, the anchor collects the data from
both the WiFi attacker and the ZigBee transmitter based
on the following process. As long as it is receiving the
signal, the anchor first checks whether the state of the
ZigBee receiver changes. If it is not changed, the anchor
regards the signal as the emulated signal; otherwise, the
anchor inquiries the ZigBee transmitter on whether it has
transmitted signal. If it did not send any signal, the anchor
likewise regards the signal as the emulated signal. If the
ZigBee transmitter sends the signal, the anchor marks it as
the signal source.

6.4 Signal Classification
The anchor deploys the binary logistic regression model [29,
30] to distinguish whether the currently received signal is
either from the WiFi attacker (‘1’) or the ZigBee transmitter
(‘0’) by calculating the corresponding probability P (Y =
1|x) and P (Y = 0|x) after extracting the features,

P (Y = 1|x) = exp(ŵ · x+ b̂)

1 + exp(ŵ · x+ b̂)

and

P (Y = 0|x) = 1

1 + exp(ŵ · x+ b̂)

where x is a feature vector consisting of all the features
described above. It denotes the feature extracted from the
current received signal. If P (Y = 1|x) is larger than
P (Y = 0|x), the anchor decides the signal is from the WiFi
attacker; otherwise, the signal is from the ZigBee transmitter.

In particular, ŵ ∈ Rn and b̂ are the estimated
parameters learned from the training data set T =

{(x1, y1), (x2, y2), · · · , (xT , yT )}. They are obtained by max-
imizing logarithm likelihood L(w, b),

L(w, b) =
∑T

i=1
[yi(w · xi)− log(1 + exp(w · xi))]. (12)

If the anchor verifies that the received signal comes
from the WiFi attacker, it will notify the ZigBee receiver by
sending a CTC signal [31–33].

7 PERFORMANCE EVALUATION

7.1 Experiment Settings
We implement the emulation attack and its defense strate-
gies on the USRP testbed, the prototype, and the smart-
phone testbed respectively to thoroughly evaluate their
performance.

(a) USRP Testbed

(b) Smart Light Prototype

(c) Prototype
Fig. 12: Experiment Settings and Prototype

In the USRP testbed, the USRP-N210 is deployed as
a WiFi attacker, attempting to control the ZigBee device
CC26x2R Wireless MCU LaunchPad as shown in Fig. 12a.
Both of them are centered at 2405MHz. The distance be-
tween them is set to 5m, 10m, 15m, and 20m, respectively.
USRP testbed gives freedom to choose parameters (e.g.,
transmission power, central frequency, payload length, etc.)
for each step in the entire design, which can better simulate
different environments.

As assumed in the motivation, we claim the signal em-
ulation attack is severe due to the ubiquity of WiFi devices,
where arbitrary devices with WiFi RF can launch the attack.
Hence, we also implement experiments on a prototype,
where the Nexus 5 smartphone (centered on 2412MHz)
attempts to control a smart light prototype (centered on
2412MHz) in both LoS and NLoS as shown in Fig.12c.
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Nexus 5 whose WiFi chip is BCM4339 supports the widely
used Nexmon framework which realizes modifications on
the WiFi part [34] from a lower level. In Nexmon, we only
change the WiFi packet length in order to fit the length of
the ZigBee’s “TURNING ON” command. To be specific, the
length of a WiFi packet normally is around 1500 bytes. If
the data is greater than that, it will be divided into several
packets. Hence, we use Nexmon to ensure that a larger
packet can be transmitted instead of being divided into
several packets. In the smart light prototype in Fig.12b, the
CC26x2R turns on the common light bulb by triggering a
high level to the I/O output D100 as soon as detecting
the “TURNING ON” command. Because the bulb needs a
110V voltage whereas the maximum supply voltage is 5V
on CC26x2R, an extra relay is introduced playing the role of
the switch.

To further demonstrate the severeness of the emulation
attack from the commercial WiFi card, we conduct the
experiments where the above smartphone playing the role
of the attacker attempts to manipulate the ZigBee device
from the distance of 5m, 10m, 15m, and 20m respectively.
The settings of the smartphone are the same as those on the
prototype. Note that due to limited RAM, the smartphone
cannot continuously eavesdrop the raw ZigBee signal sam-
ples. We ask for the help of USRP N210 during the signal
eavesdropping process.

7.2 Signal Emulation Attack Performance
7.2.1 USRP Testbed
The attacker USRP sends 100 fixed-length emulated signals
to ZigBee device CC26x2R 10 times given each distance.
Symbol error rate (SER) denotes the number of symbols
that are mistakenly decoded plus the number of symbols
that are not received, which are divided by the number of
total symbols. Packet error rate (PER) represents the number
of emulated signal packet being received with error over
the number of total packets. The packet error happens if
at least one symbol in it is detected with error. As can be
seen in Fig.13, both the SER and PER are small even if the
distance between them is long, e.g., 15m and 20m, which
demonstrates that WiFi attacker can control the ZigBee
device from a longer distance.

(a) SER (b) PER
Fig. 13: Signal Emulation Attack on USRP Testbed

7.2.2 Prototype
The smartphone continuously sends “10000” as the
“TURNING ON” commands from different locations. A
USRP is deployed next to the bulb to help analyze the
received signal. The result is illustrated in Table. 2. As
the distance increases, both the SER and PER decrease.
However, even the distance between the smartphone and

the light bulb is beyond 20m, the PER is still very small.
In other words, the smartphone successfully controls the
ZigBee device from a longer distance, which demonstrates
the effectiveness of our signal emulation attack.

TABLE 2: Prototype Signal Emulation Attack Performance
Distance 5m 10m 15m 20m 25m

SER 0.94% 3.26% 10.88% 15.93% 14.25%
PER 0.026% 0.082% 0.25% 0.36% 0.32%

7.2.3 Smartphone Testbed
The smartphone sends 100 fixed-length emulated signal to
ZigBee device 10 times given each distance. The transmis-
sion power is 40dBm on the smartphone. Chip error rate
(CER), SER, PER, and Hamming distance are calculated
from the received emulated signal. We depict their per-
formance in Fig.14. When the WiFi attacker is close to the
ZigBee device, e.g., 5m and 10m, the CER is around 0.18
in all 10 trials. In that case, the SER and PER approach
to 0. Such observations demonstrate that the smartphone
can completely attack the ZigBee device from the distance
up to 10m. We continue to increase the distance to 20m.
In that case, the attacking performance becomes slightly
worse. Fortunately, the median SER and PER are under 0.05
although the maximum PER approaches to 0.5, demonstrat-
ing that the emulation attack launched by the smartphone
is successful most of the time. Digging deep into the reason
why the emulation attack is successful, we further analyze
the distribution of Hamming distance where the threshold
is set to the normal value 10. The number of different chips
between the predefined chip sequence and the received
chip sequence in each ZigBee symbol is mainly within the
threshold expect for the cases under the distance 15m and
20m, which means that the ZigBee receiver cannot map
those received chip sequences to the predefined ones and
thus drop them. That is reason why the SER and PER
performance becomes worse. Overall, we can conclude from
the experiment on smartphone testbed that the smartphone
attacker can control the ZigBee device by launching our
proposed attack from the distance up to 20m.

7.3 Passive Defense Strategy
To evaluate the passive defense strategy, we deploy another
USRP to perform as the anchor in both the USRP testbed
and prototype, which transmits the AWGN with the ZigBee
signal simultaneously during the eavesdropping phase. The
ZigBee signal-to-noise ratio (SNR) is set from −20dB to
30dB. During the attacking process, we mainly consider
the LoS case in USRP testbed and both the LoS and NLoS
cases in prototype. In addition, in our smartphone testbed,
a smartphone Nexus 5 equipped with NEXMON firmware,
as an anchor, and an USRP N210 send the AWGN and the
ZigBee signal respectively at the same time. The SNR ranges
from −5dB to 20dB. Two USRP N210s next to each other,
playing the role of the ZigBee receiver and the eavesdropper
respectively, receive the noised ZigBee signal simultane-
ously. We use the USRP as the ZigBee receiver to better
analyze the noise effect to benign ZigBee signal reception
whereas the other USRP helps the attacker to eavesdrop the
noised ZigBee signal. The eavesdropped signal is then given
to the other smartphone Nexus 5 for launching the signal
emulation attack.

Authorized licensed use limited to: Florida State University. Downloaded on January 24,2023 at 18:00:23 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169705, IEEE
Transactions on Dependable and Secure Computing

11

(a) CER (b) SER (c) PER (d) Hamming Distance
Fig. 14: Signal Emulation Attack on Smartphone Testbed
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Fig. 15: Quantization Performance

(a) CC26x2R SER (b) CC26x2R PER
Fig. 16: Effects on Error Rate

7.3.1 USRP Testbed

At the above locations, the WiFi attacker transmits 100
emulated noised signal 10 times. We show the effectiveness
of the passive defense strategy from the following aspects.

Effect on the Quantization. We illustrate scalar α and
the average square error associated with it in Fig.15a and
Fig. 15b. When the SNR is under 0dB, a large scalar α is
generated and results in a high average square error. This is
because the noise with a high power brings a negative effect
to the constellation quantization of the eavesdropped signal.
Each FFT point of the eavesdropped signal is quantized to
the 64-QAM point that is far away from itself.

Fig. 17: Hamming Distance Performance

Effect on Hamming Distance. In Fig.17, we illustrate the
Hamming distance distribution for both the received ZigBee
signal and emulated signal when the anchor generates the
AWGN with the high SNR (22dB) and low SNR (2dB). The
threshold of Hamming distance is set to 10. When the SNR is
22dB, most Hamming distance of ZigBee signal is around 0
and 1 whereas that of emulated signal is distributed among
2 − 9. The ZigBee receiver decodes all the chips correctly.
As the distance increases, the Hamming distance of the
emulated signal becomes larger. Due to noise tolerance, the
ZigBee receiver still decodes the emulated signal to correct

symbols. However, when the SNR is 2dB, many chips are
incorrectly decoded. The ZigBee receiver cannot recognize
the emulated signal. WiFi attacker do not control the ZigBee
devices.

Effect on SER and PER. We evaluate the SER and PER
from the receivers’ perspective. As we can see in Fig.16,
the SER and PER of both the ZigBee and emulated signal
are very high when the SNR is below 0dB. The receiver
decodes neither of them. When the SNR is above 5dB, the
SER and PER of them approach to 0. The ZigBee receiver
decodes both of them. When the SNR is between 0dB and
5dB, both SER and PER of ZigBee signal approach to 0 while
the PER of the emulated signal is high, especially when
the distance is larger. The receiver only decodes the ZigBee
signal. The above analysis demonstrates that our passive
defense strategy can effectively protect the ZigBee device
from being attacked by WiFi attackers, particularly those
who attempt to control the ZigBee device from a longer
distance.

7.3.2 Prototype

The smartphone attempts to control the bulb from locations
L1 to L7 in the building whose floor map is shown in Fig.18.
Specifically, WiFi attacker locates at L1, L2 and L4 attacks
the bulb in LoS. When the smartphone is at L3, L5, L6 or
L7, it attempts to turn on the bulb without being found
(NLOS). The SNR increases from −2dB to 30dB during the
eavesdropping phase.

The success rate of turning on the bulb is illustrated in
Fig. 19. When the SNR is low, e.g., −2dB and 2dB, WiFi
attacker only turns on the bulb in LoS case. As the SNR
increases, indicating the added AWGN is decreasing, the
success rate also increases. When it increases to 26dB and
30dB, the noise variance is so small that it cannot bring
any trouble to the WiFi attacker. WiFi attacker turns on the
smart light prototype at all the marked locations, including
many NLoS locations. The above observation also echos the
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effectiveness of our signal emulation attack in both LoS and
NLoS case.

Fig. 18: Building Map 1

Fig. 19: Defensive Performance in Prototype

(a) (b)
Fig. 20: CER Performance

(a) (b)
Fig. 21: SER Performance

(a) (b)
Fig. 22: PER Performance

7.3.3 Smartphone Testbed
Similar to the USRP testbed, the smartphone transmit 100
emulated noised signal 10 times. We show the effectiveness
of the passive defense strategy from the following aspects.

Effect on CER, SER, and PER. Strong noise carried
by the anchor not only obstructs the eavesdropping pro-
cedure from the attacker but also brings the potential risk
of overwhelming the benign ZigBee signal, causing a high

Fig. 23: Hamming Distance Performance

error rate at the Zigbee receiver. We calculate the CER, SER,
and PER from the received noised ZigBee signal and the
emulated signal. The distance between the ZigBee trans-
mitter and receiver is 5m whereas the smartphone attacker
launches the emulation attack from a distance of 5m, 10m,
15m, and 20m to the ZigBee receiver. The CER, SER, PER
performance is shown in Fig. 20, 21, and 22 respectively.

We first consider the scenario where the distance from
the ZigBee transmitter/the smartphone to the ZigBee re-
ceiver is 5m. When SNR is −5dB, the CER calculated from
the received noised ZigBee signal and the emulated signal in
Fig.20a is close to 0.45, resulting the high SER in Fig.22a and
PER in Fig. 22a. In other words, with a higher-power noise,
although our passive defensive strategy prevents the ZigBee
device from being controlled, it deteriorates the benign Zig-
Bee signal reception. The Hamming distance performance
in Fig. 23 further proves the above observations, where
the number of different chips between the predefined chip
sequence and the received noised/emulated chip sequence
mainly falls into the interval between 10 and 20. Given the
threshold 10, the ZigBee receiver cannot decode the received
signal. Fortunately, as depicted in Fig.20a, 21a, and 22a,
when SNR is increased to 0dB, the CER, SER, and PER
calculated from the noised ZigBee signal all decrease to
0, demonstrating that the ZigBee receiver is back to work.
However, the smartphone fails to manipulate the ZigBee
receiver as those error rates do not have any changes com-
pared to their performance under the SNR −5dB. We can
also tell the fact from the Hamming distance performance
with SNR 0dB in Fig. 23 that the number of different chips
under the noised ZigBee signal is equaled to 0 with the
probability of 0.991 while that under the emulated signal is
larger than the threshold 10 with a higher probability. When
we continue to increase the SNR, the error rates calculated
from the emulated signal begin to decrease, which means
that the WiFi attacker has the opportunity to successfully
launch the emulation attack. As a proof, from Fig. 23, we
can see that most Hamming distance with SNR 5dB under
the emulated signal runs into the threshold of 10, for which
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the ZigBee receiver can also decode the emulated signal.
However, we can see from the Fig. 21a and 22a that the
attacker cannot fully control the ZigBee device even at the
SNR as high as 20dB over the distance of 10m, indicating
that the passive defense strategy still works for defending
against the long-range eavesdropping.

Boundary of effective defense. Fig. 20a, 21a and 22a
demonstrate that the best SNR that enables the passive de-
fensive strategy is within −5dB to 5dB. To find the optimal
SNR, we investigate the error rate performance with the
SNR set from −5dB to 5dB increased by 1dB every step.
As illustrated in Fig. 20b, when the SNR is lower than
−3dB, the CER of the benign ZigBee signal is around 0.45,
resulting in a higher value in SER and PER shown in Fig.21b
and Fig.22b respectively. The ZigBee receiver is significantly
interfered by the noise and. As the SNR increases, all the
error rates decrease to 0, illustrating that the ZigBee receiver
can tolerant the noise and decode all the packets. However,
the error rates of the emulated signal keeps high until the
SNR reaches to 2dB, after which emulated signal can also be
decoded by the ZigBee receiver.

From the experiment on smartphone testbed, we con-
clude the safe SNR range in our passive defensive strategy
is [−3dB, 2dB), within which the WiFi attacker fails to
launch the emulation attack from a longer distance than 5m
while the begin ZigBee signal reception is not interfered.
It is necessary to mention that SNR within the safe range
provides a robust guarantee of security to ZigBee receiver
and the SNR higher than the upper bound can still somehow
defend against the emulation attack from the smartphone.

7.4 Proactive Defense Strategy
In our proactive strategy, a USRP, as the anchor, is put
next to ZigBee devices to help distinguish the signal source.
Note that we consider the normalized maximum energy and
minimized energy instead of extracting them directly.

(a) ROC Curve (b) Recall and Precision
Fig. 24: Detection Performance in USRP Testbed

7.4.1 USRP Testbed
We randomly generate 1000 ZigBee signal, which are eaves-
dropped by the WiFi attacker. Then, it generates the cor-
responding emulated signal. The original ZigBee signal and
the emulated ones are sent to the ZigBee device respectively.
Half of the received emulated signal is put into the training
set and the others are to be classified. The operation of
the ZigBee signal is the same. The experimental results are
shown as a Receiver Operating Characteristic (ROC) curve
in Fig.24a. The false positive rate represents that the emu-
lated signal is mistakenly considered to be from the ZigBee
transmitter whereas the false negative rate denotes that the
ZigBee signal is regarded as from the WiFi attacker. In the
LoS case, both the false positive rate and false negative rate

approach to 0 due to the existence of the powerful anchor.
In addition, we demonstrate the recall and precision perfor-
mance in Fig.24b. The recall value represents the capability
of identifying the WiFi attacker whereas the precision value
denotes the capability of recognizing the ZigBee transmitter
from the received signal. When the detection threshold is set
to around 0.7, both the recall and precision value are near
to 1, in the sense that the anchor effectively identifies both
the WiFi attacker and ZigBee transmitter.

(a) ROC Curve (b) Recall and Precision

Fig. 25: Detection Performance in Prototype

7.4.2 Prototype
The WiFi attacker attempts to control the bulb from the
LoS locations L1 and L2 together with NLoS locations C1,
C2 and C3. The USRP receives 500 emulated signals and
ZigBee signal, respectively. Half of both received signals
are put into the training set and the others are going to
be classified. As we can see from Fig.25, when the detection
threshold is set to 0.5, both false positive and negative rates
approach to 0.2 while the precision is near to 0. The anchor
can effectively identify the received signal source.

7.5 Results from Field Experiments
7.5.1 Experiment Settings
To further verify the effectiveness of emulation attack and
defense strategies, we conduct field experiments in a larger
space, where the end-to-end distance is more than two times
of the previous building. Due to the complicated floor plan
as given in Fig. 26, we can carry out more experiments in
the extreme NLoS case.

R
1

R2

C2C1

Second floor

R3

R4

R5

Fig. 26: Building Map 2 – Second Floor
Specifically, we test the results on emulation attack to the

commodity Sylvania ZigBee LED. The launchpad CC26x2R
is always placed close to LED to show the symbol/packet
level performance. A USRP is placed at location C1 on the
second floor. For the LoS case, we move LED from USRP
location to the end of the hallway C2. The distance from
C1 to C2 is 80m. For the NLoS, we place the LED in room
R1, R2, R3, and the end of the hallway on the first floor
C2′. The distance between R2 and C1 is around 60m. The
emulation signal has to pass through other rooms, e.g., R3,
R4, R5, before being received at R1. The USRP sends the
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“TURNING ON” command that includes 49 ZigBee symbols
500 times to turn on the LED. As an attacker, the USRP
sends the emulated command with the gain value 20dB,
which indicates the amplification factor in hardware before
sending the signal out [35]. As a ZigBee transmitter, the
USRP transmits the received ZigBee command with the gain
value 12dB. Since the maximum power of WiFi transmission
on the smartphone (e.g., Samsung Galaxy series) is 13dBm
whereas that on ZigBee devices is 5dBm, gain value settings
are to ensure the maximum power ratio between WiFi and
ZigBee.

7.5.2 Signal Emulation Attack Performance

In the field experiment, the LED is turned on after receiving
either emulated or ZigBee “TURNING ON” command in
LoS case. In NLoS case, the LED is on for the above four
locations only when the USRP sends emulated signals. The
signal performance on CC26x2R gives similar results. As in
Table.3, when the USRP sends the emulated command, the
signals received by CC26x2R have a lower SER. The received
packet is supposed to be incorrect if one of the symbols
is not correctly received. Hence, the PER is relatively high.
However, it is much smaller than that when the USRP sends
the ZigBee. Even worse, being placed at R2, the CC26xR
even cannot receive the ZigBee signal. The above results
validate our intuition that ZigBee devices are more easily
controlled by WiFi devices from NLoS locations.

TABLE 3: Symbol/Packet Level Performance
Location C2 C2′ R1 R2 R3

SER (WiFi) 16.09% 9.15% 34.25% 23.09% 11.78%
PER (WiFi) 44.60% 44.30% 62.70% 57.60% 36.50%

SER (ZigBee) 16.07% 6.06% 53.81% N/A 11.12%
PER (ZigBee) 44.30% 19.10% 83.20% N/A 32.90%

7.5.3 Proactive Defense Strategy

To distinguish the signal source, a USRP is deployed next
to the Smart LED. Similarly, it receives 500 emulated signals
and original ZigBee signals (including both LoS and NLoS),
respectively. The result is shown in Fig.27. When the detec-
tion threshold is lower than 0.8, the anchor would not ignore
the emulated signal, but it is possible that the anchor mis-
takenly regards the ZigBee source as WiFi attacker. When
the detection threshold is set above 0.8, the distinguishing
result is reversed. When the threshold is set to around 0.8,
the anchor gets a balance between the false positive rate
and the false negative rate. Shown in Fig.27b, the recall and
precision value approaches to 0.8 simultaneously when the
threshold is set between 0.8 and 0.9, in the sense that the
anchor can effectively identify both the ZigBee receiver and
WiFi attacker.

(a) ROC Curve (b) Recall and Precision

Fig. 27: Detection Performance in Field Experiments

8 RELATED WORK

8.1 Security in Smart Home IoT
The application of IoT in smart home have brought our lives
substantial conveniences. However, it also introduces poten-
tial security threats. According to [36], those threats lie in
the device firmware [37–39], communication protocols [40–
42], and home automation applications [42–44]. Specifically,
communication security research emphasizes the security
and privacy issues in smart home communication protocols
such as BLE, ZigBee, and Z-Wave [36]. In [42] a worm attack
exploiting an implementation bug in the ZigBee Light Link
protocols is descried, which has the potential of massive
spread. Another security and privacy threat in communica-
tion protocols come from different types of traffic analysis.
Abbas et al. in [45] detect and identify the types of IoT
devices, their states, and ongoing user activities by only
passively sniffing and analyzing the network traffic from
smart home devices and sensors. OConnor et al. in [46] clas-
sify users’ behaviors and the hidden activities performed
by devices by extracting features of connection oriented
application data unit exchanges. Different from the above
work, our proposed security threat comes from the physical
layer. By utilizing the fact of weak verification to the ZigBee
data in MAC layer, the WiFi attacker can successfully launch
the eavesdropping attack and further control the ZigBee
device by sending the emulated signal. Compared with the
above work, our proposed attack has the following two
advantages: (1) it happens in the local environment without
the need of the network; (2) it brings the direct detrimental
effect to IoT devices.

8.2 Solutions to PHY Security Problems
Physical-layer security problems mostly focus on how to
prevent attacks (e.g., eavesdropping and interception) dur-
ing the communication. Corresponding defense strategies
can be categorized into two groups. One is to theoretically
discuss the secrecy capacity, which exploits the property
of the wireless channel for secure communication [47, 48].
Many transmission strategies, such as cooperative transmis-
sion [49], artificial noise [50], and secure beamforming [51],
are proposed to enhance the security capacity in the physical
layer. The other group is to embed the private permit into
the message to prevent it from being replayed, such as
RF fingerprinting in [24, 52, 53] and authentication signal
embedding in [54–60]. However, the above methods cannot
prevent the signal from being eavesdropped and emulated.

8.3 Cross-Technology Communication
Cross-Technology Communication (CTC) is envisioned to
serve as an effective approach to alleviate the cross-
technology interference by allowing direct communication
between devices with different protocols [31, 61–63]. B2W 2

[9] enables the high throughput and long distance con-
current N -way CTC between BLE and WiFi by leveraging
channel state information. In FreeBee [33], Esense [31] and
GSense [64], the communication between WiFi and ZigBee
devices is enabled by using RSS to measure the WiFi signal.
Different from the above packet-level CTCs, Li et. al in [8]
propose a physical-level emulation technique. Although the
objective in above work is to increase the throughput in
CTC, it leads to new security issues.
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8.4 Security Challenges and Solutions in CTC
The research in CTC brings new security challenges. Wi-
attack in [65] uses the WiFi device to conduct poisonous im-
personation attacks to iBeacon services by emulating redun-
dant iBeacon advertisements. The attack is based on WiFi to
BLE communication. Since BLE and ZigBee deploy different
protocols, e.g., IEEE802.15.1 for BLE and IEEE802.15.4 for
ZigBee, Wi-attack cannot be used to attack ZigBee devices.
Chen et. al in [66] present a active jamming attack on the
CTC links from WiFi to ZigBee, the protocols over which
construct the un-regular energy characteristics to embed
CTC bits at packet level. The major difference between the
jamming attack in [66] and our signal emulation attack is:
the former attack degrades the CTC decoding performance
by attacking existing packet-level CTC protocols [31, 67, 68]
while the latter attack manipulates ZigBee devices based
on the bit-level WiFi to ZigBee communication. The way to
consider CTC as an attacking method has been taken into
account in our previous work [69, 70]. Particularly, in [69],
a defensive strategy is proposed to seek the WiFi attacker
from the normal ZigBee devices based on constellation
higher-order statistical analysis. In [70], we put more efforts
on the authorization code embedding approach in order
to differentiate whether the signal comes from a legitimate
CTC device or an illegitimate CTC device. However, the Zig-
Bee signal eavesdropping, as the foundation of attacking the
ZigBee device, is missing in [69]. Meanwhile, the proposed
defense approach only takes the constellation feature into
consideration. As an extension, in this paper, we propose
a ZigBee signal eavesdropping approach as well as two
defensive strategies, where no actions have to be taken at
the ZigBee receiver by using the passive defensive strategy
and more features are considered to classify the ZigBee and
emulated signals in the proactive strategy. The process of
attacking ZigBee devices is improved as well. In addition,
we implement the complete attacking process and defensive
strategies on the real-world testbeds and our self-designed
prototypes, where the distance between the WiFi attacker
and the ZigBee receiver is up to 20m.

8.5 RF Fingerprinting
Most radio fingerprinting methods identify a device by
considering various PHY layer classification approaches.
Based on [24], RF features are broadly classified into: (1)
channel-specific ones, e.g., channel impulse response, that
characterize the wireless channel. They have been success-
fully adopted in robust location distinction [25, 26]; (2)
Transmitter-specific ones that are independent of the chan-
nel, e.g., artifacts of individual wireless frames [24], unique
features in the radio turn-on transients [27], and joint time-
frequency Gaborand Gabor-Wigner Transform features [71];
and (3) Hardware properties like TCP and ICMP time stamp
in [72]. All the above work apply radio fingerprint tech-
niques to distinguishing different wireless devices whiles
our proactive defense strategy is to differentiate signals
generated based on different protocols. In other words, our
strategy still works even if the ZigBee device is changed to
a new (unknown to the classifier) one.

9 CONCLUSION

In this paper, we identify a new physical-layer based attack,
cross-technology signal emulation attack, where the WiFi

attacker controls the ZigBee device by emulating the eaves-
dropped ZigBee signal. To combat this attack, we introduce
an anchor to safeguard the ZigBee communication. In the
passive defense strategy, the anchor transmits the AWGN
to prevent the WiFi attacker from successfully emulating
the perfect ZigBee signal. Whereas in the proactive de-
fense strategy, the anchor receives the signal and identifies
the signal source in real time. We implement our design
on USRP testbeds, the commodity smart LED, our self-
designed prototype and the smartphone testbed. Extensive
experiments are performed, demonstrating both the feasi-
bility of signal emulation attack and the effectiveness of the
defense strategies.
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