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Abstract—Sensing data collection from the Internet of Things
(IoT) devices lays the foundation to support massive IoT ap-
plications, such as patient monitoring in smart health and
intelligent control in smart manufacturing. Unfortunately, the
heterogeneity of IoT devices and dynamic environments result in
not only the life-cycle latency but also data collection failures,
affecting the quality of experience (QoE) for all the users. In this
paper, we propose a recovery mechanism with a dynamic data
contamination method to handle the failure. To further enhance
the long-term overall QoE, we allocate the spectrum resources
and make contamination decisions for each device using a deep
reinforcement learning method. Particularly, a lightweight de-
centralized State-sharing Deep-Recurrent Q-Network (SDRQN)
is proposed to find the optimal collection policies. Our simulation
results indicate that the recurrent unit in SDRQN gives rise to
10% lower waiting time and 60% lower task drop rate than the
fully-connected design. Compared to a centralized DQN scheme,
SDRQN achieves a similar ultra-low drop rate of 0.29% but
requires only 1% GPU memory, demonstrating the effectiveness
of SDRQN in the large-scale heterogeneous IoT network.

Index Terms—Heterogeneous IoT Network, Data Collection,
Quality of Experience, Recovery Mechanism, Deep-Q Network

I. INTRODUCTION

Internet of Things (IoT) is expected to reshape the way

we interact with the world, as evidenced by innovations such

as wearable computing in healthcare, intelligent controls of

home appliances, and automatic irrigation in smart farming

[1]. As the foundation of supporting various IoT applications,

different types of sensing data are collected from various IoT

devices and processed by IoT gateways. As an example of

smart health applications, the smartphone plays the role of an

IoT gateway to process different health parameters of patients’

vital signs collected by various wearable devices. It then sends

control messages such as the scheduling and the configurations

to these devices [2].

Ensuring all the data is sent to IoT gateways with a bearable

latency is an essential ingredient in the life-cycle data collec-

tion that is satisfied by users. Existing works rely on several

assumptions, including homogeneous network structure and

static wireless channel [3], [4]. In practice, large-scale hetero-

geneous IoT devices with different protocols are deployed for

the above emerging IoT applications. Coexisting in a small

The work of L. Guo was supported by National Science Foundation under
grant IIS-1949640 and CNS-2008049. The work of B. Lorenzo was supported
by National Science Foundation under grant CNS-2008309.

space, those devices are likely to incur severe interference,

causing a long life-cycle latency and a high possibility of

data collection failures. Existing approaches [5]–[7] achieve a

lower latency roughly from the conventional Quality of Service

(QoS) perspective. However, they make few efforts to address

the failure problem. Taking into account the failure that occurs

in data collection, we introduce Quality of Experience (QoE),

defined as the degree of delight or annoyance of the user of

an application [8], for evaluating the data collection efficiency

in our paper.

Aiming at enhancing the QoE for all the users, in the paper,

we propose to employ a recovery mechanism along with the

dynamic data contamination to design a reliable data collection

scheme. The major challenge lies in that: it is hard to construct

a mathematical model of task recovery with the conditions

of the dynamics in wireless environments together with the

heterogeneity in IoT devices and sensing data. To address

this issue, we deploy the deep reinforcement learning (DRL)

approach to maximize the long-term overall QoE for all users.

Specifically, the Deep Q-Network (DQN) is adopted to find the

optimal decisions on whether to collect the data, batch size,

and spectrum allocation. To avoid the large searching space in

a centralized DQN, we design a decentralized DQN scheme

allowing multiple IoT gateways to make decisions for their

managed IoT devices. Our contribution is as follows:

• We propose a data recovery mechanism with the dynamic

data contamination in order to mitigate the collection

failure as well as decrease the life-cycle latency.

• We design a light-weight decentralized State-sharing

Deep-Recurrent Q-Network (SDRQN) to learn the data

collection policy, including the spectrum resource allo-

cation and the contamination decision, without any prior

knowledge of environment dynamics.

• Our experimental results demonstrate that compared to

several benchmarks, SDRQN enhances the long-term

QoE by significantly reducing the drop rate and average

waiting time for all the users.

The rest of our paper is organized as follows The related

works are briefly reviewed in Section II. In Section III, we

describe the system model of the data collection. Our proposed

task recovery mechanism as well as the QoE optimization

problem are explained in Section IV. A lightweight SDRQN
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is then used in Section V. We evaluate the performance of our

proposed data collection scheme in section VI, followed by

the conclusion in Section VII.

II. RELATED WORK

Interference Mitigation in Heterogeneous IoT Network.
Effectively mitigating the interference is of significant im-

portance in improving transmission reliability as well as de-

creasing transmission latency in a heterogeneous IoT network.

Conventional schemes usually leverage either MAC layer

protocols such as CSMA/CA or energy detection methods

to avoid interference from a different wireless protocol [9].

Unfortunately, these schemes will be less effective when

there is a dense device deployment. Recent efforts in Cross-

Technology Communication (CTC) [10]–[12] enable direct

communication among different protocols, which effectively

mitigates interference. However, CTC usually replaces original

spectrum bands with another one, which exacerbates the

spectrum scarcity issue. Different from them, we dynamically

allocate the spectrum resources to IoT devices based on the

current environment and the task arrival status, for which

the interference is alleviated. The transmission reliability and

latency are further improved.

Enhancement on QoE. Existing works focus on maximiz-

ing the QoE for users with a proper resource allocation scheme

in wireless network. Among different application scenarios,

QoE evaluation and its enhancement methods vary as well.

In hierarchical edge-cloud computing [13], they define the

QoE as the amount of cost reduction achieved by the users

when offloading the task. A suboptimal resource allocation

mechanism is then proposed to obtain the Nash Equilibrium

to enhance the QoE. Mean opinion score (MOS) is a common

QoE evaluation in video stream [14]. He et al. [15] propose the

shortest path tree (SPT) algorithm and a DQN-based algorithm

to maximize the MOS. For the edge computing network with

the queueing system [16], round trip workload transmission

time and queueing delay at the edge layer are two major

metrics of QoE. In our work, we specifically consider the

QoE during the data collection, in which not only the life-

cycle latency but also the potential data collection failures are

taken into account.

Resource Allocation Methods in IoT Network. The in-

creasing number of devices in the IoT network challenges the

design of an optimal resource allocation scheme to improve

the wireless system performance. Lu et al. [17] propose a

cooperative spectrum sharing method to guarantee the target

rate of the primary system in cognitive IoT networks. Yang et

al. [18] increase the spectrum efficiency of the fog IoT network

with the multi-armed bandit algorithm. In the NOMA (Non-

orthogonal multiple access)-enabled IoT network, a Karush-

Kuhn-Tucker (KKT) conditions-based spectrum resource al-

location scheme is adopted [19] to maximize the spectrum

efficiency. DRL-based resource allocation scheme [20] [21] is

trending in recent research. Shi et al. [22] studies the problem

of spectrum resource sharing in the Industry IoT (IIoT) system

with multiple IoT sensors and gives a DRL-based solution. In

our paper, we adopt the DQN-based algorithm to address the

data collection failures and its long life-cycle latency in the

heterogeneous IoT network.

III. SYSTEM MODEL

Our system model is shown in Fig. 1, where a set of

IoT devices M = {1, 2, · · · ,M} collect sensing data. They

operate under K different wireless protocols. Each device

is denoted as mk. The sensing data are then sent to J
multi-protocol IoT gateways (MPGs) over the air. Each MPG

j manages Mj IoT devices where
∑

j Mj = M. These

devices share the spectrum with a total bandwidth of B, which

is divided into N channel units with a unit bandwidth of

Bmin. Suppose that device mk uses Nmk
channel units for

transmission. The total channel bandwidth occupied by mk is

Bmk
= Nmk

Bmin. We focus on a stationary environment in a

quasi-static scenario [23] where the channel is static in a time

slot but dynamic through a long-term period. The spectrum

efficiency of IoT device mk is given as follows

ηmkj = log2{1 +
αmkjPk

∑
n∈Bmk

|hmknj |2
Imk

+ Bmk
No

}, (1)

where Imk
=

∑
mi∈Msub,k

Pi

∑
n′∈Bmk

βmin′ |hmin′j |2 rep-

resents the interference from these devices. Msub,k is a set

of IoT devices working on the channel units overlapped with

the IoT device mk. We use a binary symbol βmin′ = 1 to

indicate that the channel unit {n′|n′ ∈ Bmk
} is shared with the

device mi, mi ∈ Msub,k. Otherwise, βmin′ = 0. αmkj = 1
denotes that device mk is sending data to MPG j. Otherwise,

αmkj = 0. No is the Additive white Gaussian noise.

TIME=t

Spectrum
 Band

Spectrum
 Band

① ②③

Share device 
power, channel 
occupation, etc.

① 

②

③

①

②
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① 

②

③
Protocol A 

Device

Protocol B 
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Protocol C 
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Protocol 
Gateway

Protocol A 
Spectrum 

occupation

Protocol B 
Spectrum 

occupation

Protocol C 
Spectrum 

occupation

Task 
Transmission

No Task 
Transmission

Information 
Sharing

Fig. 1: Data collection model in heterogeneous IoT network.

At the start of a time slot, each IoT device continuously

transmits the pilot signal to all MPGs through all available

channel units before sending the data. The MPG estimates the

channel gain [24] and then generates a channel gain table Hj

with the size of M ×N , which is

Hj =

⎡
⎢⎢⎣
h11j h12j . . . h1Nj

h21j h22j . . . h2Nj

. . . . . . . . . . . .
hM1j hM2j . . . hMNj

⎤
⎥⎥⎦ . (2)

Assume that Li
mk

refers to the i-th data sensed by the IoT

device mk. It follows the Poisson process with the arrival rate

λ, denoted as Li
mk

∼ Poisson(λ). Each IoT device mk keeps

a queue Qmk
with max length Vmk

for storing the data in a
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FIFO (First-In-First-Out) manner. Assume that νmk
tasks are

concatenated as a batch in each transmission. The size of the

entire batch is denoted as Lmk
=

∑νmk
i=1 Li

mk
.

IV. QOE MAXIMIZATION

A. Factors Affecting QoE Performance

1) Life-Cycle Latency: The life-cycle latency τgmk
for the

IoT device mk contains the transmission latency τ trmk
, process-

ing latency τ rmt
mk

, and feedback latency τfd as follows

τgmk
= τ trmk

+ τ rmt
mk

+ τfd

= Lmk
R−1

mk
+
∑νmk

i=1
ζui

mk
Li
mk

ρm
fg
mk

+ τfd,
(3)

where Rmkj = Bmk
ηmkj denotes the data transmission

rate; the binary symbol ζui
mk

indicates whether the data is

successfully processed by MPG; ρm is the processing density

and is same for all MPGs; fg
mk

is the computation resource

allocated to the current data batch, which is proportional to

the batch size Lmk
. Because of the high transmit power of

the MPG, τfd is ignored in computing the latency.

Ready Message

Decisions

Environment Sensing

TIME=t

TIME=t+1

New Task 
Arrive

Cache Task 
Batch

X

Recover Task 
2 and 3

Task1
Transmission

ACK  1 
Success

ACK 2 
Incomplete

ACK 3 Miss

MPG

IoT 
Device

Task2
Transmission

Task3
Transmission

Fig. 2: Handshake procedure for data collection

2) Task Failure: The handshake procedure for each time

slot is shown in Fig. 2. The Ready message from IoT devices

includes the device number and the queue status. Meanwhile,

the IoT device will start a countdown timer starting from T .

According to the Ready message and the observed channel sta-

tus, the MPG makes the data collection decisions for managed

IoT devices and notifies them for scheduling the transmission.

The IoT devices then will start transmitting data. If the data

batch is processed successfully, the MPG will return the

results with an ACK1 signal to the IoT device. However, there

are three failure cases resulting from unpredictable dynamic

environments as follows:

• Case 1: Task Processing Incomplete. The processing of

the tasks cannot be completed by the end of the time slot.

The MPG will send back an ACK 2 signal as well as the

failed task number to the device.

• Case 2: Task Missing. If the MPG does not receive the

scheduled tasks, the device will receive ACK 3 signal by

the end of the time slot.

• Case 3: Transmission Collision. Batches from different

devices are sent to the same MPG through the overlapped

channel. The MPG will return a Collision message to all

the above devices for re-transmission.

B. Task Recovery with Dynamic Contamination

To address the above task failures, we propose a task re-

covery mechanism with dynamic data contamination depicted

in Fig.3. After receiving the Ready message, the MPG will

decide the data batch size, which is compatible with the current

wireless environment, available computation resources, and the

recovery queue status. For instance, in time slot t in Fig.3, the

data batch size is set to 4 since those 4 tasks are small. As a

comparison, in time slot t+ 1, the data batch size becomes 2
because the second task is large. For those failed tasks, they

will be attached to the tail of the recovery queue.

Tasks with different 
sizes (widths) 

Newly arrival task

Task batch

Executed tasks

Failed and
 recovering tasks

Empty block
 in the queue

TIME = t

TIME = t+1

Sensors with 
various usages 

Recovery
Queue

Transmission 
feedback to MPG

MPG

Fig. 3: Recovery queue example

C. QoE Optimization

Denote δmk
as the current queue length of IoT device mk.

If δmk
> Vmk

by the end of the current time slot, the task

which arrives in the next time slot will be dropped due to the

limited storage, denoted by Ol
mk

= 1. Although the recovery

mechanism is able to mitigate the task failures, it introduces

an extra delay that negatively affects the QoE for users. We

quantize each user’s QoE Od
mk

,mk ∈ M, in the following

Od
mk

=

√
1− min(τgmk , T ) + δmk

T

(Vmk
+ 1)T

−Ol
mk

, (4)

which indicates that both the short life-cycle latency and the

short length of the recovery queue lead to a higher QoE.

We would like to maximize the QoE for all the users as

max
Jmk

,Bl
mk

,νmk

∑J

j=1

∑
mk∈Mj

Od
mk

, (5a)

s.t. νmk
∈ [1, νmax

mk
], ∀mk ∈ M (5b)

Bmk
⊆ B, ∀mk ∈ M (5c)

Rmax
mk

T > Lmk
(5d)

where Bl
mk

denotes the first channel unit the device mk

should use. Jmk
indicates whether the device should transmit

data. (5b) constrains the maximum number of tasks that can

be contaminated in a single batch. Constraint (5c) limits

the channel units which can be allocated to the IoT device.

Constraint (5d) indicates that each IoT device mk is supposed

to successfully transmit its batch with the maximum data rate

when no interference exists.
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V. DQN-BASED TASK COLLECTION DECISION MAKING

Maximizing the QoE in (5a) is a Mixed Integer Nonlinear

Programming problem (MINLP), which is NP-hard [25]. To

handle this, we propose to train the Deep Q-Network (DQN)

on the MPGs to find the optimal policy for making decisions.

Nonetheless, when a single DQN is deployed, increasing the

number of devices will dramatically enlarge the searching

space. Facing this challenge, we decompose the enormous

DQN into M lightweight DQNs on J MPGs, where each

DQN decides a combinatorial action for a single IoT device. In

addition, the DQNs on the same MPG share the same channel

state Hj in (2). We will show in Section VI that sharing

channel state will improve the long-term QoE.

As for the network structure, it has been proved that taking

into account the historical information can achieve a better

performance than the traditional DQN [26]. In our paper,

a Long short-term memory (LSTM) unit is applied in each

DQN. We name the network structure as State-sharing Deep-

Recurrent Q-Network (SDRQN) according to the following

specifications.

A. State Space

For each IoT device mk trained on MPG j, the state Smj
k

consists of the queue length Vmj
k
, arrival task size Lmj

k
, and

the shared channel gain table Hj . We write the state as Smj
k
=

{Vmj
k
, Lmj

k
,Hj}. The first two elements describe the intrinsic

state of the device whereas the last one reflects the channel

status between the transmitter IoT device and receiver MPG.

B. Action Space

Each MPG decides the actions for its managed IoT devices,

which are composed of whether to send the collected data,

channel unit selection, and the data batch size. The action is

denoted as amk
= {Jmk

, Bl
mk

, νmk
} for each device mk.

C. Reward Function

We define the reward R(t) as the total QoE value after all

devices take action at the end of each time slot

R(t) =
∑J

j=1
Rj(t) =

∑J

j=1

∑
mk∈Mj

Od
mk

(t). (6)

The value of Rj(t) could be close to 0 or even negative, which

happens when the actions result in a high task drop rate.

D. Training Algorithm

In our neural network model, each SDRQN aims to learn a

policy πj from each state-action pair to a Q-value by updating

the parameter θjmk
, denoted as Q(Smj

k
(t), amj

k
(t); θjmk

). After

the SDRQN outputs the Q-value of all possible actions, the

MPG will dispatch the decisions amj
k

to each IoT device based

on the ε− greedy policy shown as follows

amj
k
(t) =

{
argmaxa

m
j
k

(t)Qπj
(t) 1− ε

random action ε,
(7)

where ε is a small probability between 0 and 1. This policy

encourages the exploration for a global optimum solution [27].

Each SDRQN includes a target DQN network with param-

eter θ′ and a training DQN with parameter θ in the same

structure. In the training stage, a mini-batch of experience is

used to train the training DQN for updating the parameter θ
based on the following loss function

L = (Rt + γmaxQ∗
π(S

′
t, α

′
t; θ

′)−Qπ(St, αt; θ))
2. (8)

After D steps of training, the parameter θ′ is renewed by set-

ting it to θ. The proposed DQN-based algorithm is summarized

specifically in Algorithm 1.

Algorithm 1 DQN-based long-term QoE optimization

1: Initialize the training network and target network with

same random parameter θjmk
= θ′jmk

for each device mk .

2: Set a empty replay buffer with size G for the SDRQN.

3: for m = 1, 2, . . . ,M do episodes

4: Initialize the state S of the system.

5: for n = 1, 2, . . . , N do steps

6: Each MPG observes the state for its managed IoT

devices Smj
k
(t),mj

k = 1, 2, . . . ,Mj ;

7: Input each state into the SDRQN of each device

to train the parameter θjmk
;

8: Take action amj
k
(t) based on the ε−greedy policy

and interact with the environment;

9: Calculate the corresponding reward Rmj
k
(t);

10: Observe the environment at the next time slot t+1
and obtain the next state Smj

k
(t+ 1);

11: Update the experience replay buffer with the ex-

perience ς(t) = {Smj
k
(t), amj

k
(t), Rmj

k
(t), Smj

k
(t+ 1)} ;

12: Randomly select a mini-batch Ω of experiences

from the replay buffer;

13: Train the training network with Ω with using loss

function (8) and update the parameter θj of network;

14: if Training steps = D then
15: Update θ′jmk

of target network equals to θjmk

16: end if
17: end for
18: end for

E. Network Structure

The SDRQN is a four-layer neural network where the first

hidden layer is a fully connected layer with 32 neurons. It

extracts the common feature of input states and reduces the

dimension of the sequence to match the input interfaces of

the next layer. The second layer is the LSTM layer with

32 features in the hidden state. This layer remembers the

historical information about the input feature. It has been

proved in [28] that introducing recurrent unit strengths the

conventional multiple dense layers networks with partially

observed input state. The LSTM layer is followed by two

fully-connected layers with 32 and 16 neurons, separately. The

output layer gives the Q-value of the combinatorial action. The

output size varies based on the number of available channels

and recovery batch size of the IoT devices.
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(a) Average long-term QoE (b) Average waiting time (c) Average drop rate

Fig. 4: Data collection performance under different arrival task rates

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

data collection scheme. The simulations are conducted using

the Pytorch 1.10.0 and CUDA 11.3 on a desktop with the

GeForce RTX 3060 graphic card.

A. Experiment Settings
We place 4 MPGs and 12 heterogeneous IoT devices by de-

fault in an indoor area with the size of 20m×20m. The MPGs

are placed at the coordinates (5, 5), (5, 15), (15, 5), (15, 15),
respectively whereas IoT devices are randomly distributed.

The spectrum between 2400 MHz and 2420 MHz is divided

into 20 orthogonal channel units with a unit bandwidth of

1MHz. These IoT devices are classified into 3 types working

under different physical regulations, which are listed as follows

Device Tx power(mW) Total channels channel units
Type A 100 5 4
Type B 20 3 6
Type C 50 2 10

TABLE I: Benefits of state sharing in data collection

We utilize the WINNER2 channel model [20] to simulate

the wireless channel. Since we investigate the efficiency of the

proposed recovery mechanism, we set a large task arrival rate

λ = 1Mbits in default. As for the computational resource of

the MPG, based on previous work [29], the process density

ρm is set to 0.297 Gigacycles per Mbits (Gcycles/Mbs). The

total computation capability of an MPG is 30 Gcycles/s.

B. DQN Description
The DQN of each device trained on the MPG shares the

exact same settings. The learning rate is set to 0.001. The size

of the mini-batch is 32. The ε is initialized as 0.9, decreasing

0.001 by each step to 0.01. We apply the Adam optimizer

with the MSE loss function [30] to update the parameters.

The reward discount factor is equal to 0.9. The network trains

33 episodes, each of which comprises 1000 steps. The first

3 episodes are used to fulfill the replay buffer with a size of

3000 experiences. The frequency D of updating the parameter

of the target DQN is set to 100 steps.
We compare the SDRQN with the random decision scheme

(Random) and the other two DQNs. Their differences from

SDRQN is listed in the following:

1) Random: The IoT devices take random actions.

2) Centralized Deep Q-Network (CDQN): MPG trains a

DQN for its managed devices in a centralized manner.

The output is the action combination for all devices.

3) Decentralized State-Sharing Deep Q-Network (SDQN):

SDQN has a similar structure with the proposed

SDRQN, but the recurrent unit is replaced by a con-

ventional fully-connected layer with the same size.

Meanwhile, three major metrics are considered: the average

reward that each IoT device obtains; the average waiting

time of all IoT devices including the queueing time before

a successful task transmission and the life-cycle latency; the

average drop rate of all the tasks.

C. Result Analysis

Benefit of state sharing. We compare the decentralized

neural network performance w/o the channel state sharing.

The networks without channel state sharing are denoted as

Independent-State DQN (ISDQN) and ISDRQN in Table.II,

respectively. Specifically, in both ISDQN and ISDRQN, the

input is the channel state between the IoT device itself and its

manager MPG. The MPG trains the network for each of its

managed IoT devices independently.

Structure Average QoE Waiting time(s) Drop rate
SDRQN 0.9127 1.5450 0.0029
ISDRQN 0.8716 2.0260 0.0062
SDQN 0.8895 1.7190 0.0101
ISDQN 0.8381 1.9880 0.0239

TABLE II: Benefits of state sharing in data collection

Among the four network structures in Table.II, SDRQN

obtains the highest reward as well as the lowest waiting time

and task drop rate. Without both the channel state sharing and

the recurrent unit, ISDQN results in the lowest reward because

of the high drop rate of 2.39%. As shown in the last column,

via sharing channel state, the average drop rates in SDRQN

and SDQN reduce to 0.29% and 1.01%, respectively, which

are around 55% of those in ISDRQN and ISDQN. As for the

waiting time, the SRDQN with the LSTM benefits more from

the channel state sharing compared to the SDQN. Specifically,

It reduces more than 10% of the waiting time compared to that

of the SDQN.
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(a) Average long-term QoE (b) Average waiting time (c) Average drop rate

Fig. 5: Data collection performance under different IoT device numbers

Impact of arrival task rate. Fig.4 depicts the data col-

lection performance with different task arrival rates from

0.8Mbits/s to 1.2Mbits/s. When the task arrival rate is less

than the unit data size, λ ≤ τ , the average drop rate is lower

than 1%. The average QoE is higher than 0.9, indicating

that all three DQNs have a satisfactory performance with a

small λ. When the λ is larger than 1.1τ , the rewards of

both decentralized DQN decrease dramatically to 0.85 and

0.8 separately. However, when the rate increases to 1.2τ , the

waiting time is over 2 time slots in decentralized DQNs. Note

that the τ can be easily adjusted to fit other networks.

(a) Average long-term QoE (b) Average drop rate

Fig. 6: Performance with different recovery mechanisms

Effectiveness of proposed contamination mechanism.
We compare data collection performance among the recovery

mechanism with the dynamic contamination, the recovery

mechanism with the fixed batch [31], and without the recovery

mechanism. In the fixed batch size setting, the IoT device

always packs a certain number of tasks in a batch. The IoT

device working without the recovery mechanism only attempts

to send a single task and will drop it if any failure occurs.

According to the results in Fig. 6, when the recovery batch

size is fixed to 5, the average drop rate is around 13%, which

is even higher than that without the recovery mechanism. The

reason is that the large batch size leads to the long life-cycle

latency and further causes the collection failure. The recovery

mechanism with the dynamic batch size reduces around 67%
drop rate from that without the recovery mechanism in all three

DQNs. In addition, the recovery mechanism with the dynamic

contamination always achieves the highest reward among all

three DQN structures.

Impact of max batch size in the dynamic contamination.
Fig.7a illustrates the averaged long-term QoE and the task

drop rate in SDRQN, where the curves are all convex. It

demonstrates that there always exists an optimal max batch

size given different task arrival rates. When λ = 0.8 Mbits/s,

the optimal max batch size is 4 and the drop rate is only

0.26%. As λ increases, the optimal size is 3 in most cases.

When the λ increases to 1.2 Mbits/s, the average drop rate is

about 1.4% when vmax
mk

= 2, lower than 1.9% when vmax
mk

= 3.

With this being said, we can tell that the optimal max batch

size presents a decreasing trend as the arrival rate gets larger.

(a) Average long-term QoE (b) Average drop rate

Fig. 7: SDRQN performance under different max batch sizes

Scalability and necessaries of the SDRQN. To demon-

strate the feasibility of SDRQN in the large-scale IoT network,

we increase the number of IoT devices from 8 to 16. The

number of IoT devices in type A, B, C are [2, 3, 3], [3, 3, 4],
[4, 4, 4], [4, 5, 5], and [4, 5, 7], respectively. As shown in Fig.5,

all three DQN structures achieve the ultra-low drop rates, 0%
when 8 heterogeneous IoT devices coexist and at most 0.24%
with 10 devices. This is attributed to the sparse distribution of

the IoT devices with weak interference most of the time. When

the IoT network continues to scale up, the proposed SDRQN

still maintains a great performance. Compared to the Random

policy, SDRQN reduces 83% of the drop rate to about 3.9%.

It also outperforms the 9% drop rate realized by SDQN.

Structure SDRQN SDQN CDQN
Number of parameters 9768 10120 5121792

Memory allocated (MBytes) 0.16 0.17 144.54
Training memory (MBytes) 3.01 2.53 1177.14

TABLE III: Source utilization of different network structure
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Table.III lists the computation and memory resources re-

quired for training different DQNs, where Memory allocated

indicates the GPU memory allocated for initializing the neural

network. Training memory represents the memory required for

each update of the network parameters. As we can see, the

SDRQN and SDQN only need around 10 thousand parameters,

which is far less than over 5 million parameters in centralized

CDQN. Meanwhile, there is a much higher level memory

usage in CDQN than that in both SDRQN and SDQN. This

demonstrates that the decentralized structure of DQN must be

considered in a large-scale IoT network.

VII. CONCLUSION

In this paper, we proposed a sensing data collection scheme

to enhance the long-term overall QoE in the heterogeneous

IoT network, where task failures and the life-cycle latency are

taken into consideration. A recovery mechanism with dynamic

data contamination is proposed to address those challenges.

Technically, to maximize the long-term overall QoE, a DRL

algorithm with a lightweight DQN structure SRDQN is de-

ployed for finding the optimal data collection policy. Our

simulation results show that SRDQN has a better performance

than CDQN, SDQN, and Random schemes. Furthermore, our

data collection scheme is demonstrated to be efficient and

effective in the large-scale heterogeneous IoT network.
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