
Defending against Cross-Technology Jamming in
Heterogeneous IoT Systems

Sihan Yu∗, ChunChih Lin∗, Xiaonan Zhang†, Linke Guo∗
∗Clemson University, Clemson, SC, USA

†Florida State University, Tallahassee, FL, USA

{sihany, chunchi, linkeg}@clemson.edu, xzhang@cs.fsu.edu

Abstract—The wide deployment of IoT devices has resulted in a
critical shortage of spectrum resources. Many IoT devices coexist
on the same spectrum band, where the network performance is
always degraded. As a promising solution, the Cross-Technology
Communication (CTC) enables the direct communication among
heterogeneous IoT devices. Unfortunately, the emerging cross-
technology attacks have demonstrated their high success rates
in terms of spoofing the end IoT devices or jamming the
communication channels. In this paper, we investigate a novel
cross-technology jamming issue for a distributed heterogeneous
IoT system. Compared with traditional jamming methods, the
cross-technology jammer has a much higher jamming power,
wider jamming bandwidth, and stronger stealthiness, all of
which deserve a complete re-thinking of defensive mechanisms.
Therefore, we propose a hybrid anti-jamming scheme that jointly
considers frequency hopping and power control techniques.
Specifically, we model the anti-jamming process as a Markov
Decision Process (MDP) and adopt Deep Q-Network (DQN) to
find the optimal strategy. Extensive real-world experiments show
that the goodput (payload data) of our anti-jamming scheme
can achieve up to 2X and 1.39X than the passive and random
anti-jamming approaches, respectively. In particular, our anti-
jamming scheme provides 78% of goodput with the presence of
a cross-technology jammer, outperforming existing passive and
random anti-jamming scheme designs at 37.6% and 54.1%.

Index Terms—Cross-Technology Jamming, Anti-jamming,
Deep Q-Network, Markov Decision Process, Internet of Things

I. INTRODUCTION

Recent years have witnessed the increasing deployment of

Internet-of-Thing (IoT) in our daily life, including smart home,

healthcare, smart city, and smart manufacturing. According to

Statista, the number of IoT devices worldwide will be 38.6

billion by 2025 [1] for supporting a broader range of future

applications. Current mainstream IoT protocols, such as Wi-Fi,

ZigBee, and Bluetooth/Bluetooth Low Energy (BLE), heavily

overlap on the 2.4GHz Industrial, Scientific, and Medical

(ISM) bands. Apparently, the coexistence of a large number

of heterogeneous IoT devices brings significant challenges for

coordinating each transmission link given limited spectrum

resources. Although many link layer protocols have been

widely adopted, such as CSMA/CA, those schemes become

less effective in handling heterogeneous IoT devices with a

dense deployment, e.g., future warehouses for smart manu-

facturing. The coexistence of heterogeneous IoT devices may

The work of L. Guo was supported by National Science Foundation under
grant IIS-1949640 and CNS-2008049.

not only increase the chance of experiencing cross-technology

interference (CTI) [2], [3], but also incur serious security

concerns (e.g., jamming attacks or spoofing attacks). Due to

the protocol incompatibility, existing defensive methods will

fail to detect and mitigate them.

As one of the most promising communication paradigms,

the Cross-Technology Communication (CTC) [4], [5] has

achieved the direct communication among IoT devices with

different protocols. Although it potentially relieves the long-

term coexistence problem, it brings significant threats to the

current IoT systems, especially for the crowded 2.4GHz ISM

band. For example, attackers can go far beyond just simply

sending interference signals [6]–[9], instead, sending a CTC

spoofing signal can bypass the victim’s security protocol and

finally compromise the entire system. Recent works [10]–

[12] elaborate that using CTC signals can spoof end IoT

devices from a further distance, and severely degrade the

packet delivery ratio (PDR). Instead of just spoofing an

individual IoT device, in this paper, we investigate a crucial

yet less-investigated problem, i.e., how to defend against
cross-technology jamming attacks in IoT networks? Although

there have been a few works on mitigating cross-technology

jamming [11], [13], [14], the proposed schemes either par-

tially recover the collided/interfered packets or only have a

marginal gain on increasing PDR (< 2%), falling far short of

fundamentally defending against the jamming attack.

In this paper, we consider a Wi-Fi-enabled jammer that

intends to attack a ZigBee network. Compared with a con-

ventional ZigBee jammer, this cross-technology jammer has

stronger stealthiness, wider jamming bandwidth, and higher

attacking power, all of which bring significant challenges for

anti-jamming scheme design. Specifically, we focus on a smart

jammer that can sweep all available channels and choose

the suitable power to attack. Meanwhile, the jammer has a

faster sweep cycle and can jam up to 4 consecutive ZigBee

channels, leading to a lower success rate of transmission if

simply adopting existing anti-jamming schemes.

To defend against the cross-technology jamming (CTJ)

attack, we employ both the frequency hopping and power con-

trol to develop the anti-jamming strategy. The anti-jamming

process is modeled as a Markov Decision Process (MDP),

in which new states other than conventional anti-jamming

schemes [15] are introduced. Then, we adopt Deep Q-Network
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(DQN) to find the optimal defense strategy about how to

select the channel and signal strength properly. The main

contributions of this paper are as follows:

• We identify a new but real CTJ attack in the heteroge-

neous IoT environment, where a Wi-Fi-emulated ZigBee

signal is able to achieve up to 4 times higher jamming

performance compared with a conventional Zigbee jam-

mer.

• We model the anti-jamming process as an MDP process

and prove the existence of the optimal strategy. To

better understand the competition process, we also study

the variation trend of the optimal strategy with various

parameters.

• We further adopt DQN to find the optimal defense

strategy. Based on extensive experiments, we demonstrate

that our proposed scheme can successfully defend against

CTJ and maintain a high success rate of transmission.

The rest of the paper is organized as follows. In Section II,

we introduce the motivation and feasibility of CTJ. Then, we

model the competition process into an MDP and adopt DQN

to find the optimal defense strategy in Section III. Section IV

shows the performance of our defense strategy, followed by

the state-of-the-art discussion in Section V. Finally, Section

VI concludes the paper.

II. PRELIMINARIES AND MOTIVATION

In this section, we first briefly introduce the malicious CTJ

signal generation process, and further elaborate on how the

signal can compromise the ZigBee network performance.

A. Generating the Jamming Signal

1) Cross-technology Signal Emulation: Existing

approaches [4], [5], [16] have been proposed to emulate

ZigBee signals using the Wi-Fi device. As shown in Fig. 1,

the emulation process can be regarded as the inverse process

of the WiFi physical layer, because the jammer needs to

know the bit stream that can generate the desired waveforms.

However, existing designs fail to provide precise emulation

because the 64-QAM constellation diagram is usually not

fully utilized.

FFT Quantization
Deinterleaving
Conv. Decoding
Descrambling

WiFi PHY Layer

designed
waveform

constellation
diagram

64 QAM
constellation
diagram bit sequence

emulated
waveform

Emulation Process

Fig. 1. Emulation Process

For this work, we will modify the quantization process to

make better use of the 64-QAM constellation diagram. With

this design, the emulated waveforms will be more similar to

the designed waveforms. In what follows, we formulate the

above quantization process as an optimization problem in order

to minimize the distance between the 64-QAM points and the

corresponding constellation points of the ZigBee signals, as

shown in (1) and (2),

E(α) =
∑M

j=1 min{(αPi − Pj)
2|i ∈ [1, 64]} (1)

α = argmin
α

E(α) (2)

in which E(α) depicts the overall quantization error, and α is

a scalar to scale the size of 64-QAM constellation diagram. Pi

is a complex number that denotes the i-th constellation point

among 64 predefined constellation points, whereas Pj is the

j-th constellation point that will be used to emulate signals.

M is the total number of constellation points. Eq. (2) depicts

the objective of our optimization, which is to find a proper α
that can minimize (1). Since E(α)′′ =

∑M
j=1 2P

2
i > 0, E(α)

in (1) is a convex function and has the global minimum, which

can be acquired in O(M logM) for M FFT points if using

the binary search algorithm.

2) Experimental Validation: To verify our idea, we conduct

an experiment to test the jamming effect of different signals.

We use four TI CC26X2R1 LaunchPads (ZigBee mode) to

build a star-like ZigBee IoT network (Fig. 2(a)), in which

one of them acts as the hub, the rest act as peripheral nodes.

The Listen-Before-Talk (LBT) mechanism is adopted to avoid

collisions. Then, we use a USRP N210 as the jammer. For

each time, the jammer sends different jamming signals (i.e.,

WiFi, ZigBee, and Emulated ZigBee) at different distances.

(a) Experiment Scenario
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(b) Jamming Effect of Different Signals

Fig. 2. Effect Verification

We evaluate the throughput and packet error rate (PER)

of this network under different types of jamming attacks, as

shown in Fig. 2(b). It can be seen that with the increase of

jamming distance, the PER continuously decreases while the

throughput increases. More importantly, in most cases, the

rank in terms of the jamming effect is as follows: Emulated

ZigBee (EmuBee)>ZigBee>WiFi. The main reason is that

EmuBee is generated by a WiFi device, which has a higher

signal strength than that of ZigBee devices. This superiority

is more significant when the jamming distance is long (i.e.,

≥ 10m). On the other hand, the WiFi jammer is the weakest

one because the IoT network regards it as noises and the direct-

sequence spread spectrum (DSSS) mechanism of ZigBee de-

vices has a very good effect on dealing with noises. Another

advantage of using EmuBee as the jamming signals is that the

EmuBee has a better stealthiness, because it is not necessary to

obey the format of ZigBee packets, which will be more diffi-

cult to be detected by ZigBee devices. Specifically, a complete

ZigBee packet consists of preamble (0x00000000), start-

of-packet delimiter (0x7A), PHY header (1 octets) and PHY

payload, as shown in Fig. 3. If a ZigBee packet does not obey

the above format, the ZigBee receiver will not able to get
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useful information from it, although it still tries to decode it.

For example, if a ZigBee packet only has the preamble (i.e.

the delimiter and rest part are missing), the ZigBee receiver

will process it into the decoding state. However, over a period

of time, nothing can be decoded. Meanwhile, the hardware

resource is being occupied and cannot be used to process other

packets. Therefore, using EmuBee to launch a jamming attack

is very hard to be detected by ZigBee receivers.

Preamble
Start of
packet

Delimiter

PHY
Header

PHY Srvice Data Unit
(PSDU)

0x00000000 0x7A 1B <= 127B

Fig. 3. ZigBee Packet Format

B. Motivation of Cross-Technology Jamming

According to the above experimental result, CTJ outper-

forms the conventional jamming attacks using the same-

protocol jamming signals. Specifically, CTJ has the following

advantages that make it as an ideal attacker in the heteroge-

neous IoT system.

• Higher jamming power. EmuBee adopts the Wi-Fi

protocol to launch the attack, whose RF power can be up

to 100mW. However, ZigBee concerns more about energy

efficiency, whose RF power can be as low as 1mW. For

the same reason, the attack range of WiFi is also wider.

• Wider jamming bandwidth. The bandwidth of a WiFi

channel (i.e. 20MHz) is 10 times more than that of a

ZigBee channel (i.e. 2MHz). According to the spectral

overlap of WiFi and ZigBee, a WiFi jammer can scan

and jam up to 4 ZigBee channels at a time. Thus, a

wider bandwidth indicates that the jammer can jam more

ZigBee devices as well as find them faster.

• Stronger stealthiness. Based on the analysis of the

stealthiness, EmuBee uses the ZigBee waveform but does

not need to follow the ZigBee packet format, resulting

in the “meaningless” decoding at the victim IoT device.

Compared with traditional jammers where the jamming

signal is either standard ZigBee signal or noise, EmuBee

can fool the victim IoT device for decoding, and thus is

hidden from being detected as a jammer.

C. Adversarial Model

1) Cross-Technology Jammer’s Capability: The jammer

(Jx) adopts the time-slotted frequency-sweeping to find the

victim. It can sweep and jam m consecutive channels at a

time (m ≤ K, K is the number of channels that can be

used). Jx will send EmuBee signals only when the victim

is using the channel, thus, the victim is not able to detect

Jx by measuring the received signal strength. The strength of

the jamming signal is adjustable with different power levels

PJ = {pJ1 , pJ2 , ..., pJL}. For each time, Jx chooses a power level

to send jamming signals. We define two modes for the Jx: (1)

high-performance mode: in this mode, the major objective of

the Jx is to jam transmission as much as possible. Therefore, Jx

always picks the largest power level to send jamming signals;

(2) hidden mode: in this mode, the major objective of the

Jx is to avoid being perceived by the victim. It should not

jam too much transmission, which may lead to the victim

no longer using this channel. Therefore, Jx randomly picks a

power level to send jamming signals. The Jx is able to know

whether the jamming is successful by monitoring whether the

victim is still using the channel at the beginning of each time

slot. Alternatively, the Jx can passively listen to the feedback

information, such as ACK/NACK message.

For the victim, they also adopt the time-slotted working

mode. At the beginning of each time slot, the hub decides

which channel and power level will be used, and then sends

this information to peripheral nodes. During the process of

running, peripheral nodes will send data to the hub. If the

power level of Jx is higher than that of peripheral nodes, the

peripheral nodes will be not able to transmit data correctly.

2) Attacking Process: Once the Jx initiates, it will begin to

sweep the channels with the speed of m channels/time-slot,

i.e., 4 ZigBee channels for Wi-Fi attacker using EmuBee. On

the 2.4GHz frequency band, there are 16 available ZigBee

channels in total, so the Jx only needs to spend �16/4� = 4
time slots (a.k.a. sweep cycle) on sweeping the whole channels

to find the victim.

If the victim IoT device is found, Jx no longer sweeps other

channels, instead, it begins to jam the victim’s channel. The

victim will then notice the throughput drop. Once the error

rate exceeds a certain threshold, the victim will decide to hop

to another channel or select a higher power to transmit data. In

the case when the hub cannot contact peripheral nodes using

the current channel, we assume the existence of a control

channel for negotiating the communication channel. If the Jx

finds that the victim no longer uses the current channel, the

Jx will continue to sweep other channels for seeking the next

opportunity of launching an attack.

III. DEEP LEARNING-BASED ANTI-JAMMING SCHEME

To defend against the proposed jamming attack, we pro-

pose a hybrid anti-jamming approach that jointly considers

frequency hopping and power control mechanisms.

A. Problem Formulation

First of all, we formulate the interaction between the Jx and

the Zigbee IoT devices as an MDP, in which the future state

only depends on the current state and action.

1) State Space: We define the state space as

X = {1, 2, ..., �K/m� − 1, TJ , J}, (3)

where n ∈ {1, 2, ..., �K/m� − 1} denotes that the legitimate

ZigBee transmitter (Tx) has been continuously successful in

transmitting data on the current channel for n time slots.

The Jx sweeps through the K channels and can jam up to

m (m ≤ K) consecutive channels at once. TJ denotes that

the transmission is jammed but not successfully (i.e., the

transmission is still successful, because the jamming signal

power is not enough to completely compromise the commu-

nication). We use J to represent that the current transmission

is completely jammed.
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2) Action Space: The action space for any state in X is as

follows:

A = {(s, pT1 ), ..., (s, pTM ), (h, pT1 ), ..., (h, p
T
M )} (4)

where (s, pTi ), i ∈ M denotes the action that Tx stays on

the current channel with the transmission power pi. Similarly,

(h, pTi ), i ∈ M is the action that Tx hops to a new channel

and uses pi for transmission.

3) Immediate Reward: The immediate reward of moving

from the state x to x′ with an action a is defined as below,

U(x, a, x′)=

⎧⎪⎪⎨
⎪⎪⎩
−LpT

i
− LJ a = (s, pTi ), x

′ = J

−LpT
i

a = (s, pTi ), x
′ ∈ X\J

−LpT
i
− LJ − LH a = (h, pTi ), x

′ = J

−LpT
i
− LH a = (h, pTi ), x

′ ∈ X\J
(5)

where LpT
i

denotes the loss of using power pTi to send

packets; LJ is the loss due to a successful jamming; and

LH is used to quantify the loss due to the frequency hopping

(since frequency hopping will lead to packet loss or increased

latency).

4) Transition Probabilities: Let P (x′|x, a) denote the tran-

sition probability to x′ given that the current state is x, the

Tx chooses action a ∈ A. Then, the state transition mainly

involves the following cases:

Case 1: The Tx is not jammed in the current time slot, after

choosing (s, pTi ) as the action, the Tx is still not jammed in

the next time slot. In this case, we have

P (n+ 1|n, s, pTi ) = 1− 1

�K/m � − n
(6)

where n ∈ {1, 2, ..., �K/m� − 2}.
Case 2: Similar to Case 1, the Tx is jammed unsuccess-

fully/successfully in the next time slot can be expressed as

P (TJ |n, s, pTi ) =
1

�K/m � − n
× P (pTi > τ) (7)

P (J |n, s, pTi ) =
1

�K/m � − n
× P (pTi < τ) (8)

where n ∈ {1, 2, ..., �K/m� − 1}.
Case 3: Given the Tx is not jammed in the current time

slot, it is also not jammed in the next time slot due to taking

(h, pTi ) as the action can be expressed as

P (1|n, h, pTi ) = 1− �K/m � − n− 1

(�K/m � − 1)(�K/m � − n)
(9)

where n ∈ {1, 2, ..., �K/m� − 1}.
Case 4: Similar to Case 3, the Tx is jammed unsuccess-

fully/successfully in the next time slot is represented by

P (TJ |n, h, pTi ) = �K/m �−n−1
(�K/m �−1)(�K/m �−n) × P (pTi > τ) (10)

P (J |n, h, pTi ) = �K/m �−n−1
(�K/m �−1)(�K/m �−n) × P (pTi < τ) (11)

where n ∈ {1, 2, ..., �K/m� − 1}.
Case 5: Different to the previous four cases, the Tx is

jammed unsuccessfully/successfully in the current time slot.

After choosing (s, pTi ) as the action, the Tx is jammed

unsuccessfully/successfully in the next time slot. We have

P (TJ |x, s, pTi ) = P (pTi > τ) (12)

P (J |x, s, pTi ) = P (pTi < τ) (13)

where x ∈ {TJ , J}.
Case 6: Similar to Case 5, the Tx is not jammed in the next

time slot after taking (h, pTi ) as the action is expressed as

P (1|x, h, pTi ) = 1 (14)

where x ∈ {TJ , J}.
B. Analysis of MDP

1) Existence of Optimal Policies: Before trying to solve the

MDP, it is of great importance to prove the existence of the

optimal policy.

Theorem III.1. For any finite MDP, there exists an optimal
policy π∗ such that it is better than or equal to every other
possible policy π.

Proof. See the proof in the Appendix.

2) Calculation Method of Optimal Policies: For an MDP,

a policy π(a|x) is the probability of taking action a at state

x. The state-value function of a state x under a policy π is

defined as

Vπ(x) =
∑
a

π(a|x)Qπ(x, a) (15)

Similarly, the action-value function of taking action a in state

x is defined as

Qπ(x, a) = U(x, a) + γ
∑
x′

P (x′|x, a)Vπ(x
′) (16)

where γ ∈ [0, 1] is the discount factor that quantifies how

much importance we give for future rewards. When solving

an MDP, we need to find the optimal value functions, which

are defined as follows:

V∗(x) = max
π

Vπ(x) (17)

Q∗(x, a) = max
π

Qπ(x, a) (18)

The optimal policy is referred to as the optimal value func-

tions. To find the optimal policy, we pick the action that gives

us the maximum Q∗(x, a),

π∗(a|x) =
{
1 if a = argmax

a
Q∗(x, a)

0 otherwise
(19)

Thus, the following results can be derived.

V∗(x) = max
a

Q∗(x, a)

= max
a

U(x, a) + γ
∑
x′

P (x′|x, a)V∗(x′) (20)

Q∗(x, a) = U(x, a) + γ
∑
x′

P (x′|x, a)max
a′

Q∗(x′, a′) (21)

The above equation is called Bellman optimality equation [17],

which is a recursive equation. We can get the optimal policy

as well as the optimal value functions by solving this equation.
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3) Features of MDP: The aforementioned process is a

general method to solve an MDP. To better understand our

MDP model, we also study our own features, i.e., how the

action-value function as well as the optimal policy vary

with various influence factors. Our constructed MDP has the

following features:

Lemma III.2. Q
(
n, (s, pTi )

)
is a decreasing function on n =

1, 2, ..., �K/m� − 1.

Proof. We can prove this by showing Q∗(n, (s, pTi )) <
Q∗(n− 1, (s, pTi )).

Q∗(n, (s, pTi ))−Q∗(n− 1, (s, pTi ))

=

[
U(n, a) + γ

∑
n′

P (n′|n, a)max
a′

Q∗(n′, a′)

]

−
⎡
⎣U(n− 1, a) + γ

∑
(n−1)′

P ((n− 1)
′|n− 1, a)max

a′
Q∗((n− 1)

′
, a′)

⎤
⎦

(22)

From (5), (6), (7), (8), it is easy to show

E[U(n, (s, pTi ))] = −Lp − LJ
P (pT

i <τ)
�K/m�−n (23)

i.e., U(n, (s, pTi )) is decreasing in n. Thus, U(n, a) <
U(n− 1, a).

When n = �K/m� − 1,

max
a′

Q∗(n′, a′) = max
a′

{Q∗(J, a′), Q∗(TJ , a
′)}

≤ max
a′

{Q∗(J, a′), Q∗(TJ , a
′), Q∗(n, a′)} = max

a′
Q∗((n− 1)

′
, a′)

Thus, Q∗(n, (s, pTi )) < Q∗(n− 1, (s, pTi )).
Similarly, we can also show Q∗(n − 1, (s, pTi )) <

Q∗(n − 2, (s, pTi )). This process can go all the way up

to Q∗(2, (s, pTi )) < Q∗(1, (s, pTi )), leading to a conclusion

that Q∗(n, (s, pTi )) is a strictly decreasing function with the

increase of n.

Lemma III.3. Q
(
n, (h, pTi )

)
is an increasing function on n =

1, 2, ..., �K/m� − 1.

Proof. We can prove lemma 2 by showing Q∗(n, (h, pTi )) >
Q∗(n− 1, (h, pTi )).

From (5), (9), (10), (11), it is easy to show

E[U(n, (h, pTi ))] = −Lp − LH − LJ
P (pT

i <τ)(�K/m�−n−1)
(�K/m�−1)(�K/m�−n) (24)

i.e., U(n, (h, pTi )) is increasing in n. Thus, U(n, a) >
U(n− 1, a).

In addition, we have

max
a′

Q∗(n′, a′) = max
a′

{Q∗(J, a′), Q∗(TJ , a
′), Q∗(1, a′)}

= max
a′

Q∗((n− 1)
′
, a′)

Thus, Q∗(n, (h, pTi )) > Q∗(n − 1, (h, pTi )), i.e.,

Q∗(n, (h, pTi )) is a strictly increasing function with the

increase of n.

Based on lemma III.2 and lemma III.3, the optimal policy

has the following structure stated in Theorem III.4.

Theorem III.4. The optimal policy can be characterized by
a threshold n∗ ∈ {1, 2, ..., �K/m�}, i.e.,

a∗ = π∗(n) =
{
(s, pTi ) if n < n∗

(h, pTi ) otherwise
(25)

Proof. Since Q
(
n, (s, pTi )

)
is decreasing and Q

(
n, (h, pTi )

)
is increasing, there must exist an intersection point be-

tween them except two extreme cases. One is Q(�K/m� −
1, (s, pTi )) ≥ Q(�K/m� − 1, (h, pTi )), where we can set n∗

as �K/m�. The other is Q(1, (s, pTi )) ≤ Q(1, (h, pTi )), where

we can set n∗ as 1.

Theorem III.5. The threshold n∗ decreases with the increase
of LJ , and increases with the increase of LH or �K/m�.
Proof. From (23) and (24), it is easy to show

U(n, (s, pTi ))− U(n− 1, (s, pTi )) = − LJP (pT
i <τ)

(�K/m�−n)(�K/m�−n+1) (26)

U(n, (h, pTi ))− U(n− 1, (h, pTi )) =
LJP (pT

i <τ)
(�K/m�−1)(�K/m�−n)(�K/m�−n+1) (27)

Substitute (26) in to (22), we can get that Q∗(n, (s, pTi )) −
Q∗(n − 1, (s, pTi )) decreases with the increase of LJ . In

other words, the function graph of Q∗(n, (s, pTi )) will move

down with the increase of LJ . From (27), we can infer that

the function graph of Q∗(n, (h, pTi )) will move up with the

increase of LJ . Therefore, their interaction point will move

left, i.e., the threshold n∗ decreases with the increase of LJ .

Similarly, we can also find that the function graph of

Q∗(n, (s, pTi )) (Q∗(n, (h, pTi ))) will move up (down) with the

increase of �K/m�. Thus, the threshold n∗ increases with the

increase of �K/m�.
From (23) and (24), we know that U(n, (s, pTi )) is not

impacted by LH , whereas U(n, (h, pTi )) decreases with the

increase of LH . Thus, the interaction point of Q∗(n, (s, pTi ))
and Q∗(n, (h, pTi )) will move right, i.e., the threshold n∗
increases with the increase of LH .

From the above analysis, we can conclude that there exists

a turning point, before which (s, pTi ) should be chosen as

the action, and after that (h, pTi ) will be the optimal policy.

Meanwhile, the turning point can be adjusted by setting LJ ,

LH and �K/m� properly.

C. DQN based Anti-jamming Scheme

Although the optimal policy can be acquired by solving the

MDP, the derived result cannot be directly used in an IoT

network, because the Tx does not exactly know its current

state x. The state x not only depends on the Tx, but also

depends on the Jx. However, in the practical setting, the Jx

is hardly able to be synchronized with the Tx. Therefore, the

derived result is idealized. We still need to get an adaptive

frequency hopping as well as a power control scheme, which

has the function of self-correction in a real-time way according

to the external environment. Reinforcement learning (RL) is

a suitable technique that can be used to acquire an optimal

communication policy via trial-and-error. The advantage of

RL is that it does not depend on any model. Even if we do
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not know the model of the competition process, we can still

use RL to get an optimal policy.

For this work, we use a deep Q-network (DQN) to acquire

an optimal communication policy. Compared with other RL

techniques (such as Q-learning), the learning speed of DQN

will not suffer from the curse of high-dimensionality, i.e.,

the convergence time will not significantly increase with the

dimension of state space and action space. As shown in Fig.

4, we adopt a 4-layer deep neural network (DNN) to train

the anti-jamming scheme. Note that other neural networks

architectures (e.g. RNN) can also be adopted, since our

scenario is not a large-scale problem, adopting the simple

and fully-connected DNN is sufficient to solve it. The input

layer has 3 × I neurons, which correspond to the state (i.e.,

success or failure) and action (i.e., channel and power level)

of the Tx in previous I time slots because these three indexes

are observable to the victim. The output layer has C × PL

neurons, where C, PL are the number of available channels

and power levels of the Tx, respectively. We also adopt 2

fully connected layers and use ReLU as the activation function,

since 2 fully connected layers are sufficient to solve nonlinear

problems. To avoid that the DQN stays at a local maximum,

we choose the communication policy based on the ε-greedy

algorithm. Specifically, the optimal communication policy with

the highest Q-value is chosen with a high probability 1−ε, and

other feasible strategies are chosen with a small probability

ε/(C × PL − 1).

...
...

...

... ...

... ...

... ...

Input 
Layer

Hidden 
Layer 1

Hidden 
Layer 2

Output 
Layer

3× I 
neurons

C× PL 
neurons

Fig. 4. Neural Network Architecture of DQN Fig. 5. Experiment Setting

IV. PERFORMANCE EVALUATION

To evaluate the anti-jamming scheme design, we will con-

duct both simulations and real-world field experiments.

A. Experiment Settings

1) Simulation Settings: We use Matlab as the tool to train

and evaluate the DQN. To best describe the WiFi and ZigBee

coexistence scenario, (1) we set the sweep cycle to 4 (i.e.,

�K/m� = 4), because a WiFi device is able to scan all

available ZigBee channels in 4 time slots; (2) we provide

10 different power levels for the victim and the attacker,

respectively, i.e., LT
pi
∈ [6, 15], LJ

pi
∈ [11, 20]. It can be

seen that the max power of Jx is higher than that of Tx,

which ensures that Jx is able to jam Tx. For the sake of

simplicity, we believe that the transmission will be successful

if LT
pi
≥ LJ

pi
; (3) LH = 50, i.e., the loss of frequency hopping

(FH) is higher than that of adopting power control (PC),

because conducting FH will take some time for negotiation

and affect the throughput; (4) LJ = 100, because the loss

of being jammed should be significantly higher than that of

FH and PC, so that the system will be encouraged to take

measures to avoid being jammed.

TABLE I
EVALUATION METRICS

Evaluation Metrics Description
Success rate of
transmission (ST )

The proportion of time slots that transmit data
successfully

Adoption rate of
FH (AH )

The ratio of time slots adopting FH to the total
number of time slots

Success rate of FH
(SH )

The ratio of time slots that transmit data suc-
cessfully due to adopting FH to the number of
time slots that adopting FH

Adoption rate of
PC (AP )

The ratio of time slots adopting PC to the total
number of time slots

Success rate of PC
(SP )

The ratio of time slots that transmit data suc-
cessfully due to adopting PC to the number of
time slots that adopting PC

The detailed evaluation metrics are shown in Table I. The

ST denotes the proportion of time slots that can be used to

transmit data successfully. The AH evaluates the proportion

of time slots that adopt FH. A good anti-jamming strategy

should adopt FH as few as possible because FH is time-

consuming. Similarly, the SH evaluates the proportion of use-

ful FH, because some of the FHs are adopted for preventative

purposes, which are actually unnecessary. Meanwhile, AP ,

SP are similar to AH , SH , respectively. We will measure the

above-mentioned metrics in two scenarios, where the Jx adopts

either (1) the max power mode or (2) the random power mode.

For each time, the experiment lasts for 20000 time slots to get

the average value.

2) Field Experiments Settings: For the field experiment,

two USRP N210 and multiple TI CC26X2R1 LaunchPads

(ZigBee mode) are used to verify the effectiveness and effi-

ciency of our scheme, as shown in Fig. 5. The targeted ZigBee

IoT network is composed of 4 nodes, in which one node acts

as the hub and the others act as peripheral nodes. The trained

DQN is loaded into the hub to decide the channel and power

level that should be used in the next time slot. Then, the hub

will notify peripheral nodes of the FH and PC information

in advance. The transmitted information can be encrypted to

prevent eavesdropping. If they cannot contact each other (e.g.,

the current channel is jammed unexpectedly), we also assign

a control channel to exchange information. Two USRPs are

used as the jammer to send jamming signals and eavesdrop

on the current channel, respectively. Note that the Tx and Rx

function can also be integrated to one USRP, but the jamming

effect will degrade because it has to switch between two modes

frequently.

B. Training of DQN

We use more than 120000 data blocks from historical

information to train the DQN, in which each data block

contains the channel, power level and state (success or failure)

information of the Tx. The training process lasts on average of

20min unless the training goal has been achieved in advance

(i.e., the average reward reaches a certain threshold). The
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Fig. 6. Success Rate of Transmission
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Fig. 7. Adoption Rate of FH and PC

training results are a series of matrices, which contain 10664

float numbers with 42.7KB memory. Those parameters will be

loaded to the IoT devices before the experiment starts.

C. Simulation-based Experimental Results

1) Success Rate of Transmission: The success rate of

transmission (ST ) is the most important metric to evaluate the

effectiveness of an anti-jamming approach. In a time-slotted

system, ST can be defined as the proportion of time slot

numbers that can be used to transmit data successfully. Various

parameters can influence the ST during the training process.

In what follows, we mainly study the impact of LJ , sweep

cycle, LH and LpT
i

on ST .

Impact of LJ . A larger LJ will let the agent be more active

in mitigating jamming attacks. Fig. 6(a) shows that the ST

increases with the increase of LJ . When the LJ ≤ 15 (note

that 15 is the upper limit of LT
pi

), the success rate is maintained

at 0. The main reason is the LJ is not very large, which is

unworthy of adopting FH or PC. When the LJ > 50 (i.e.,

50 is defined as the loss of FH), the ST is stabilized around

78%. Here, we consider that if ST ≥ 75%, the anti-jamming

scheme is effective because the random jamming rate is set as

25% from the predetermined sweep cycle 1/ �K/m� = 0.25.

We also notice that when 15 < LJ ≤ 50, the ST in the

random power mode increases earlier than that in the max

power mode, because a certain anti-jamming scheme usually

has a better effect on defending against jamming attacks whose

signal strength is relatively low.

Sweep Cycle. Given a longer sweep cycle, the Tx will less

likely to get jammed. Fig. 6(b) shows that the ST increases

with the increase of sweep cycle. Two modes have almost an

identical tendency except when sweep cycle = 2. In this case,

the random sweep is degraded into an alternate sweep, which

is easier to be predicted.

Impact of LH . A large LH will result in the agent being

reluctant to adopt FH in mitigating jamming attacks. In Fig.

6(c), the ST decreases with the increase of LH . The ST in

the random mode has a significant decrease when LH > 85,

because within this range, the loss caused by jamming is close

to that caused by FH, the agent does not tend to use FH.

However, the ST in the max mode does not have this feature,

because FH is the only effective way to avoid being jammed,

which must be adopted.

Impact of LpT
i

. We evaluate whether the scope of power level

has some impact on strategy selection. Fig. 6(d) shows the

variation of ST with LpT
i

. The scope of LT
pi

varies from [6, 15]
to [15, 24]. When 6 ≤ LpT

i
≤ 9, the ST in both modes increase

slowly. When LpT
i
≥ 11, the ST in both modes maintain at

100%, because the Tx can ensure SNR > τ within this range.

2) Adoption Rate of FH and PC: Adoption Rate refers to

the ratio of the number of time slots adopting FH or PC to

the total number of time slots. A good strategy should take

actions as few as possible based on the premise of ensuring

the success rate of transmission.

Impact of LJ . Fig. 7(a) shows that the AH increases with the

increase of LJ . LJ = 35 is an inflection point, before which

the AH maintains at 0, and then, the AH gradually increases

to 50%. Similarly, the variation of AP with LJ is shown in

Fig. 7(b). There are significant differences between the two

modes. When 15 < LJ ≤ 35, for the max mode, adopting PC

has no effect on improving ST (because the max power of Jx

is always larger than that of Tx). Thus, the agent is less likely
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Fig. 8. Success Rate of FH and PC

to adopt PC. However, for the random mode, PC is adopted

extensively, because the cost of PC is less than FH.
Sweep Cycle. Fig. 7(c) and Fig. 7(d) show that both AH and

AP decrease with the increase of sweep cycle, which indicates

that the larger sweep cycle, the less necessary to take anti-

jamming actions. From Fig. 7(d), it can be seen that the AP

in the random mode is usually higher than that in the max

mode, which also demonstrates that the agent does not intend

to adopt PC due to its low effectiveness in the max mode.
Impact of LH . The increase of LH will lead to the decrease

of AH , as shown in Fig. 7(e). However, there is an obvious

difference between the two modes when LH > 85. In Fig. 7(f),

this feature also exists, because FH is the only effective way

in the max mode, which must be adopted. For the random

mode, it can be abandoned (since PC can undertake the

responsibility).
Impact of LpT

i
. The increase of LpT

i
will result in the decrease

of AH and the increase of AP , as shown in Fig. 7(g) and

Fig. 7(h). LpT
i

= 11 is an inflection point, after which the

PC is sufficient to avoid being jammed and FH is no longer

necessary.
To sum up, the PC adoption rate is usually higher in the

random mode instead of the max mode. However, the FH

adoption rate does not have an obvious difference between

the two modes. The relatively low PC adoption rate in the

max mode can avoid unnecessary and meaningless energy

waste, which is of great importance to energy-constrained

applications. For users who are concerned about the energy

consumption, they can choose a relatively large LpT
i

to train

the neural network, so that the PC adoption rate will decrease

and the goal of energy conservation will be achieved.
3) Success Rate of FH and PC: It refers to the ratio of

the number of successful transmissions using FH or PC to the

total number of trials that adopt FH or PC, for which a higher

value of SH or SP indicates the corresponding actions are

useful in anti-jamming.
Impact of LJ . With the increase of LJ , SH shows a rapid

increase (when 35 < LJ < 55), as shown in Fig. 8(a). This

feature indicates that most of the actions are useful. When

LJ ≥ 55, the SH decreases slowly, because the agent will

adopt FH more frequently to avoid being jammed. SP has a

similar feature in Fig. 8(b), except that when 15 < LJ < 55,

two modes are significantly different. This result also verifies

that PC is more effective in the random mode.

Sweep Cycle. Fig. 8(c) and 8(d) show that both SH and

SP decrease with the increase of sweep cycle. FH is the

dominant approach that has a high success rate (varies between

77.82% and 20.6%), whereas, for the same sweep cycle, PC

has a relatively low success rate (varies between 19.47% and

1.32%).

Impact of LH . Fig. 8(e) and Fig. 8(f) shows the variation

of SH and SP with LH , respectively. A notable feature is

that in both figures, when LH > 85, two modes have a

marked difference. In the random mode, PC replaces FH as

the dominant approach when LH gets larger, but in the max

mode, FH is irreplaceable.

Impact of LpT
i

. Fig. 8(g) and Fig. 8(h) show the variation

of SH and SP with LpT
i

, respectively, who have the opposite

trend. This trend indicates that PC replaces FH as the dominant

approach when LpT
i

is relatively large, because, with the

increase of LpT
i

, Tx will be able to defeat Jx so that FH is no

longer necessary.

To draw a conclusion, the results in Fig. 8 demonstrate that

in the case of limited transmission power, FH is more useful

than PC and its success rate is also significantly higher than

that of PC.

D. Real-World Field Experiments

In the real-world experiment, we need to select a set of

proper parameters to train the DQN, and load the training re-

sult into the TI CC26X2R1 LaunchPad. We choose LJ = 100,

sweep cycle = 4, LH = 50 and LT
pi
∈ [6, 15] as the pa-

rameters, because these parameters have a better performance

according to the simulation results and they are consistent

with the WiFi-jamming-ZigBee scenario. After implementing

the DQN on the hardware platform, we then (1) evaluate the

performance of our anti-jamming scheme in terms of time

consumption and goodput; (2) compare its performance with

other schemes; and (3) analyze factors that may influence the

performance.
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1) Time Consumption: This is a key metric needed to be

concerned during the design procedure of the IoT network.

It is related to whether multiple nodes can work compatibly

with each other. As shown in Fig. 9(a), we measure the time

consumption of four typical functions (i.e. the running of the

neural network, data transmission, data processing, and FH

negotiation). Each function has been tested 100 trials.

Performing DQN. At the beginning of each time slot, the hub

needs to use DQN to decide the frequency and power level

that should be used, which usually takes 9ms.

Round Trip Time. Sending data and waiting for ACK are

the basic task of each peripheral node. A long waiting time

will result in a decrease of the data rate. Our result shows that

a peripheral node usually has to wait 0.9ms to get the ACK

from the hub. Thus, the ACK timeout can be set as a multiple

of 0.9ms to ensure the correct receiving of ACK.

Data Processing. After receiving a packet from a peripheral

node, the hub also needs some time to process data before it

can begin the next round of channel listening. The processing

time usually takes 0.6ms. Thus, the overall data rate of

peripheral nodes should not be over the limit of 1pkt/0.6ms.

Polling Mode. At the beginning of each time slot, the hub also

needs to announce the channel and power level information

to each peripheral node, which adopts the polling mode.

After ensuring that all peripheral nodes have received the

information correctly, the hub will notify them to change

frequency (if needed) together. The above procedure usually

takes 13.1ms for each node.

DQN ACK ProcPolling
Different Functions

0

5

10

15

Ti
m

e 
C

on
su

m
pt

io
n 

(m
s)

(a) Typical Functions

1 2 3 4 5 6 7 8 9 10
# of Nodes

0

2

4

6

8

Ti
m

e 
C

on
su

m
pt

io
n

of
 F

H
 N

eg
ot

ia
tio

n 
(s

)

mean value

(b) Time Consumption v.s. Network Size

Fig. 9. Time Consumption

Since the polling procedure is significantly time-consuming,

we also conduct an experiment to evaluate how much time it

will take when the network size is increasing. As shown in

Fig. 9(b), the time consumption of negotiation increases with

the increase of the number of nodes. In some cases, it can

be several seconds, because some nodes may not be in the

correct channel, and we need to wait for them to go back

to the control channel. The above result can also be used as

guidance when designing the size of time slots according to

the size of the network.

2) Goodput: Goodput [18] refers to the useful information

(i.e., payload data instead of ACKs or other control frames)

that is delivered to the hub per unit of time. With the increase

of time slot duration, the goodput should increase, which

has been verified by Fig. 10(a). In particular, the number

of received packets per time slot increases from 148 to 806

gradually. Meanwhile, since the IoT network needs to nego-

tiate the FH and PC information per time slot, the proportion

of negotiation time will decrease with the increase of time

slot duration. This conclusion is verified by Fig. 10(b). It can

be seen that the utilization rate of time slots increases from

91.75% to 98.58% gradually. Each time slot, the system still

needs to spend about 0.07s for FH negotiation.
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3) Anti-jamming Effect Comparison: We implement three

different anti-jamming schemes (i.e. RL FH, Rand FH, and

PSV FH) and compare their efficiency under the same jam-

ming scenario. The implementation of these anti-jamming

schemes is not strictly in accordance with any specific litera-

ture, we mainly extract the principle features of anti-jamming

schemes from some common methods (e.g. [15], [19]). Fig.

11(a) shows the results: (1) Passive FH: Passive FH is a

type of common anti-jamming scheme. It adopts FH or PC

only when the communication has been jammed. Experiment

results show that in our jamming scenario, passive FH can

achieve a goodput of 216 packets/time-slot. (2) Rand FH:

Rand FH randomly selects FH or PC at the beginning of each

time slot. It changes more frequently, thus, it has a higher

goodput than passive FH, which is 311 packets/time-slot. (3)

RL FH: our scheme has the best performance among these

three schemes. It can achieve a goodput of 431 packets/time-

slot, which is 2 times/1.39 times that of passive FH/random

FH, respectively. In addition, the goodput is 78.5% of that

in the normal scenario (i.e., without jamming, whose goodput

can reach 575 packets/time-slot). By contrast, passive FH and

random FH can only achieve 37.6% and 54.1% of the goodput

of the normal scenario, respectively.
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Fig. 11. Schemes Comparison & Analysis

4) Discussion of other practical factors: In addition to the

anti-jamming scheme itself, some other factors may also have

an impact on the anti-jamming effect, e.g. the relationship

between Jx time slot and Tx time slot. If the Jx time slot is

shorter than that of Tx, Jx will be able to detect and jam Tx in a

quick manner, resulting in the decrease of Tx goodput. If the Jx

time slot is longer than that of Tx, the following phenomenon

may appear: Jx is staying at and jamming a certain channel

while Tx hops back to this channel multiple times, which

will also result in the decrease of goodput. To verify this
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conclusion, we set the Tx time slot as 3s and vary the Jx time

slot (from 0.5s to 5s) to see the variation of goodput. Fig. 11(b)

shows the result. It can be seen that when the duration of the

Jx time slot is also 3s, the anti-jamming scheme has the best

performance, whose goodput can reach 421 packets/time-slot.

However, when Jx has a larger or smaller time slot duration,

the performance of the anti-jamming scheme will degrade. Due

to the limitation of hardware, the time slot cannot be too small

(i.e., <0.5s), otherwise, FH negotiation will occupy the whole

time slot and there is no sufficient time to transmit data.

Based on our experimental results, our scheme can suc-

cessfully defend against the jamming attack and outperform

existing schemes. It can reach 2 times / 1.39 times more than

the goodput of passive and random anti-jamming designs.

V. RELATED WORKS

A. Cross-Technology Jamming

JamCloak [13] propose a reactive jamming attack over CTC

links. They extract essential features to classify the CTC traffic

and then, design jamming signals that can effectively attack

the specific CTC protocol. SamBee [20] implement a parallel

spoofing system that can spoof the ZigBee devices operating

in two different channels or jam the ZigBee devices operating

in five distinct channels simultaneously only using a single

WiFi frame. In [11], the author proposes a new attack that an

adversary pretends to be a legitimate WiFi device and sends

out WiFi packets to prevent ZigBee devices’ communication

or colliding with ZigBee’s packets. DeepJam [14] proposes

a stealthy jamming strategy to jam ZigBee traffic. It relies

on deep learning techniques to capture the temporal pattern

of the past wireless traffic and predict the future wireless

traffic. Wi-attack [21] proposes an impersonation attack that

uses WiFi devices to attack iBeacon services, which can

bring an average distance error of up to 20 meters in a

common fingerprint-based localization system. In [12], [22],

[23], the authors propose several cross-technology attacking

and defensive approaches to deal with the scenario that a WiFi

device overhear and emulate the ZigBee waveform to attack

ZigBee IoT devices.

B. Anti-jamming Techniques

Various techniques have been proposed to defend against

jamming attack, such as: channel hopping [24]–[26], spreading

spectrum [27], [28], MIMO-based technique [29], [30], cod-

ing technique [31], power control [32], [33], reinforcement

learning-based technique [34], [35], or a combination of

multiple methods [15], [36].

Tri-CH [24] is a channel hopping algorithm for CRNs,

which adopts a random jump pattern to achieve a high

security level and stay pattern to guarantee bounded time

to rendezvous. RD-DSSS [27] is a Randomized Differential

DSSS (RD-DSSS) scheme to achieve anti-jamming broadcast

communication without shared keys. It encodes data using the

correlation of unpredictable spreading codes. In [29], Yan et

al. present a MIMO-based anti-jamming scheme that exploits

interference cancellation and transmit precoding capabilities

of MIMO technology. In [31], Yue et al. present two coding

schemes for recovering lost packets transmitted through paral-

lel channels. In [15], [36], Hanawal et al. propose a scheme to

mitigate jamming by jointly optimizing the frequency hopping

and rate adaptation techniques.

VI. CONCLUSION

In this paper, we demonstrate a new type of cross-

technology jamming attack in a heterogeneous IoT system,

which has a better attacking effect and a stronger stealthi-

ness. To deal with the jamming attack, we propose an anti-

jamming approach that jointly uses frequency hopping and

power control techniques. The optimal strategy of choosing

channel and power level is acquired by applying deep Q-

learning. Extensive experiments show that our approach can

achieve 2 times/1.39 times the goodput of passive FH/random

FH, respectively. In addition, its goodput can achieve 78% that

of normal scenario (i.e. no jammer).
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APPENDIX

Proof of Theorem III.1

Proof. To prove this proposition, we need to use the Banach’s

fixed point theorem and some related concepts, as shown in

theorem A.1, definition 1 and 2.

Theorem A.1. (Banach’s Fixed Point Theorem) Let (M,d) be
a complete metric space, and f be a contraction mapping on
M . Then, there exists a unique fixed-point x∗ ∈M such that
f(x∗) = x∗. Furthermore the x∗ can be found as follows:
x∗ = f(f(f(...f(x)...))).

Definition 1. (Metric Space) A metric space is an ordered
pair (M,d) where M is a set and d is a metric on M , i.e.,
a function d : M ×M → R such that for any x, y, z ∈ M ,
the following holds: (1) d(x, y) = 0 ⇔ x = y; (2) d(x, y) =
d(y, x); (3) d(x, z) ≤ d(x, y) + d(y, z).

Definition 2. (Contraction Mapping) A function f defined on
the metric space (M,d) is a contraction mapping if there exists
some constant γ ∈ [0, 1) such that for any two elements x, y ∈
M , d(f(x), f(y)) ≤ γd(x, y).

If we can show that the Bellman optimality equation V∗(x)
is a contraction mapping for some metric space (M,d), then,

by the Banach fixed point theorem, we can conclude that the

repeated application of the Bellman optimality equation will

eventually give a unique optimal state-value function, using

which the optimal policy can be derived.
We use the L-infinity norm as the metric shown below,

‖X‖∞ = max
i
|Xi| (28)

according to which, the distance between the two elements is

equal to the highest element-wise absolute difference between

the two. Since the results of repeatedly applying V (s) always

stay in the real space, the metric space is complete.
Then, we can prove that the V (s) is a contraction mapping

in the metric space (X, l∞) as follows:

‖V1(x)− V2(x)‖
=

∥∥∥max
a

(
U(x, a) + γ

∑
x′ P (x′|x, a)V1(x

′)
)

−max
a∗

(
U(x, a∗) + γ

∑
x′ P (x′|x, a∗)V2(x

′)
)∥∥∥

≤
∥∥∥max

a

(
U(x, a) + γ

∑
x′ P (x′|x, a)V1(x

′)
)

−max
a

(
U(x, a) + γ

∑
x′ P (x′|x, a)V2(x

′)
)∥∥∥

=
∥∥∥max

a

(
γ
∑

x′ P (x′|x, a)(V1(x
′)− V2(x

′))
)∥∥∥

≤ γmax
a

∑
x′ P (x′|x, a) ‖V1(x

′)− V2(x
′)‖

= γ ‖V1(x
′)− V2(x

′)‖

(29)

Since (X, l∞) is a complete metric space, and V (x) is a

contraction mapping, we conclude that there exists a unique

optimal state-value function V∗(x) for every MDP.
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