
Communication Characteristics in the NAS
Parallel Benchmarks

Ahmad Faraj Xin Yuan
Department of Computer Science, Florida State University, Tallahassee, FL 32306

{faraj, xyuan}@cs.fsu.edu

Abstract—
In this paper, we investigate the communication characteris-

tics of the Message Passing Interface (MPI) implementation of
the NAS parallel benchmarks and study the effectiveness of com-
piled communication for MPI programs. Compiled communica-
tion is a technique that utilizes the compiler knowledge of both
the application communication requirement and the underlying
network architecture to significantly optimize the performance of
communications whose information can be determined at com-
pile time (static communications). The results indicate that com-
piled communication can be applied to a large portion of the com-
munications in the benchmarks. In particular, the majority of
collective communications are static.

Keywords: NAS parallel benchmarks, Communication
Characteristics, Compiled Communication.

I. INTRODUCTION

As microprocessors become more and more powerful, clus-
ters of workstations have become one of the most common
high performance computing environments. The standardiza-
tion of the Message Passing Interface (MPI) [1] facilitates the
development of scientific applications for clusters of work-
stations using explicit message passing as the programming
paradigm and has resulted in a large number of applications
being developed using MPI. Designing an efficient cluster of
workstations requires the MPI library to be optimized for the
underlying network architecture and the application workload.

Compiled communication has recently been proposed to im-
prove the performance for MPI routines for clusters of work-
stations[9]. In compiled communication, the compiler deter-
mines the communication requirement in a program and man-
ages network resources, such as multicast groups and buffer
memory, statically using the knowledge of both the under-
lying network architecture and the application communica-
tion requirement. Compiled communication offers many ad-
vantages over the traditional communication method. First,
by managing network resources at compile time, some run-
time communication overheads such as the group management
can be eliminated. Second, compiled communication can use
long–lived connections for communications and amortize the
startup overhead over a number of messages. Third, com-
piled communication can improve network resource utiliza-
tion by using off–line resource management algorithms. Last

but not the least, compiled communication can optimize ar-
bitrary communication patterns as long as the communication
information can be determined at compile time. The limitation
of compiled communication is that it cannot apply to commu-
nications whose information cannot be determined at compile
time. Thus, the effectiveness of compiled communication de-
pends on whether the communication information can be ob-
tained at compile time.

While the existing study [4] shows that the majority of com-
munications in scientific programs are static, that is, the com-
munication information can be determined at compile time,
the communication characteristics of MPI programs have not
been investigated in this manner. Given the popularity of MPI,
it is important to study the communications in MPI programs
and determine the effectiveness of compiled communication
for such programs. In this paper, we investigate the communi-
cation characteristics in the NAS parallel benchmarks [2], the
popular MPI benchmarks that are widely used in industry and
academia to evaluate high performance computing systems.

We classify communications into three types: static com-
munications, dynamic communications and dynamically an-
alyzable communications. We apply the classification to
both point-to-point communications and collective communi-
cations. Static communications are communications whose
information can be determined at compile time. Dynamically
analyzable communications are communications whose infor-
mation can be determined at runtime without incurring exces-
sive overheads. Dynamic communications are communica-
tions whose information can be determined only at runtime.
The compiled communication technique is most effective in
optimizing static communications. It can be applied to opti-
mize dynamically analyzable communications at runtime with
some overheads. Compiled communication is least effective,
and usually resorts to traditional communication schemes, in
handling dynamic communications. Our study shows that
while MPI programs have significantly more dynamic com-
munications in comparison to the programs studied in [4],
static and dynamically analyzable communications still ac-
count for a large portion of all communications. In particular,
the majority of collective communications are static. We con-
clude that compiled communication can be effective for MPI
programs.



2

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 summarizes the NAS
benchmarks. Section 4 describes the methodology we used in
this study. Section 5 presents the results of the study. Section
6 concludes the paper.

II. RELATED WORK

The characterization of applications is essential for devel-
oping an efficient distributed system and its importance is ev-
idenced by a large amount of existing work [2], [3], [4], [6].
In [2], the overall performance of a large number of parallel
architectures was evaluated using the NAS benchmarks. In
[3], the NAS benchmarks were used to evaluate two commu-
nication libraries over the IBM SP machine. In [6], detailed
communication workload resulted from the NAS benchmarks
was examined. These evaluations all assume that the under-
lying communication systems are traditional communication
systems and do not classify communications based on whether
the communications are static or dynamic. The most closely
related work to this research was presented in [4], where the
communications in parallel scientific programs were classi-
fied as static and dynamic. It was found that a large portion
of communications in parallel programs, which include both
message passing programs and shared memory programs, are
static and only less than 1% of the communications are dy-
namic. Since then, both parallel applications and parallel ar-
chitectures evolve, and more importantly, MPI has been stan-
dardized, resulting in a large number of MPI based parallel
programs. In this work, we focus on MPI programs whose
communications have not been characterized in this manner.

III. NAS PARALLEL BENCHMARKS

The NAS parallel benchmarks (NPB) [2] were developed at
the NASA Ames research center to evaluate the performance
of parallel and distributed systems. The benchmarks, which
are derived from computational fluid dynamics (CFD), consist
of five parallel kernels (EP , MG, CG, FT , and IS) and three
simulated applications (LU , BT , and SP ). In this work, we
study NPB 2.3 [5], the MPI-based implementation written and
distributed by NAS. NPB 2.3 is intended to be run with little
or no tuning, and approximate the performance a typical user
can expect to obtain for a portable parallel program. A detailed
description of the benchmarks can be found in [5].

IV. METHODOLOGY

In this section, we describe the methodology we used. We
will present the assumptions, the methods to classify commu-
nications, and the techniques to collect statistical data.

A. Types of communications

The communication information needed by compiled com-
munication depends on the optimizations to be performed.
In this study, we assume that the communication informa-
tion needed is the communication pattern, which specifies the
source-destination pairs in a communication. Many optimiza-
tions can be performed using this information. In a circuit-
switched network, for example, compiled communication can
use the knowledge of communication patterns to pre-establish
connections and eliminate runtime path establishment over-
heads. When multicast communication is used to realize col-
lective communications, compiled communication can use the
knowledge of communication patterns to perform group man-
agement statically.

We classify the communications into three types: static
communications, dynamic communications, and dynamically
analyzable communications. The classification applies to
both collective communications and point-to-point communi-
cations. Static communications are communications whose
pattern information is determined at compile time. Dynamic
communications are communications whose patterns can only
be determined at runtime. Dynamically analyzable communi-
cations are communications whose pattern information can be
determined at runtime without incurring excessive overheads.
In general, dynamically analyzable communications are usu-
ally resulted from communication routines that are invoked
repeatedly with one or more symbolic constant parameters.
Since the symbolic constants can be determined once at run-
time (thus, without incurring excessive overheads) and be used
many times in the communications, we distinguish such com-
munications from other dynamic communications. The pa-
rameterized communications in [4], that is, communications
whose patterns can be represented at compile time using some
symbolic constant parameters, belong to the dynamically ana-
lyzable communication in our classification.

B. Assumptions about the compiler

The compiler analysis technique greatly affects the com-
piler’s ability to identify static communications. In the study,
we emulate the compiler and analyze the programs by hand
to mark the communication routines. We make the following
assumptions:

• The compiler does not support array analysis. All ar-
ray elements are treated as unknown variables at compile
time.

• The compiler has perfect scalar analysis: it can always
determine the value of a scalar if the value can be deter-
mined.

• The compiler does not have inter-procedure analysis. In-
formation cannot be propagated across procedure bound-
aries. The parameters of a procedure are assumed to be
unknown. We also assume that simple inlining is per-
formed: procedures that are called only in one place in
the program are inlined.



3

C. Classifying communications

The communication routines in the NAS bench-
marks include five collective communication routines:
MPI Allreduce, MPI Alltoall, MPI Alltoallv,
MPI Barrier, and MPI Bcast, and four point-to-
point communication routines: MPI Send, MPI Isend,
MPI Irecv, and MPI Recv. Each collective com-
munication routine represents a communication while a
point-to-point communication is represented by a pair of
MPI Send/MPI Isend and MPI Recv/MPI Irecv
routines. We assume that the benchmarks are correct MPI
programs. Thus, MPI Send/MPI Isend routines are
matched with MPI Recv/MPI Irecv routines and the
information about point-to-point communications is derived
from MPI Send and MPI Isend routines.

All MPI communication routines have a parameter called
communicator, which contains the information about the set
of processes involved in the communication. To determine
the communication pattern information for each communica-
tion, we must determine the processes in the corresponding
communicator. Next, we will describe how we deal with the
communicator and how we mark each MPI communication
routine.

Communicator: The communicators used in the NAS
benchmarks either are the MPI built-in communicator,
MPI COMM WORLD, which specifies all processes for
a task, or are derived from MPI COMM WORLD using
MPI Comm split and/or MPI Comm dup functions. We
assume that MPI COMM WORLD is known to the com-
piler. This is equivalent to assuming that the program is com-
piled for a particular number of nodes for execution, which is
a common practice. A dynamically created communicator is
static if we can determine the ranks of all the nodes in the com-
municator with respect to MPI COMM WORLD at com-
pile time. If a communicator is a global variable and is used
in multiple communications, it is considered as a dynamically
analyzable communicator. The rational to treat such a com-
municator as a dynamically analyzable communicator is that
a communicator typically lasts for a long time in the execution
and is usually used in many communications. The overhead to
determine the communicator information at runtime is small
when amortized over the number of communications that use
the communicator. A communicator is considered dynamic if
it is neither static nor dynamically analyzable.

For a communication to be static, the corresponding com-
municator must be static. For a communication to be dynami-
cally analyzable, the communicator can be either static or dy-
namically analyzable.

MPI Barrier: The prototype for this routine is int
MPI Barrier(MPI Comm comm). The communication re-
sulted from this routine is implementation dependent. How-
ever, once the compiler determines the communicator comm,
it also determines the communication pattern for a particu-
lar MPI implementation. Thus, the communication is static if

comm is static, dynamically analyzable if comm is dynami-
cally analyzable, and dynamic if comm is dynamic.

MPI Alltoall: The prototype for this routine is int
MPI Alltoall(void* sendbuf, int sendcount, MPI Datatype
sendtype, void* recvbuf, int recvcount, MPI Datatype recv-
type, MPI Comm comm). This routine results in all nodes in
comm sending messages to all other nodes in comm. Thus,
once comm is determined, the communication pattern for
MPI Alltoall can be decided. The communication is static
if comm is static, dynamically analyzable if comm is dynam-
ically analyzable, and dynamic if comm is dynamic.

MPI Alltoallv: The prototype for this routine is int
MPI Alltoallv(void* sendbuf, int *sendcounts, int *sdispls,
MPI Datatype sendtype, void* recvbuf, int *recvcounts, int
*rdispls, MPI Datatype recvtype, MPI Comm comm). The
communication pattern for this routine depends on the val-
ues of the sendcount array elements. Since we assume that
the compiler does not have array analysis in this study, all
MPI Alltoallv routines are marked as dynamic.

MPI Allreduce: The prototype for this routine is int
MPI Allreduce(void* sendbuf, void* recvbuf, int count,
MPI Datatype datatype, MPI Op op, MPI Comm comm). The
communication pattern in this routine is implementation de-
pendent. It is roughly equivalent to a reduction and a broad-
cast. Once the communicator comm is determined, the com-
munication pattern for a particular implementation can be de-
cided. Thus, the communication is static if comm is static,
dynamically analyzable if comm is dynamically analyzable,
and dynamic if comm is dynamic.

MPI Bcast: The prototype for this routine is int
MPI Bcast(void* buffer, int count, MPI Datatype datatype, int
root, MPI Comm comm). The communication pattern of this
routine is root sending a message to all other nodes in the
communicator comm. Thus, if either comm or root is dy-
namic, the communication is dynamic. If both comm and
root can be determined at compile time, the communication
is static. Otherwise, the communication is dynamically ana-
lyzable.

MPI Send: The prototype for this routine is int
MPI Send(void* buf, int count, MPI Datatype datatype,
int dest, int tag, MPI Comm comm). The analysis of this
routine is somewhat tricky: the instantiation of the routine
at runtime results in different source-destination pairs for
different nodes. For an MPI Send to be static, all the
source-destination pairs resulted from the routine must be
determined at compile time. This requires the followings:
(1) the communicator, comm, should be static; (2) the
relation between ranks of the destination and the source
nodes should be static; and (3) if there are guard statements
(if statement) protecting the routine, the effects of the guard
statements should be static. If any of the above is dynamic
or dynamically analyzable, the communication is marked as
dynamic or dynamically analyzable.

MPI Isend: The analysis of this routine is similar to that of
MPI Send.



4

D. Data collection

To collect dynamic measurement of the communications,
we instrument MPI operations by implementing an MPI wrap-
per that allows us to monitor the MPI communication activi-
ties at runtime. Notice that we cannot use built-in MPI mon-
itoring utility provided by the existing MPI implementation
since we must distinguish among static, dynamically analyz-
able, and dynamic communications. Such information is not
presented in the original MPI routines. To obtain the informa-
tion, we examine the source code and mark each of the MPI
communication routines by hand. In the MPI wrapper, we
record all MPI operations with their respective parameters (as
well as a field indicating whether the communication is static,
dynamic, or dynamically analyzable) in a local trace file. After
the execution of the program, we analyze the trace files for all
the nodes off-line to obtain the dynamic measurement. Most
trace-based analysis systems use a similar approach [7].

V. RESULTS AND IMPLICATIONS

Program communication routines
EP Static: 4 MPI Allreduce, 1 MPI Barrier

CG Static: 1 SKS MPI Barrier

Dynamic: 10 MPI Send

MG Static: 6 MPI Allreduce, 9 MPI Barrier

6 SKS MPI Bcast

Dynamic: 12 MPI Send

FT Static: 2 MPI Barrier, 2 MPI Bcast

Dynamically analyzable: 3 MPI Alltoall

IS Static: 1 MPI Allreduce, 1 MPI Alltoall

1 MPI Send

Dynamic: 1 MPI Alltoallv

LU Static: 6 MPI Allreduce, 1 MPI Barrier

9 MPI Bcast

Dynamically Analyzable: 4 MPI Send

Dynamic: 8 MPI Send

BT Static: 2 MPI Allreduce, 2 MPI Barrier

3 MPI Bcast

Dynamically Analyzable: 12 MPI Isend

SP Static: 2 MPI Allreduce, 2 MPI Barrier

3 MPI Bcast

Dynamically Analyzable: 12 MPI Isend

TABLE I
STATIC CLASSIFICATION OF MPI COMMUNICATION ROUTINES

Table I shows the static classification of the communication
routines in each program. All but one collective communica-
tion routine (MPI alltoallv in IS) in the benchmarks are ei-
ther static or dynamically analyzable. In contrast, a relatively
larger portion of point-to-point communication routines are
dynamic. Figure 1 summarizes the static counts of the differ-
ent communications. Among the 126 communication routines
in all the benchmarks, 50.8% are static, 24.6% are dynami-
cally analyzable, and 24.6% are dynamic. This measurement
shows that there are not many MPI communication routines
in a program and that using the demand driven method [8],
which obtains program information on demand, to analyze the

communications

static

126 (100%)

64(50.8%)

dynamic
31(24.6%)

dynamically analyzable
31(24.6%)

Fig. 1. Summary of static measurement

program and obtain information for compiled communication
is likely to perform better than using the traditional exhaustive
program analysis approach.

Prog. type num. num. % volume volume %
Static 5 100.0% 12.5KB 100.0%

EP D. Ana. 0 0.0% 0 0.0%
Dynamic 0 0.0% 0 0.0%
Static 1 0.0% 0.03KB 0.0%

CG D. Ana. 0 0.0% 0 0.0%
Dynamic 47104 100.0% 2.24GB 100.0%
Static 100 0.9% 126KB 0.0%

MG D. Ana. 0 0.0% 0 0.0%
Dynamic 11024 99.1% 384MB 100.0%
Static 3 27.3% 0.99KB 0.0%

FT D. Ana. 8 72.7% 3.77GB 100.0%
Dynamic 0 0.0% 0 0.0%
Static 37 77.1% 1.40MB 0.4%

IS D. Ana. 0 0.0% 0 0.0%
Dynamic 11 22.9% 346MB 99.6%
Static 18 0.0% 28.6KB 0.0%

LU D. Ana. 12096 1.6% 3.96GB 75.7%
Dynamic 744036 98.4% 1.27GB 24.3%
Static 7 0.0% 11.1KB 0.0%

BT D. Ana. 77280 100.0% 14.1GB 100.0%
Dynamic 0 0.0% 0 0.0%
Static 7 0.0% 11.1KB 0.0%

SP D. Ana. 154080 100.0% 23.7GB 100.0%
Dynamic 0 0.0% 0 0.0%

TABLE II
DYNAMIC MEASUREMENT FOR LARGE PROBLEMS (SIZE = A) ON 16

NODES

Table II shows the dynamic measurement of the number and
the volume for the three types of communications in each of
the benchmarks. The results are obtained for large problems
(the ’A’ class in NPB-2.3 specification) on 16 nodes. The
number of communications is the number of times a com-
munication routine is invoked. For collective communica-
tions, the invocations of the corresponding routine at different
nodes are counted as one communication. For point-to-point
communications, each invocation of a routine at each node
is counted as one communication. The volume of communi-
cations is the total number of bytes sent by the communica-
tions. For example, EP has 5 static communications, which
transfer 12.5KB data. Different benchmarks exhibit differ-
ent communication characteristics: in terms of the volume of
communications, among the eight benchmarks, CG, MG, and
IS are dominated by dynamic communications; EP contains
only static communications; FT , BT , and SP are dominated
by dynamically analyzable communications. LU has 75.7%



5

dynamically analyzable communications and 24.3% dynamic
communications. In comparison to the results in [4], the NAS
parallel benchmarks have significantly less static communi-
cations and much more dynamic communications. However,
static and dynamically analyzable communications still ac-
count for a large portion of the communications, which in-
dicates that compiled communication can be effective if it can
be applied to the two types of communications. The results
also show that in order for compiled communication to be ef-
fective, it must be able to optimize dynamically analyzable
communications.

prog. type num. volume volume %
EP collective 5 12.5KB 100.0%

point-to-point 0 0 0.0%
CG collective 1 0.03B 0.0%

point-to-point 47104 2.24GB 100.0%
MG collective 100 126KB 0.0%

point-to-point 11024 384MB 100.0%
FT collective 11 3.77GB 100.0%

point-to-point 0 0 0.0%
IS collective 33 348MB 100.0%

point-to-point 15 0.06KB 0.0%
LU collective 18 28.6KB 0.0%

point-to-point 756132 5.24GB 100.0%
BT collective 7 11.1KB 0.0%

point-to-point 77280 14.1GB 100.0%
SP collective 7 11.1KB 0.0%

point-to-point 154080 23.7GB 100.0%

TABLE III
DYNAMIC MEASUREMENT FOR COLLECTIVE AND POINT-TO-POINT

COMMUNICATIONS

Since collective communication and point-to-point commu-
nication are implemented in a different manner, we will con-
sider collective communication and point-to-point communi-
cation separately. Table III shows the number and the volume
of collective and point-to-point communications in the bench-
marks. The results are for large problems (’A’ class) on 16
nodes. The communications in benchmarks EP , FT , and IS
are dominated by collective communications, while the com-
munications in CG, MG, LU , BT , and SP are dominated by
point-to-point communications.

Table IV shows the classification of collective communica-
tions in the benchmarks. The results are obtained for large
problems (’A’ class) on 16 nodes. As can be seen in the table,
the collective communications in six benchmarks, EP , CG,
MG, LU , BT , and SP , are all static. Most of the collective
communications in FT are dynamically analyzable. Only the
collective communications in IS are mostly dynamic. The re-
sults show that most of collective communications are either
static and dynamically analyzable. The implication is that the
compiled communication technique should be applied to opti-
mize the MPI collective communication routines.

Table V shows the classification of point-to-point communi-
cations. The results are obtained for large problems (’A’ class)
on 16 nodes. Since EP and FT do not have point-to-point

prog. type num. num. % volume volume %
Static 5 100.0% 12.5KB 100.0%

EP D. ana. 0 0.0% 0 0.0%
Dynamic 0 0.0% 0 0.0%

Static 1 100.0% 0.03KB 100.0%
CG D. ana. 0 0.0% 0 0.0%

Dynamic 0 0.0% 0 0.0%
Static 100 100.0% 126KB 100.0%

MG D. ana. 0 0.0% 0 0.0%
Dynamic 0 0.0% 0 0.0%

Static 3 27..3% 0.99KB 0.0%
FT D. ana. 8 72.8% 3.77GB 100%

Dynamic 0 0.0% 0 0.0%
Static 22 66.7% 1.37MB 0.4%

IS D. ana. 0 0.0% 0 0.0%
Dynamic 11 33.3% 346MB 99.6%

Static 18 100.0% 28.6KB 100.0%
LU D. ana. 0 0.0% 0 0.0%

Dynamic 0 0.0% 0 0.0%
Static 7 100.0% 11.1KB 100.0%

BT D. ana. 0 0.0% 0 0.0%
Dynamic 0 0.0% 0 0.0%

Static 7 100.0% 11.1KB 100.0%
SP D. ana. 0 0.0% 0 0.0%

Dynamic 0 0.0% 0 0.0%

TABLE IV
DYNAMIC MEASUREMENT OF COLLECTIVE COMMUNICATIONS

prog. type num. num. % volume volume %
Static 0 0.0% 0 0.0%

CG D. ana. 0 0.0% 0 0.0%
Dynamic 47104 100.0% 2.24GB 100.0%

Static 0 0.0% 0 0.0%
MG D. ana. 0 0.0% 0 0.0%

Dynamic 11024 100.0% 384MB 100.0%
Static 15 100.0% 0.06KB 100.0%

IS D. ana. 0 0.0% 0 0.0%
Dynamic 0 0.0% 0 0.0%

Static 0 0.0% 0 0.0%
LU D. ana. 12096 1.6% 3.96GB 75.7%

Dynamic 744036 98.4% 1.27GB 24.3%
Static 0 0.0% 0 0.0%

BT D. ana 77280 100.0% 14.1GB 100.0%
Dynamic 0 0.0% 0 0.0%

Static 0 0.0% 0 0.0%
SP D. ana. 154080 100.0% 23.7GB 100.0%

Dynamic 0 0.0% 0 0.0%

TABLE V
DYNAMIC MEASUREMENT OF POINT-TO-POINT COMMUNICATIONS

communication, we exclude these two benchmarks from the
table. In comparison to collective communication, more point-
to-point communications are dynamic. CG and MG contain
only dynamic point-to-point communications. BT and SP
contain only dynamically analyzable point-to-point commu-
nications. None of the benchmarks has a significant number
of static point-to-point communications. However, since a sig-
nificant portion of point-to-point communications are dynam-
ically analyzable, compiled communication can be effective
for point-to-point communications if it is effective for dynam-
ically analyzable communications.



6

Fig. 2. Message size distribution for collective communications

Fig. 3. Message size distribution for point-to-point communications

Message sizes can greatly affect the ways the communica-
tions are performed. Figure 2 shows the summary of the mes-
sage size distribution for collective communications in all the
benchmarks. The results are obtained for large problems (’A’
class) on 16 nodes. The summary is obtained by first com-
puting the message size distribution in terms of percentage for
each range of message sizes in each of the benchmarks. We
then give equal weights to all the benchmarks that have the
particular communication and calculate the average message
size distribution in terms of percentage. The benchmarks only
have one dynamically analyzable and one dynamic collective
communications, so there is not much distribution for these
cases. For static collective communications, the message sizes
are mostly small (< 1KB). This indicates that static collec-
tive communications with small message sizes are important
cases for compiled communication.

Figure 3 shows the summary of the message size distribu-
tion for point-to-point communications in all the benchmarks.
The summary is obtained in a similar manner to that of the col-
lective communications case. The static point-to-point com-
munications have a small message size while dynamic and
dynamically analyzable point-to-point communications gen-
erally have medium to large message sizes.

We performed experiments with different problem sizes
(the ’S’ class and the ’W’ class in the benchmark) and with
different numbers of nodes. Due to the space limitation, we
omit the results. The general trend in the message size dis-

tribution is similar to the ’A’ class on 16 nodes cases except
that for a smaller problem size with the same number of pro-
cessors, the messages tend to be smaller without altering the
message size distribution trend and that for a smaller number
of processors with the same problem size, the message sizes
tend to be larger without altering the trend.

VI. CONCLUSION

In this paper, we studied the communication characteristics
in the MPI implementation of the NAS parallel benchmarks
and investigated the effectiveness of compiled communication
for MPI programs. The results of this study can also be used
by other compiler assisted approaches to improve communi-
cation performance. The main conclusions are the followings:

• Static and dynamically analyzable communications ac-
count for a significant portion of the communications in
the benchmarks, which indicates that compiled commu-
nication can be effective if it can optimize these two types
of communications.

• The majority of collective communications are static,
which indicates that compiled communication should be
applied to optimize MPI collective communications. Fur-
thermore, most of static collective communications have
small message sizes.

• There is a significant number of dynamically analyzable
point-to-point communications in the benchmarks. For
compiled communication to be effective in handling MPI
point-to-point communications, it must be able to opti-
mize dynamically analyzable communications.

REFERENCES

[1] The MPI Forum, The MPI-2: Extensions to the Message Passing In-
terface. http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html,
July, 1997.

[2] D. H. Bailey, T. Harris, R. Van der Wigngaart, W. Saphir, A. Woo, and
M. Yarrow, “The NAS Parallel Benchmarks 2.0”, Technical Report NAS-
95-010, NASA Ames Research Center, 1995.

[3] F. Cappello and D. Etiemble, “MPI versus MPI+OpenMP on IBM SP
for the NAS Benchmarks,” SC’00: High Performance Networking and
Computing Conference, 2000.

[4] D. Lahaut and C. Germain, “Static Communications in Parallel Scien-
tific Programs.” Proceedings of PARLE, 1994.

[5] NAS Parallel Benchmarks, available at
http://www.nas.nasa.gov/NAS/NPB.

[6] F. Wong, R. Martin, R. Arpaci-Dusseau, and D. Culler, “Architectural
Requirements of Scalability of the NAS Parallel Benchmarks”, SC’99:
High Performance Networking and Computing Conference, 1999.

[7] J.S. Vetter and F. Mueller, “Communication Characteristics of Large-
Scale Scientific Applications for Contemporary Cluster Architectures”,
International Parallel and Distributed Processing Symposium (IPDPS),
April 2002.

[8] Xin Yuan, Rajiv Gupta and Rami Melhem, “Demand-driven Data Flow
Analysis for Communication Optimization.” Parallel Processing Let-
ters, Vol. 7, No. 4, pages 359-370, Dec. 1997.

[9] Xin Yuan, Scott Daniels, Ahmad Faraj and Amit Karwande, “Group
Management Schemes for Implementing MPI Collective Communica-
tion over IP-Multicast.”, The 6th International Conference on Computer
Science and Informatics, Durham, NC, March 8-14, 2002.


