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Computer Measurement

Execution time
Performance
Clock period and clock rate
CPU time, CPI (cycles per instruction)
Amdahl’s Law
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Performance Equations

Performance has an inverse relationship to execution time.

Performance =
1

Execution_Time

Comparing the performance of two machines can be
accomplished by comparing execution times.

PerformanceX > PerformanceY

1
Execution_TimeX

>
1

Execution_TimeY

Execution_TimeY > Execution_TimeX
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N Times Faster

Often people state that a machine X is n times faster than a
machine Y. What does this mean?

PerformanceX
PerformanceY

= n =
Execution_TimeY
Execution_TimeX

If machine X takes 20 seconds to perform a task and machine
Y takes 2 minutes to perform the same task, then machine X
is how many times faster than machine Y?
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Measures of Clock Speed

clock periods
millisecond (ms) - 10−3 of a second
microsecond (µs) - 10−6 of a second
nanosecond (ns) - 10−9 of a second
picosecond (ps) - 10−12 of a second
femtosecond (fs) - 10−15 of a second

clock rates
kilohertz (KHz) - 103 cycles per second
megahertz (MHz) - 106 cycles per second
gigahertz (GHz) - 109 cycles per second
terahertz (THz) - 1012 cycles per second
petahertz (PHz) - 1015 cycles per second

If the clock period for a computer is 2ns, then what is its clock
rate?
Why do computer manufacturers quote clock rates instead of
clock periods?
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Measures of Data Size

bit - Binary digIT
nibble - four bits
byte - eight bits
word - often four bytes (32 bits) on many embedded/mobile
processors and eight bytes (64 bits) on many desktops and
servers
kibibyte (Kib) [kilobyte (Kb)] - 210 (1,024) bytes
mebibyte (Mib) [megabyte (Mb)] - 220 (1,048,576) bytes
gibibyte (Gib) [gigabyte (Gb)] - 230 (1,073,741,824) bytes
tebibyte (Tib) [terabyte (Tb)] - 240 (1,099,511,627,776) bytes
pebibyte (Pib) [petabyte (Pb)] - 250 (1,125,899,906,842,624)
bytes
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CPU Time

CPU time ignores I/O and the time for executing other
processes.
CPI stands for cycles per instruction.

CPU_time = CPU_clock_cycles ∗ clock_cycle_time =
CPU_clock_cycles

clock_rate

CPI =
CPU_clock_cycles

instruction_count

CPU_time = Instruction_count ∗ CPI ∗ clock_cycle_time

Suppose two implementations of the same ISA are executing
the same program. Computer A has a clock cycle time of
250ps and a CPI of 2.0. Computer B has a clock cycle time of
500ps and a CPI of 1.2. Which computer is faster and by how
much?
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CPU Time (cont.)

CPI cannot be looked up in a manual as it can be affected by
many external events.

Pipelines can be flushed.
Branch information can be replaced in various buffers (BPB,
BTB).
Page translation information can be evicted (ITLB, DTLB).
Blocks of data or instructions can be evicted from cache or
memory.

CPU time really needs to be measured and it can vary
somewhat on each execution.
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Amdahl’s Law

Amdahl’s Law states that the performance improvement to be
gained from using some faster mode of execution is limited by
the fraction of the time the faster mode can be used.

f
Parallelizable: f

Serial: s

1 core

2 cores

3 cores

time = s + f/p

Time = 1

f/p

s

s
p cores

S: speedupoverall

f: parallel_function (fractionenhanced)
p: process_cores (speedupenhanced)
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Amdahl’s Law

Amdahl’s Law depends on two factors:
The fraction of the time the enhancement can be exploited.
The improvement gained by the enhancement while it is
exploited.

speedupoverall =
execution_timeold
execution_timenew

=
1

(1 − fractionenhanced) +
fractionenhanced
speedupenhanced

execution_timenew = execution_timeold ∗ (1− fractionenhanced +
fractionenhanced
speedupenhanced

)

If the speed of a CPU is improved by a factor of 5 and the
CPU requires 40% of the machines execution time, then what
is the overall speedup?

1
1− 0.4+ 0.4

5
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Commonly Used Bases

Which base is commonly used for computers and why?

Base Name Digits Example

10 Decimal 0-9 502310

2 Binary 0-1 10011100111112

8 Octal 0-7 116378

16 Hexadecimal 0-9,a-f 139 f16
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Binary Number Representation

It is also the way to convert binary number to decimal number.
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Conversion from Decimal to Binary Number
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Conversion from Decimal to Binary Number (cont.)
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Conversion between Binary and Hexadecimal Number
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Unsigned and Signed Integers

Unsigned integers: non-negative numbers
Binary representation: dn−1dn−2 · · · d1d0 =
dn−1 ∗ 2n−1 + dn−2 ∗ 2n−2 + · · ·+ d1 ∗ 21 + d0 ∗ 20

Signed integers:
Non-negative integers: MSB is 0
Negative integers: MSB is 1

Two’s complement representation: dn−1dn−2 · · · d1d0 =
−dn−1 ∗ 2n−1 + dn−2 ∗ 2n−2 + · · ·+ d1 ∗ 21 + d0 ∗ 20
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Two’s Complement Negation
Negation of a two’s compliment number is accomplished by
inverting the bits and adding 1.

x + x = 111...111 = −1
x + x + 1 = 0

x + 1 = −x
Example 1:

310 = 000000000000000000000000000000112

−310 = 111111111111111111111111111111002 + 12

= 111111111111111111111111111111012

= −310

Example 2:
−310 = 111111111111111111111111111111012

310 = 000000000000000000000000000000102 + 12

= 000000000000000000000000000000112

= 310
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Binary Addition

Rules: add the values and discard any carry-out bit
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Binary Subtraction

Rules: if we consider A− B , we first negate B and add it to A
and discard any carry-out bit
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Detecting Overflow

Overflow occurs when the result of performing an arithmetic
operation is not within the range of representable values.
Overflow on addition only occurs when the MSBs of the
operands are the same and the MSB of the result differs.

A + B

Operand A Operand B Result Overflow?

≥ 0 ≥ 0 < 0
< 0  < 0 ≥ 0

Yes

≥ 0 ≥ 0 ≥ 0
< 0  < 0 < 0

No

≥ 0 < 0 < 0 No
≥ 0 < 0 ≥ 0 No
< 0 ≥ 0 < 0 No
< 0 ≥ 0 ≥ 0 No

zxn
Pencil
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Overflow for Addition
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Overflow for Subtraction
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Zero Extension – Extending to a Larger Unsigned
Representation

Converting an unsigned value to a larger representation is
called zero extension.
Zero extension is accomplished by filling in the new bits of the
larger representation with zero.

C Type Number Decimal

unsigned char 10010110 150

unsigned short 0000000010010110 150

unsigned int 00000000000000000000000010010110 150
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Sign Extension – Extending to a Larger Two’s Complement
Representation

Converting a two’s complement value to a larger
representation is called sign extension.
Sign extension is accomplished by taking the most significant
bit from the value in the smaller representation and replicating
it to fill in the new bits of the larger representation.

C Type Number Decimal

char 00000011 3

short 0000000000000011 3

int 00000000000000000000000000000011 3

char 11111101 -3

short 1111111111111101 -3

int 11111111111111111111111111111101 -3
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Scientific Notation

Scientific notation uses 3 integers to represent values.
representation.

radix (or base) r
significand (or mantissa) s
exponent x

The standard form is:
s ∗ r x

15.625 can be represented as:
15.625 ∗ 100

1.5625 ∗ 101

15625 ∗ 10−3
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IEEE 754 Floating-Point Standard

A standard for floating-point representation called the IEEE
754 Floating-Point Standard (FPS) is now widely used.

Programs become more portable since the results of
floating-point operations are similar across different machines.
Floating-point data can be transferred from one machine to
another without performing conversions.

Below is the format used for representation of single precision
floating-point values in the IEEE FPS, where S is the sign bit,
E is a biased exponent, and F represents the bits of the
significand with the leading bit hidden.

31 30

S

23 22

E

8 bits1 bit

F

0

23 bits
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IEEE 754 Floating-Point Standard (cont.)

31 30

S

23 22

E

8 bits1 bit

F

0

23 bits

Below is how the IEEE FPS format is interpreted.
(−1)S ∗ (1+ 0.F ) ∗ 2(E−127)

The 1 is added to 0.F to make the leading bit of normalized
binary numbers implicit and save a bit of space. This is
referred to as the hidden bit.
The E is adjusted by a bias of 127. Positive exponents will
have larger unsigned biased value than negative exponents.
This makes it easier to determine the larger magnitude of two
IEEE FPS values (The larger the E, the larger the magnitude).
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Example of Representing a Value in IEEE FPS

Determine the hexadecimal IEEE FPS pattern that represents
the decimal value 9.5.
IEEE FPS pattern: (−1)S ∗ (1+ 0.F ) ∗ 2(E−127)

9.510 = 1001.12

= 1.00112 ∗ 23

= (−1)0 ∗ (1+ 0.00112) ∗ 2(130−127)

= (−1)S ∗ (1+ 0.F ) ∗ 2(E−127)

FPS = S E F

= 0 13010 001100000000000000000002

= 0 100000102 001100000000000000000002

= 01002 00012 00012 10002 00002 00002 00002 00002

= 4118000016
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Example of Representing a Value in IEEE FPS (cont.)

Determine the hexadecimal IEEE FPS pattern that represents
the decimal value -6.25.
IEEE FPS pattern: (−1)S ∗ (1+ 0.F ) ∗ 2(E−127)

−6.2510 = −110.012

= −1.10012 ∗ 22

= (−1)−1 ∗ (1+ 0.10012) ∗ 2(129−127)

= (−1)S ∗ (1+ 0.F ) ∗ 2(E−127)

FPS = S E F

= 1 12910 100100000000000000000002

= 1 100000012 100100000000000000000002

= 11002 00002 11002 10002 00002 00002 00002 00002

= c0c8000016
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Example of Determining an IEEE FPS Pattern Value

Determine what decimal value that 0xc090000016 represents
in the IEEE FPS.

FPS = c090000016

= 11002 00002 10012 00002 00002 00002 00002 00002

= 1 100000012 001000000000000000000002

= S E F

value = (−1)S ∗ (1+ 0.F ) ∗ 2(E−127)

= (−1)1 ∗ (1+ 0.0012) ∗ 2(129−127)

= (−1) ∗ (1.0012) ∗ 22

= −100.12

= −4.510
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Example of Determining an IEEE FPS Pattern Value (cont.)

Determine what decimal value that 0x4058000016 represents
in the IEEE FPS.

FPS = 4058000016

= 01002 00002 01012 10002 00002 00002 00002 00002

= 0 100000002 101100000000000000000002

= S E F

value = (−1)S ∗ (1+ 0.F ) ∗ 2(E−127)

= (−1)0 ∗ (1+ 0.10112) ∗ 2(128−127)

= 1 ∗ (1.10112) ∗ 21

= 11.0112

= 3.37510
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Instructions for a Machine

A high-level language statement is typically represented by
several assembly instructions.
An assembly instruction is generally a symbolic representation
of a machine instruction.
A machine instruction is a set of bits representing a basic
operation that a machine can perform.
An instruction set is the set of possible machine instructions
for a specific machine.
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Example of Compilation Process
swap(int v[], int k)

{int temp;

   temp = v[k];

   v[k] = v[k+1];

   v[k+1] = temp;

}

swap:

      multi $2, $5,4

      add   $2, $4,$2

      lw    $15, 0($2)

      lw    $16, 4($2)

      sw    $16, 0($2)

      sw    $15, 4($2)

      jr    $31

00000000101000100000000100011000

00000000100000100001000000100001

10001101111000100000000000000000

10001110000100100000000000000100

10101110000100100000000000000000

10101101111000100000000000000100

00000011111000000000000000001000

Assembler

Compiler

Binary machine

language

program

(for MIPS)

Assembly

language

program

(for MIPS)

High-level

language

program

(in C)
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MIPS Assembly File

A MIPS assembly file consists of a set of lines.
Each line can be:

directive
instruction

Each directive or instruction can start with a label, which
provides a symbolic name for a data or instruction location.
Each line can include a comment, which start with a #
character and continues to the end of the line.
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General Form of a MIPS Assembly Language Program

All directives and instructions are placed on separate lines.

.data
<declarations of variables>
.text
.globl main
main:
<instructions>
jr $ra # instruction indicating a return
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MIPS Integer Registers

There are only 32 MIPS integer (general-purpose) registers.

Name Number Usage Callee Must Preserve?

$zero $0 hardwired constant value zero N/A

$at $1 reserved for use by assembler no

values for function results and
expression evaluation

$v0-$v1 $2-$3 no

$a0-$a3 $4-$7 function arguments no

$t0-$t7 $8-$15 temporaries no

$s0-$s7 $16-$23 saved temporaries yes

$t8-$t9 $24-$25 more temporaries no

$k0-$k1 $26-$27 reserved for use by OS kernel N/A

$gp $28 global pointer yes

$sp $29 stack pointer yes

$fp $30 frame pointer yes

$ra $31 return address yes
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MIPS Directives

directive meaning

.align n Align next datum on 2
n

boundary.

.asciiz str Place the null-terminated string str in memory.

.byte b1,...,bn Place the n byte values in memory.

.data Switch to the data segment.

.double d1,...,dn Place the n double precision values in memory.

.extern sym size Declare that the datum stored at sym is size
bytes and is a global label.

.float f1,...,fn Place the n single precision values in memory.

.globl sym The label sym can be referenced in other files.

.half h1,...,hn Place the n halfword values in memory.

.space n Allocates n bytes of space at the current loca-
tion in the current segment.

.text Switch to the text segment.

.word w1,...,wn Place the n word values in memory.
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QtSpim Syscalls

Syscalls provide operating system services.
QtSpim input/output (I/O) and exit occurs through syscalls.

Service Call Code Arg Other Arguments Result

print_int $v0 = 1  $a0 = integer

print_float $v0 = 2  $f12 = float

print_double $v0 = 3  $f12 = double

print_string $v0 = 4  $a0 = string address

read_int $v0 = 5  integer in $v0

read_float $v0 = 6  float in $f0

read_double $v0 = 7  double in $f0

$a0 = string address
$a1 = max length

read_string $v0 = 8

exit $v0 = 10

print_char $v0 = 11 $a0 = char

read_char $v0 = 12 char in $v0
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General Classes of MIPS Assembly Instructions

arithmetic operations (+, -, *, /)
logical operations (&, |, ˜ , ˆ , «, »)
data transfer (loads from memory or stores to memory)
transfers of control (jumps, branches, calls, returns)
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Logical operations: MIPS Shift Instructions

Shift instructions move the bits in a word to the left or right
by a specified amount.
Shifting left (right) by i is the same as multiplying (dividing)
by 2i .
A logical left (right) shift fills in the vacant bits with zero.
An arithmetic right shift replicates the most signficiant bit to
fill in the vacant bits.

Example Meaning Comment

sll $t2,$t3,2 $t2 = $t3 << 2 shift left logical

sllv $t3,$t4,$t5 $t3 = $t4 << $t5 shift left logical variable

sra $t4,$t3,1 $t4 = $t3 >> 1 shift right arithmetic (signed)

srav $t7,$t2,$t4 $t7 = $t2 >> $t4 shift right arithmetic variable (signed)

srl $t2,$t3,7 $t2 = $t3 >> 7 shift right logical (unsigned)

srlv $t3,$t4,$t6 $t3 = $t4 >> $t6 shift right logical variable (unsigned)
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Exercise: Using Shift Instructions

Write a single MIPS assembly instruction to multiply $t2 by 4
(22) and put the result in $t3.
Answer: sll $t3 $t2 2.

Assume $t1 has the value 2. What are the values assigned to
$t2 if we perform sll $t2,$t1,3?
Answer: shift left by 3 bits - > multiply value by 23. The
result is 2× 23 = 16.

Assume $t2 has the value -4. What are the values assigned to
$t3 and $t4 if we perform the following instructions?
sra $t3,$t2,2
srl $t4,$t2,2
Answer: (−4)10 = (11111111111111111111111111111100)2
$t3: (11111111111111111111111111111111)2 = (−1)10
$t4: (00111111111111111111111111111111)2 = (231 − 1)10



Introduction Number Representation Assembly 1 Assembly 2

Data Transfer Instructions

The processors keep only a small amount of data in registers,
but memory contains billions of data elements
Data transfer instructions are used to transfer data between
register and memory
The MIPS can only access memory with load and store
instructions.
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Specifying Memory Address

Memory is organized as an array of bytes (8 bits)
In memory, each element is kept as a word (4 bytes), which
must start at address that are multiples of 4.

How to get the address of a element in the array?
Base address + offset (multiples of 4)
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General Form of MIPS Data Transfer Instructions

form: <operation> <reg1>,<constant>(<reg2>)
reg2: keep base address; constant: keep offset
load instruction: copy data from memory to a register
store instruction: copy data from a register to memory
Example Meaning Comment

lw $t2,8($t3) $t2 =
32

Mem[$t3 + 8] 32-bit load

lh $t3,0($t4) $t3 =
32

(Mem[$t4]
0
)
16

## Mem[$t4] signed 16-bit load

lhu $t8,2($t3) $t8 =
32

0
16

## Mem[$t3 + 2] unsigned 16-bit load

lb $t4,0($t5) $t4 =
32

(Mem[$t5]
0
)
24

## Mem[$t5] signed 8-bit load

lbu $t6,1($t9) $t6 =
32

0
24

## Mem[$t9 + 1] unsigned 8-bit load

sw $t5,-4($t2) Mem[$t2 - 4] =
32

$t5 32-bit store

sh $t6,12($t3) Mem[$t3 + 12] =
16

$t6
16..31

16-bit store

sb $t7,1($t3) Mem[$t3 + 1] =
8
$t7

24..31
8-bit store

##: contatenation; =#: # are assigned; 0#: # bits of zero;
#1..#2: bit range where the LSB is labeled bit 31.
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Indexing Array Elements with a Constant Index

Use MIPS assembly directives to declare a four element integer
array named A.
Write MIPS assembly instructions to accomplish the following
C statement. Assume $t5, $t6, and $t7 are available.

A[3] = A[0] + A[1] + A[2];
.data
_A: .word 1,2,3,0 # declare space for array A
.text
...
la $t5,_A # load address of A
lw $t6,0($t5) # load A[0]
lw $t7,4($t5) # load A[1]
addu $t6,$t6,$t7 # add A[0] and A[1]
lw $t7,8($t5) # load A[2]
addu $t6,$t6,$t7 # add A[2]
sw $t6,12($t5) # store into A[3]
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Indexing Array Elements with a Variable Index

Assembly code can be written to access array elements using a
variable index. Consider the following source code fragment.

int a[100], i;
...
a[i] = a[i] + 1;

Assume the value of i is in $t0. The following MIPS code
performs this assignment.

.data
_a: .space 400 # declare space for array _a
...
la $t1,_a # load address of _a
sll $t2,$t0,2 # determine offset from _a
addu $t2,$t2,$t1 # add offset and _a
lw $t3,0($t2) # load the value
addiu $t3,$t3,1 # add 1 to the value
sw $t3,0($t2) # store the value
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Transfer of Control Instructions

Transfers of control instructions can cause the next instruction
to be executed that is not the next sequential instruction.
Transfers of control are used to implement control statements
in high-level languages.

unconditional (goto, break, continue, call, return)
conditional (if-then, if-then-else, switch)
iterative (while, do, for)
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General Form of MIPS Jump and Branch Instructions

MIPS provides direct jumps to support unconditional transfers
of control to a specified location.
MIPS provides indirect jumps to support returns and switch
statements.
MIPS provides conditional branch instructions to support
decision making. MIPS conditional branches test if the values
of two registers are equal or not equal.

General Form Example Meaning Comments

j <label> j L1 goto L1; direct jump

jr <sreg> jr $ra goto $ra; indirect jump

beq <s1reg>,<s2reg>,<label> beq $t2,$t3,L1 if ($t2 == $t3) goto L1; branch equal

bne <s1reg>,<s2reg>,<label> bne $t2,$t3,L1 if ($t2 != $t3) goto L1; branch not equal

For beq and bne instructions, nothing happens if the condition
is not true.
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Example of Translating an If Statement

example source statement:

if (i == j)
k = k+i;

Translate into MIPS instructions assuming i, j, and k, are in
the registers $t2, $t3, and $t4, respectively.

bne $t2,$t3,L1 # if ($t2 != $t3) goto L1
addu $t4,$t4,$t2 # k = k + i
L1:

Note that: the code will be more efficient if we test for the
opposite condition to branch over the code that performs the
subsequent then part of the if.
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Example of Translating an If-Then-Else Statement

example source statement:
if (i == j)

f = g + h;
else

f = g - h;

Translate into MIPS instructions assuming f, g, h, i, and j
are in registers $s0 through $s4 respectively.

Finalresults :
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General Form of MIPS Comparison Instructions

MIPS provides set less than instructions that set a register to
1 if the first source register is less than the value of the second
operand. Otherwise it sets it to 0.
There are versions to perform unsigned comparisons as well.

General Form Example Meaning Comments

if ($t3 < $t4) $t2 = 1;
else $t2 = 0;

slt <dreg>,<s1reg>,<s2reg> slt $t2,$t3,$t4 compare less than

if ($t3 < $t4) $t2 = 1; compare less than
else $t2 = 0; unsigned

sltu <dreg>,<s1reg>,<s2reg> sltu $t2,$t3,$t4

if ($t3 < 100) $t2 = 1; compare less than
else $t2 = 0; constant

slti <dreg>,<sreg>,<const> slti $t2,$t3,100

if ($t3 < 100) $t2 = 1; compare less than
else $t2 = 0; constant unsigned

sltiu <dreg>,<s1reg>,<const> sltiu $t2,$t3,100
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Example of Translating an If-Then-Else Statement

example source statement:
if (a < b)
c = a;
else
c = b;

Translate into MIPS instructions assuming a, b, and c, are in
the registers $t2, $t3, and $t4, respectively. Assume $t5 is
available.

slt $t5,$t2,$t3 # a < b
beq $t5,$zero,L1 # if ($t5 == 0) goto L1
move $t4,$t2 # c = a
j L2 # goto L2
L1:
move $t4,$t3 # c = b
L2:
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Translating an If-Statement with a Different Condition

example source statement:
if (a > b)
c = a;

Translate into MIPS instructions assuming a, b, and c, are in
the registers $t2, $t3, and $t4, respectively. Assume $t5 is
available.

slt $t5,$t3,$t2 # b < a
beq $t5,$zero,L1 # if ($t5 == 0) goto L1
or $t4,$t2,$zero # c = a
L1:

How about the translation for the following statement?
if (a > = b)

c = a;
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Translating an If-Statement with a Different Condition

example source statement:

if (a > = b)
c = a;

Key point: a >= b is the same as !(a < b).

Translate into MIPS instructions assuming a, b, and c, are in
the registers $t2, $t3, and $t4, respectively. Assume $t5 is
available.

slt $t5,$t2,$t3 # a < b
bne $t5,$zero,L1 # if ($t5 != 0) goto L1
or $t4,$t2,$zero # c = a
L1:
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Translating Other High-Level Control Statements

How can we translate other high-level control statements
(while, do, for)?
We can first express the C statement using C if and goto
statements.
After that we can translate using MIPS unconditional jumps
(j), comparisons (slt, slti), and conditional branches (beq,
bne).
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Example of Translating a For Statement

example source statement:
sum = 0;
for (i = 0; i < 100; i++)
sum += a[i];

First, we replace the for statement using an if and goto
statements.

sum = 0;
i = 0;
goto test;
loop: sum += a[i];
i++;
test: if (i < 100) goto loop;
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Example of Translating a For Statement (cont.)

We can next translate into MIPS instructions.
Assume sum, i, and the starting address of a, are in $t2, $t3,
and $t4, respectively and that $t5 is available.

li $t2,0 # sum = 0
move $t3,$zero # i = 0
j test # goto test
loop:
sll $t5,$t3,2 # tmp = i*4
addu $t5,$t5,$t4 # tmp = tmp + &a
lw $t5,0($t5) # load a[i] into tmp
addu $t2,$t2,$t5 # sum += tmp
addiu $t3,$t3,1 # i++
test:
slti $t5,$t3,100 # test i < 100
bne $t5,$zero,loop # if true goto loop
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Optimizing the Translation of the For Statement

How can we make the code on the previous two slides more
efficient?

We don’t need to test the exit condition the first time.
We can step through the array since each element is 4 bytes
after the last element.
We can efficiently check if we have stepped past the last
element to be processed.
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Optimizing the Translation of the For Statement (cont.)

Again assume sum and the starting address of a are in $t2 and
$t4, respectively. Also assume that $t3 and $t5 are available.
We can reduce the body of the loop from 7 instructions to 4
instructions.

and $t2,$t2,$zero # sum = 0
move $t3,$t4 # p = &a
addiu $t5,$t3,400 # exit = &a[100]
loop:
lw $t6,0($t3) # load a[i] into tmp
addu $t2,$t2,$t6 # sum += tmp
addiu $t3,$t3,4 # p++
bne $t3,$t5,loop # if (p != exit) goto loop
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Steps for Executing a Function

caller actions for the function call
Place arguments where the callee can access them: $a0 - $a3
Place return address where the callee can access it.
Transfer control to the callee: jal LI (Li is the label of the
callee)

callee actions when entering function
Allocating storage needed for the callee: $s0 - $s7, $t0 - $t9
Preserve values of callee-save registers used in the function:
$s0 - $s7

addi $sp, $sp, -4
sw $0, 0($sp)

callee performs the task associated with the function
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Steps for Executing a Function (cont.)

callee actions when exiting function:
Assign the result value in a place where caller can access it:
$v0- $v1,
Restore the values of callee-save registers used in the function.

lw $s0, 0($sp)
addi $sp, $sp, 4

Deallocate storage needed for the callee.
Transfers control back to the point after the call: jr $ra

caller accesses the result value
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MIPS Instruction Formats

R format is used for shifts and instructions that reference only
registers.
I format is used for loads, stores, branches, and immediate
instructions.
J format is used for jump and call instructions.

Field Size

R format

I format

J format

Name

6 bits

op

op

op

5 bits

rs

rs

5 bits

rt

rt

rd shamt funct

5 bits 5 bits 6 bits

immed

targaddr

Fields

shamt − shift amount

funct − additional opcodes

immed − offsets/constants

targaddr − jump/call target

op − instruction opcode

rs − first register source operand

rt − second register source operand

rd − register destination operand



Introduction Number Representation Assembly 1 Assembly 2

MIPS R Format

The MIPS R format is used for instructions that only reference
registers and for shift operations.
The op field must have the value of zero for the R format to
be used.
The funct field indicates the type of operation to be
performed for R format instructions.
The shamt field is only used for the sll, sra, and srl
instructions since the shift amount for words cannot exceed
the unsigned value 31 (5 bits) and there were more available
opcode values in the funct field than the op field.

Field Size

R format

Name

6 bits

op

5 bits

rs

5 bits

rt rd shamt funct

5 bits 5 bits 6 bits

Fields

op − instruction opcode

rs − first register source operand

rt − second register source operand

rd − register destination operand

shamt − shift amount

funct − additional opcodes

zxn
Pencil
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R Format Instruction Encoding Examples

R-format example 1: addu $t2,$t3,$t4

fields op rs rt rd shamt funct

size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

decimal 0 11 12 10 0 33

binary 000000 01011 01100 01010 00000 100001

hexadecimal 0x016c5021

R-format example 2: sll $t5,$t6,7

fields op rs rt rd shamt funct

size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

decimal 0 0 14 13 7  0

binary 000000 00000 01110 01101 00111 000000

hexadecimal 0x000e69c0
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MIPS I Format

The MIPS I format is used for arithmetic/logical immediate
instructions, loads and stores, and conditional branches.
The op field is used to identify the type of instruction.
The rs field is used as a source register.
The rt field is used as a source or destination register,
depending on the instruction.
The immed field is sign extended if it is an arithmetic
operation. It is zero extended if it is a logical operation.

Field Size
Name

6 bits 5 bits 5 bits 16 bits
Fields

I format op rs rt immed

op − instruction opcode
rs − first register source operand

rt − second register source operand
immed − offsets/constants
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I Format Instruction Encoding Examples

I-format example 1: addiu $t0,$t0,1

fields op rs rt immed

size 6 bits 5 bits 5 bits 16 bits

decimal 9 8 8  1

binary 001001 01000 01000 0000000000000001

hexadecimal 0x25080001

I-format example 2: lw $s1,100($s2)

fields op rs rt immed

size 6 bits 5 bits 5 bits 16 bits

decimal 35 18 17 100

binary 100011 10010 10001 0000000001100100

hexadecimal 0x8e510064
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I Format Instruction Encoding Examples (cont.)

Conditional branches are also encoded using the I format.
The branch displacement is a signed value in instructions (not
bytes) from the point of the branch.
branch example:

L2: instruction
instruction
instruction
beq $t6,$t7,L2

fields op rs rt immed

size 6 bits 5 bits 5 bits 16 bits

decimal 4 14 15 -3

binary 000100 01110 01111 1111111111111101

hexadecimal 0x11cffffd
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Branch Example of MIPS I Format (cont.)

Binary code to beq $0,$5, label is
0x10050002, which means 2 instructions
from the next instruction.
Before executing beq: PC = 0x4000000C
After executing beq: PC+4 = 0x40000010
Relative address 4*2 = 0x00000008
Effective Address = 0x40000018
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MIPS J Format

The MIPS J format is used for unconditional jumps and
function calls.
The op field is used to identify the type of instruction.
The targaddr field is used to indicate an absolute target
instruction address divided by 4.

An absolute target instruction address divided by 4 means shift
its binary representations 2 bits to the right.

Field Size

Name

6 bits

Fields

J format op targaddr

targaddr − jump/call targetop − instruction opcode

26 bits
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Example of MIPS J Format

j:
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