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ABSTRACT

Classifying severely occluded images is a challenging yet highly-
needed task. In this paper, motivated by the fact that human being
can exploit context information to assist learning, we apply convo-
lutional recurrent neural network (CRNN) to attack this challenging
problem. A CRNN architecture that integrates convolutional neu-
ral network (CNN) with long short-term memory (LSTM) is pre-
sented. Three new datasets with severely occluded images and con-
text information are created. Extensive experiments are conducted
to compare the performance of CRNN against conventional meth-
ods and human experimenters. The experiment results show that the
CRNN outperforms both conventional methods and most of the hu-
man experimenters. This demonstrates that CRNN can effectively
learn and exploit the unspecified context information among image
sequences, and thus can be an effective approach to resolve the chal-
lenging problem of classifying severely occluded images.

Index Terms— Severe image occlusions, image sequence clas-
sification, convolutional recurrent neural network

1. INTRODUCTION

Past years have witnessed an explosion of deep learning research
[1], represented by various convolutional neural networks (CNNs)
for image/vision processing [2] and a variety of recurrent neural
networks (RNNs) for sequential data processing [3]. Nevertheless,
the majority of results are obtained over high quality data sources.
Their performance usually degrades severely over practically dis-
torted data, such as noisy speech signals with room reverberations
and noisy images with occlusions. Much more research efforts are
still needed to develop more robust deep learning techniques.

Consider the classification of distorted images. Distortions such
as blur, noise, occlusion, etc., will degrade classification perfor-
mance [4]. Severe occlusions, with which major or key areas of
the images are blocked, are especially detrimental [5]. Classifi-
cation of severely occluded images is highly needed in many real
applications, e.g., when people block each other in a crowd, when
rain/snow stains the cameras of self-driving vehicles, etc. However,
the research of this issue has been very limited. The effects of image
distortions on deep learning are studied in [6]. The results of [5]
indicate that blur, noise, and occlusion will lead to a significant
decrease in performance. Authors in [7] propose a deep neural net-
work model for robust image classification, where blur and noise
are considered. In [8], re-training and fine-tuning techniques are
proposed to alleviate image blur and noise effects. Classification of
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severely occluded images remains largely an open and challenging
task.

When recognizing severely occluded objects, human being
tends to exploit a lot of context information to fill the missing
parts, such as the relation among objects in the vision field, the
common sense about the physical world, and the background or
environmental knowledge. This is owing to the exceptional deep
learning/reasoning capability of human being [9] [10] that current
deep learning algorithms lack. In this paper, we mimic such human
learning capability and address the challenging problem of classi-
fying severely occluded images by applying convolutional recurrent
neural networks (CRNN) to learn and exploit context information
automatically. The proposed CRNN integrates CNN and long short-
term memory (LSTM) together so as to use CNN for image spatial
representation learning and use LSTM for context information mod-
eling within the visual time series.

Among the various CNN models developed for image classifi-
cation [11–15], some have been adapted to exploit context informa-
tion [16]. Algorithms are also designed to make CNNs understand
context or common sense more closely as human beings [17] [18].
However, most of such studies are conducted over high-quality im-
age datasets instead of severely occluded images.

The integration of CNN and RNN (or LSTM) has been success-
fully applied in many other applications. For instance, long-term re-
current convolutional network is proposed for visual recognition and
description in [19]. In [20], the authors propose a CRNN model to
learn spatial dependencies for better image representation. In visual
question answering (VQA) [21], CNN is used for image embedding
while LSTM is used for question embedding. Joint CNN and RNN
is also used in image captioning [22], video description [23], video
classification [24] and action recognition [25] [26]. In contrast, the
new CRNN method proposed in this paper focuses on using simpler
network configuration to attack the challenging problem of classify-
ing severely occluded image sequences.

In this paper, we first present the general architecture of the pro-
posed CRNN method, in which the LSTM exploits the extracted spa-
tial representations with CNN to learn different patterns among im-
age sequences for further classification. To evaluate its performance,
we create three datasets of severely occluded images and conduct
extensive experiments. In particular, several human subject experi-
ments are performed to compare the performance of human beings
against that of machine learning.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce the CRNN architecture. In section 3 and 4, we
present the experiment settings and analyze the experiment results.
Conclusions are given in Section 5.
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(a) (b)

Fig. 1: (a) The general architecture of CRNN based image sequence classifier. (b) The integration of CNN unit with LSTM unit.

2. DEEP CLASSIFICATION ARCHITECTURE

The proposed CRNN classification architecture is illustrated in Fig.
1(a). For better illustration, some occluded image examples created
from the EMNIST dataset and the corresponding image dimensions
are shown in Fig. 1(a). The CRNN architecture consists of four
units: a data preprocessing unit, a CNN unit for spatial feature rep-
resentation learning, an LSTM unit for visual time series modeling,
and a softmax based classifier for image classification.

2.1. Data preprocessing

As shown in Fig. 1(a), firstly, the data preprocessing unit converts
input images to image sequences of fixed length T (i.e., T images
per sequence). Without loss of generality, assume there are I im-
ages to be classified and the size of each image is W1 ×H1 ×D1.
The input is thus a tensor with dimension I ×W1 ×H1 ×D1. To
facilitate the LSTM unit to model temporary dependencies among
the images in later stages, the tensor is converted into a sequence
of tensors of dimension T ×W1 × H1 × D1, which is denoted as
Xi = {xi,1, · · · ,xi,T }. Each xi,t is an image. With preprocess-
ing, the I input images are rearranged into L image sequences, i.e.,
i = 1, · · · , L, where L = dI/T e. For instance, if the sequence
length is T = 6 and the input images have size 28×28×1, then the
dimension of each image sequence will become 6× 28× 28× 1.

2.2. CNN for image sequences

The CNN unit is then applied on input image sequences to learn the
spatial feature representations in each image. The CNN unit consists
of two consecutive convolutional layers Conv2D-1 and Conv2D-2,
followed by a max-pooling layer with pool size (p, q) for spatial
dimensionality reduction.

In the CNN unit, each image xi,t is converted into a tensor zi,t,

zi,t = f(xi,t; {Wx}) (1)

where {Wx} denotes all the weighting coefficients. Let the kernel
size be (k,m) and the number of filters for the two layers beD2 and
D3, respectively. With the input sizeW1×H1×D1 for each xi,t, the
two successive convolutional layers output two feature maps of sizes
W2×H2×D2 and W3×H3×D3, respectively. The max-pooling
layer outputs the feature map zi,t for each input image with size

W4 ×H4 ×D3. After the max-pooling layer, there is a flatten layer
to combine each sequence of T feature maps into a two dimensional
matrix Zi = {zi,1, · · · , zi,T }with dimension T×(W4×H4×D3),
which is the input to the subsequent LSTM unit.

2.3. LSTM for image sequences

RNNs are neural networks that are popular in modeling context de-
pendencies among sequential data. With the learned image repre-
sentations through CNN unit, an LSTM unit is built here in order to
model the spatial context dependencies among the image sequences.
Specifically, a variant of the LSTM architecture is applied here to
learn the regular patterns inside the image series.

Given the input time series Zi = {zi,1, · · · , zi,T } which are
the output of the flatten layer, the memory cells in the LSTM
layer map the input time series to a representation series Hi =
{hi,1, · · · ,hi,T },

hi,t = f(hi,t−1, zi,t; {Wz}) (2)

where {Wz} denotes all the weighting coefficients of the LSTM
unit. Fig. 1(b) illustrates how the CNN unit is connected with the
LSTM unit. The output of the CNN unit with dimension T × c is
fed into the LSTM unit as input, where c equals to W4 ×H4 ×D3.
There are d hidden units in LSTM. Therefore, the size of the LSTM
unit output Hi is T × d, and each hi,t has dimension d.

The LSTM output Hi is fed into the softmax classifier. The
classification output is

ŷi = f(Hi; {Wh}) (3)

where {Wh} denotes all the weighting coefficients in this stage.
The size of ŷi depends on the number of classes in the data. For
instance, if the input images are generated from the EMNIST dataset,
the occluded images are classified into 26 classes. In this case, each
ŷi has dimension T × 26. The training is conducted via minimizing
the reconstruction loss, i.e.,

θ = argmin
θ

1

L

L∑
i=1

L(yi, ŷi) (4)

over the training dataset (Xi,yi), i = 1, · · · , L, where θ =
{Wx,Wz,Wh} denotes the weights.
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3. EXPERIMENT SETTINGS

3.1. Data preparations

Firstly, we create three occluded image datasets based on MNIST
dataset [27], EMNIST dataset [28], and CIFAR-10 dataset [29],
respectively. Occlusion effects of various levels and in random
positions of an image are designed and generated with MATLAB.
Specifically, five different levels of occlusions are created in pro-
portion to the ratio of 1:1:1:1:1, according to different widths of the
borders of black rectangles. The wider the borders are, the more
the image will be blocked, thus the more severe the occlusions will
be. To better illustrate different occlusion levels, Fig. 2 shows some
typical occluded images, in which the occlusion level is gradually
increased from top to bottom. It can be seen clearly that less oc-
cluded can be recognized easily. However, it is getting harder and
harder to recognize those occluded images with increasing occlusion
levels from top to bottom. For instance, we can hardly identify those
images with occlusions of level 4 and level 5 without the aid of any
contextual information.

To simulate the severely occluded images that exist in many real
situations, we generate occluded image sequences by randomly se-
lecting images of different occlusion levels. Therefore, in a ran-
domly picked image sequence, some images may be slightly oc-
cluded, while some others may be severely occluded. Then, in order
to incorporate contextual information into image sequences, we ar-
range the occluded images into image sequences with certain regular
patterns. For handwritten digits, image sequences with patterns such
as 0-1-2-3-4 and 1-3-5-7-9 are coined and used in experiments. Lin-
ear programming (LP) is applied to maximize the number of such
image sequences, resulting in 13135 image sequences in total, each
with 5 images. For handwritten characters, the images are used to
spell American and Canadian city names, such as B-O-S-T-O-N and
M-I-L-T-O-N. Similarly, LP is applied to maximize the number of
image sequences. As a result, 14611 different 6-letter image se-
quences are created. For the CIFAR-10 dataset, since CIFAR-10 im-
ages are labeled from 0 to 9, image sequences are created based on
label patterns similar to the MNIST dataset, which results in 12000
image sequences with 5 images in each image sequence.

In Fig. 2(a), Fig. 2(c), and Fig. 2(e), the image sequences are
generated with certain patterns. Therefore, a well-trained human is
able to classify most of the occluded image sequences correctly. In
contrast, those image sequences in Fig. 2(b), Fig. 2(d), and Fig. 2(f)
are created without particular patterns by simply selecting images
randomly, making it difficult to classify them without referring to
any contextual information.

3.2. Experiment setup

We use 5-image sequences or 6-image sequences in the experiments,
i.e., T = 5 in the MNIST and CIFAR-10 based experiments and
T = 6 in the EMNIST based experiments. The other settings for
the experiments are the same. In the two convolutional layers, the
kernel size (k,m) is (3,3), and the number of filters are D2 = 32
and D3 = 64. Max-pooling with pooling size (p, q) = (2, 2) is
deployed. Zero padding and rectified linear unit (ReLU) activation
function are applied. Dropout is used in both the CNN unit and the
LSTM unit. The output size of the LSTM unit is d = 256. A fully
connected layer of dimension 10 or 26 is attached to the LSTM layer
for image classification with softmax as the activation function.

Our proposed CRNN architecture uses a single max-pooling
layer. Considering that similar but simpler networks can be real-
ized by applying strides in the convolutional layers, we also exper-

(a) (b)

(c) (d)

(e) (f)

Fig. 2: Examples of occluded image sequences: (a) Digits with regu-
lar pattern; (b) Digits without regular pattern; (c) Characters forming
city names; (d) Random characters; (e) CIFAR-10 image sequences
with regular patterns; (f) CIFAR-10 image sequences without regu-
lar patterns.

iment with two CRNN variations, i.e., CRNN-2-S and CRNN-4-S.
The CRNN-2-S applies a stride of 2 in the two convolutional layers
to replace the max-pooling layer. In CRNN-4-S, the settings of the
two convolutional layers remain the same as CRNN, but two extra
convolutional layers with a stride of 2 are added after each of the
original convolutional layers and the max-pooling layer is removed.
The rationale for CRNN-2-S is for network simplicity, while the ra-
tionale for CRNN-4-S is for deeper network depth. As comparison,
we experiment three CNN models without LSTM: the conventional
CNN with a max-pooling layer and two similar variations without
max-pooling layers, which we call CNN-2-S and CNN-4-S.

4. EXPERIMENT RESULTS

Fig. 3 shows three examples of the classification results of the pro-
posed CRNN method, where the classification results are marked on
the top of the images. It can be clearly seen that since some images
are severely occluded, such as ‘6’, ‘O’ and ‘N’, it is hard to clas-
sify them correctly without exploiting context information. Our pro-
posed method can successfully learn the regular patterns within the
image sequences and use the learned patterns and the less occluded
images to infer the severely occluded images.
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Table 1: Performances (%)
with regular patterns

Dataset MNIST EMNIST CIFAR10

CNN-2-S 86.22 86.01 44.39
CNN-4-S 88.02 87.26 42.12
CNN 89.44 88.90 54.99
CRNN-2-S 98.27 97.95 89.11
CRNN-4-S 98.15 97.90 90.18
CRNN 98.33 98.14 90.36

Table 2: Performances (%)
without regular patterns

Dataset MNIST EMNIST CIFAR10

CNN-2-S 86.37 86.10 44.21
CNN-4-S 88.28 87.81 41.40
CNN 89.37 89.22 53.88
CRNN-2-S 86.68 86.66 45.64
CRNN-4-S 88.15 88.16 48.21
CRNN 87.89 87.81 50.62

Table 3: CRNN performance
with regular patterns

Seq len T = 5 T = 10 T = 15 T = 20 T = 25

MNIST 98.33 98.11 98.23 98.10 98.06

CIFAR 90.36 88.29 88.11 88.19 87.93

Seq len T = 6 T = 12 T = 18 T = 24 T = 30

EMNIST 98.14 97.83 97.76 97.78 97.62

Table 4: CRNN versus human with regular patterns

Dataset MNIST EMNIST CIFAR10

Non-Expert 93.96 92.52 71.11
Expert 100.00 99.26 97.78
CRNN 98.33 98.14 90.36

Table 5: CRNN versus human without regular patterns

Dataset MNIST EMNIST CIFAR10

Non-Expert 75.56 71.79 50.19
Expert 81.00 78.89 71.67
CRNN 87.89 87.81 50.62

(a)

(b)

(c)

Fig. 3: Three examples of CRNN classification results: (a) Correct
classification of the image sequence: 5-6-7-8-9. (b) Correct classifi-
cation of the digit sequence: 0-2-4-6-8. (c) Correct classification of
the city name: M-I-L-T-O-N.

Table 1 and Table 2 show the classification performance of the
three CNN methods and the three CRNN methods. It can be seen
clearly from Table 1 and Table 2 that occlusions severely degrade
the performance of the three CNN methods on each dataset. For ex-
ample, the classification accuracy for MNIST dataset degrades from
the state-of-the-art 99.79% [30] to the level of 86-89%. Similarly, for
CIFAR-10 images, the accuracy even drops down to 42.12%. Since
the CNN methods cannot exploit context information, the perfor-
mance is similar for data with or without regular patterns. The three
CRNN methods have similar performance as CNN methods with
randomized image sequences, but outperform the latter when the im-
age data have regular patterns. The classification accuracy is boosted
greatly to 98.33%, 98.14% and 90.36% for the three datasets, respec-
tively. In addition, the proposed CRNN method slightly outperforms
the other two CRNN methods that replace max pooling with larger
strides in this case.

To study the impact of sequence length T on occluded image se-
quence classification, extensive experiments with different sequence
lengths have been conducted. Note that only image sequences with
regular patterns are used. Table 3 shows that the proposed method is
fairly robust to sequence lengths. The slight performance degrada-
tion might be due to the fact that while increasing lengths of regular

patterns, the number of training image sequences is reduced with
limited amount of image data.

4.1. Human learning versus machine learning

To compare the performance of the proposed CRNN method with
that of human beings when classifying severely occluded images,
six human subject experiments are designed and conducted. The
first three are conducted by a group of undergraduate students. Only
a rather brief explanation of the experiments is provided to them.
Without too much training, we call those students Non-expert. In
contrast, the other three are conducted by some well-trained gradu-
ate students, whom we call Expert. Each student is asked to classify
a set of occluded image sequences, some of which have regular pat-
terns while some are purely random image sequences.

The human experiment results are shown in Table 4 and Table
5, from which it can be seen that human beings can exploit regu-
lar patterns even without too much training. Meanwhile, it indicates
that the Non-expert performance can be much better than the CNNs
methods but is inferior to the proposed CRNN method when dealing
with patterned image sequences. In contrast, the Expert can achieve
better performance than the proposed CRNN method in classifying
images with regular patterns. Both the CNN and the CRNN methods
outperform all the human subjects in classifying images without reg-
ular patterns. The fact that the proposed CRNN model outperforms
non-experts and has similar performance as the experts verifies its
great potential for classifying severely occluded images in practical
applications.

5. CONCLUSIONS

We propose to apply convolutional recurrent neural network (CRNN)
that integrates convolutional neural network (CNN) with recurrent
neural network (RNN) for classifying severely occluded image se-
quences. Extensive computer and human subject experiments are
conducted based on three datasets of severely occluded images we
created. Experiment results validate the effectiveness and robust-
ness of proposed CRNN in learning unspecified regular patterns
inside the image sequences automatically and making use of such
knowledge to facilitate classifying severely occluded images. The
proposed CRNN method outperforms both conventional CNNs and
non-expert human subjects.
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