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Abstract— Optical Wavelength Division Multiplexing (WDM) rings are
being deployed to support SONET/SDH self-healing rings. The cost of such
a system is dominated by the SONET Add/Drop Multiplexers (ADMs). To
minimize the system cost, algorithms must be developed to assign wave-
lengths to lightpaths in the system so that the number of ADMs required
is minimized. This problem of optimal wavelength assignment to minimize
the number of SONET ADM s is NP-hard. In this paper, we develop an in-
teger linear programming (ILP) formation for this problem, propose a new
wavelength assignment heuristic, and evaluate the existing and the newly
proposed heuristic using the ILP formation. We conclude that the perfor-
mance of the newly proposed heuristic is very close to optimal.

|. INTRODUCTION

Optical Wavelength Division Multiplexing (WDM) rings are
being deployed to support SONET/SDH self-healing rings. One
of the fundamental design problems for such networks is how to
assign wavelengths to the lightpaths in the system so as to mini-
mize the system cost. Since the system cost is dominated by the
SONET Add/Drop Multiplexers (ADMs)[3], [4], we must de-
velop effective wavelength assignment algorithms to minimize
the number of SONET ADM s in the system.

In a WDM ring supporting multiple SONET/SDH rings, the
SONET ADMs are used to terminate lightpaths. Each lightpath
uses two ADMs, one at each end of the lightpath. Although the
origin node only needs the downstream ADM function and the
termination node only needs the upstream ADM function, full
ADMs are installed on both nodes to complete the protection
path around the ring. Each wavelength around the ring provides
the connectivity for a single SONET ring. Two adjacent light-
paths that are assigned the same wavelength can share an ADM
at the common node. Fig. 1 shows an example of ADM sharing.
In the figure, we use the notion (s, t) to represent a lightpath
from node s to node . Fig. 1 (a) depicts the case when light-
path Iy = (a,b) and lightpath I, = (b, ¢) are assigned different
wavelengths. In this case, 4 ADMs are needed to support the
two lightpaths. Fig. 1 (b) depicts the case when [; and I, are
assigned the same wavelength. In this case, the ADM at node b
is shared by both lightpaths and only 3 ADMs are needed. This
example shows that wavelength assignment directly affects the
number of SONET ADMs needed in the system. Notice that
the wavelength assignment problem has been extensively stud-
ied [1], [2]. However, most of the existing wavelength assign-
ment algorithms have a different optimization objective, that is,
to minimize the total number of wavelengths required in the sys-
tem. These algorithms cannot be directly applied to solve the
problem of minimizing the number of SONET ADMs and new
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Fig. 1. An example of sharing ADMs
algorithms must be developed.

It has been shown in [5] that the optimal wavelength as-
signment problem to minimize the number of SONET ADMs
is NP-hard. Heuristic algorithms to solve this problem in-
clude Cut-First[3], Assign—First[3], Iterative Merging[5] and
Iterative Matching[5]. While the relative performance of these
heuristics has been studied in [3], [5], it is unclear how these
heuristics perform with respect to the optimal solutions. In this
paper, we develop an integer linear programming (ILP) forma-
tion for this problem, propose a new wavelength assignment
heuristic that improves over the existing most effective heuristic,
and evaluate the existing and the newly proposed wavelength as-
signment heuristics using the ILP formation. We conclude that
the performance of the newly proposed wavelength assignment
heuristic is close to that of the optimal algorithm.

The rest of the paper is structured as follows. Section Il intro-
duces the notations and the assumptions. Section Il1 presents the
ILP formation. Section IV describes our heuristic. Section V re-
ports the results of the performance study. Section VI concludes
the paper.

Il. NOTATIONS AND ASSUMPTIONS

Given an N-node WDM ring network with the nodes la-
beled from 0 to N — 1 and a set of full-duplex lightpaths,
R = {(s;,t;)}, a wavelength assignment assigns a wavelength,



A, to each of the lightpaths in R. For a duplex lightpath (s, t),
we will call s the origin node and ¢ the termination node. A
wavelength assignment is valid if no two lightpaths that share a
common link are assigned the same wavelength.

When two adjacent lightpaths I; = (a,b) and Iy = (b, ¢) are
assigned the same wavelength, an ADM can be shared in node
b. The process of finding two lightpaths sharing an ADM is
called merging the two lightpaths. A segment contains one or
more merged lightpaths such that the termination of a lightpath
(except the last one) is the origin of the subsequent lightpaths
and no two lightpaths share a common link. A segment is said
to be a circle if the segment occupies the whole ring.

In this paper, we will focus on the maximum ADM sharing
problem, that is, finding a valid wavelength assignment scheme
such that the number of shared ADMs is maximum. The wave-
length assignment to maximize ADM sharing can be solved in
two phases. In the first phase, individual lightpaths are merged
into segments such that the number of shared ADMs is max-
imum. In the second phase, wavelengths are assigned to the
segments. Since the second phase only affects the number of
wavelengths used, but not the number of shared ADMs, this pa-
per will focus on the first phase. We will approach this problem
with the following assumptions:

« We consider static wavelength assignment. The set of light-
paths to assign wavelengths is known a prior.

« We do not consider the routing issue in this paper. We will
assume that a lightpath is routed clockwise on the ring. The pre-
vious work in this problem [3], [5] made the same assumption.

« We focus on minimizing the number of ADMs and assume
that the number of wavelength is infinite. As pointed out in
[3], [5], minimizing the number of ADMs and minimizing the
number of wavelengths in the system can sometimes be contra-
dictory.

« We assume that a lightpath cannot be split. Thus, the algo-
rithm can only assign wavelengths to the lightpaths, but cannot
change the lightpaths.

Existing heuristics for this problem include the assign first
heuristic [3], the iterative matching heuristic [5] and the itera-
tive merging heuristic [5]. The performance of these heuristics
was compared in [5]. It was shown that the iterative merging al-
gorithm is on average about 40% more effective than the assign
first heuristic and about 10% more effective than the iterative
matching heuristic [5]. However, it is not clear how the heuris-
tics perform with respect to optimal solutions. In this paper, we
develop an integer linear programming (ILP) formation for the
wavelength assignment optimization problem and evaluate the
performance of the heuristics. We further develop a wavelength
assignment algorithm that improves over the existing most ef-
fective heuristic, the iterative merging algorithm. Our results
show that the performance of the newly developed heuristic is
very close to that of the optimal algorithm.

I1l. THE ILP FORMATION

An integer linear programming (ILP) formation that is based
on the integral multi-commodity model was presented in [5].
However, this ILP formation introduces too many variables and

constraints even for a small sized problem. In this section, we
develop an ILP formation that allows us to obtain optimal solu-
tions for reasonable sized problems.

Let the nodes in an N-node WDM ring network be la-
beled from 0 to N — 1. Let the set of lightpaths be R =
{l1,12,....,l|r}. A lightpath I; = (s;,t;) can be merged with
another lightpath I; = (s;,¢;) if and only if the following two
conditions are satisfied, (1) t; = s;, and (2) /; and [; do not
share any link.

A variable v(l;,1;) is created for each pair of lightpaths
({;,1;) that can be merged. The solution for v((;, ;) determines
whether [; should be merged with I;. v(I;,1;) = 1 indicates that
l; is merged with I}, and v(l;,1;) = 0 indicates that /; and I;
are not merged. Notice that if two lightpaths /; and /; can form
a circle, two variables v(l;,1;) and v(l;,(;) are created. Since
each merge results in one shared ADM, the sum of the variables
v(l;, 1;) is the total number of ADMs shared. Thus, the objective
function of the ILP is to

>

for all v(ls,ly;)

{o(li, 1)}

maxrimize

The objective function is optimized under the following con-
straints.

First, the values for all v(l;,1,)’s must be either 0 or 1.

0 <wv(l,l;) <1 and v(l;,1;) is an integer

Second, an endpoint of a lightpath can be merged with an-
other lightpath at most once.

Z ’U(li,lj) S 1
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Third, a segment should not contain lightpaths that overlap.
To ensure this, we consider all potential segments. Let a poten-
tial non-circle segment, NC, contain n lightpaths I; = (s1,t1),
lo = (tl,tg), ..., and l, = (tnfl,tn). Let 0o = (tn,t01),
09 = (tn,tos), ..., and o = (t,,tor), be all the k lightpaths
that can be merged with ,,, but overlap with other lightpaths in
NC. For each potential non-circle segment, NC, the following
constraint must be satisfied.

k

n—1
Z'U(lialiJrl) + ZU(ZmOj) <n-—1
i=1

j=1

This constraint ensures that when lightpaths [, Is, ..., and [,,,
are merged into a segment (v(l;,l;01) = 1 foralli = 1.n — 1
and S0 o(liylivh) = n — 1), 1, will not merge with any
of the lightpaths o1, 02, ..., and ox (v(In,05) = 0 forall j =
1..k). Notice that the number of this type of constraints can be
exponential with respect to the number of lightpaths.

Fourth, for an n-lightpath circle segment that contains light-
paths i = (Sl,tl), ly = (tl,tg), ..., and l, = (tn_l,sl),



the merges of n — 1 merging points in the circle implies that
all the n lightpaths are in the same segment and that the nth
merging point is also merged. To ensure this in the wavelength
assignment solution, for each potential n-lightpath circle seg-
ment that contains lightpaths 1 = (s1,t1), l2 = (1, t2), ..., and
lp = (tn—1, s1), the following n constraints must be satisfied.

—v(ly, ) +v(le,l3) + . + (o1, 1) +0(ln, 1) <n —2

’U(Zl, lg) — 'U(ZQ, l3) + ...+ U(ln_l, ln) + ’U(ln, l1) <n-—2

’U(Zl,lg) + ’U(lg,lg) + .= U(ln_l,ln) + ’U(Zn,ll) <n-—-2
’U(ll, lg) -+ ’U(ZQ, 13) + ...+ v(ln_l, ln) — ’U(ln, ll) § n—2

For example, consider three lightpaths I; = (1,3), lo = (3,6),
and I3 = (6,1). These three lightpaths can potentially form a
circle. We will generate three constraints for the potential circle.

7@([1,12) +U(l2,lg) + 'U(lg,ll) S 1

v(ly,l2) —v(l2,13) +v(ls, 1) <1
’U(ll,lg) + ’U(lg,l3) — ’U(lg,ll) =~ 1

Basically, any two of the three values v(l1,12), v(l2,13), and
v(ls, 1) equal to 1 implies that the three lightpaths are in the
same segment (circle) and the third value should also be 1.

A solution to this ILP formation can determine the segments
and the maximum number of shared ADMs. Following is a
lemma that can be applied to reduce size of the wavelength as-
signment problem.

Lemma 1: Given an N-node WDM ring network with the
nodes labeled from 0 to V — 1. Let the set of lightpaths, R, con-
tain two lightpaths Iy = (s,t) and Iy = (¢, s). There exists an
optimal wavelength assignment such that /; and [, are assigned
to the same wavelength.

Proof: When [ and [, are assigned the same wavelength, they
form a 2-lightpath circle. Assuming that in an optimal wave-
length assignment scheme, [, and [, are assigned different wave-
lengths. Let segment S, contain [, and segment S, contain /5.
As shown in Fig. 2, S; can be one of the four possible forms (1),
(2), (3) and (4), and S5 can be one of the four possible forms (5),
(6), (7) and (8). In the figure, a, b, c and d may contain one or
multiple merged lightpaths.

We can obtain a new wavelength assignment scheme by re-
assigning wavelengths for the lightpaths in S; and S2. Specifi-
cally, we will assign the same wavelength to [, and /5 and try to
merge the rest of the lightpaths in S; and Ss. It can be shown
that for all 16 possible combinations of the forms for S, and S5,
the new wavelength assignment scheme is also optimal. Here
we will show one case: Sy is of the form (1) and S is of the
form (5). In this case, taking /; out of S; and I out of S5 re-
sults in a reduction of 4 shared ADMs. However, the merging
of /1 and I5 results in 2 shared ADMs and the merging of ¢ and
c results in another 2 shared ADMs. Thus, the new wavelength
assignment scheme is also optimal. Consider all the 16 cases,
it can be proven that the new wavelength assignment scheme
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Fig. 2. Possible forms for segments S; and Sa

shares as many ADMs as the optimal wavelength assignment
scheme. Thus, there exists an optimal wavelength assignment
scheme where [; and I, are assigned the same wavelength.

This lemma indicates that to find optimal wavelength as-
signment for a set of lightpaths, we can first find all 2-
lightpath circles in the set of lightpaths and assign differ-
ent wavelengths to all 2-lightpath circles, and then find the
optimal wavelength assignment for the rest of the light-
paths.  The optimality does not hold for 3-lightpath cir-
cles. Consider a counter example for an 8 nodes ring with
R = {(07 3)7 (37 5)a (5a 0)7 (07 1)7 (L 5)7 (57 6)7 (Gv 3)} Light-
paths (0, 3), (3,5) and (5, 0) form a 3-lightpath circle. A wave-
length assignment with this circle can at most share 5 ADMs
since merging lightpaths (0, 1), (1, 5), (5,6), (6,3) can share at
most 2 ADMs (to share 3 ADMs would require all four light-
paths to be merged into one segment, which is impossible).
Thus, merging lightpaths (0, 3), (3,5) and (5,0) into a circle
yields a sub-optimal solution since there exists another wave-
length assignment scheme that shares 6 ADMs by merging light-
paths (5,0), (0,1) and (1, 5) into a circle and lightpaths (3, 5),
(5,6) and (6, 3) into another circle.

IV. A NEW WAVELENGTH ASSIGNMENT HEURISTIC

In this section, we propose a new wavelength assignment
heuristic to minimize SONET ADMs. Our heuristic is different
from the existing heuristics in that (1) our algorithm explicitly
attempts to find as many circle segments as possible, and (2) our
algorithm uses a heuristic called the least interference heuristic
to find more lightpaths that can share ADMs.

The idea behind finding as many circle segments as possible is
that forming circle segments is more effective in sharing ADMs
than forming non-circle segments. Forming a k-lightpath circle
shares k ADMs while forming a k-lightpath non-circle segment
only shares £ — 1 ADMs. Table | shows the differences in terms
of sharing ADMs when merging lightpaths into circle and non—
circle segments. As can be seen in the table, forming a circle
segment is a very effective way to share ADMs, especially when
the circle contains a small number of lightpaths. For example,
when merging 2 lightpaths, forming a circle is 100% more ef-
fective than forming a noncircle. For 3 lightpaths, forming a
circle is 50% more effective. Thus, for a wavelength assignment
algorithm to be effective in finding the opportunities for sharing



No. of No. of shared ADMs | difference
lightpaths [ non-circle circle
2 1 2 100%
3 2 3 50%
4 3 4 33%
TABLE |

NON-CIRCLE SEGMENTS VERSUS CIRCLE SEGMENTS

Find_A_Circle(lightpath: startpath)

(1) Create a segment, .S, containing startpath.

(2) Insert S into the queue

(3) while (queue is not empty) do

(4) Seg = dequeue()

(5) Let Seg.start be the starting node of Seg.
Let Seg.end be the ending node of Seg

(6) for each lightpath p that starts from Seg.end do

7 if (p and Seg form a circle) then

(8) return the circle

9) elseif (p can be merged with Seg) then

(10) if (p.end is not marked) then
(11) insert p + Seg into the queue
(12) end if

(13) endif

(14) endfor

(15) Mark Seg.end

(16) end while

(17) return no more circles

Fig. 3. The breadth first algorithm to find a circle

ADMs, the algorithm must be able to find circles, especially the
ones with a small number of lightpaths. Notice that the itera-
tive merging heuristic also tries to merge segments into circles.
However, when a circle contains more than 2 lightpaths, the it-
erative merging algorithm does not guarantee to find that circle.

We propose to use a greedy breadth first search algorithm to
find as many circles as possible before any other merging of
lightpaths takes place. Although finding the maximum number
of circles can be difficult, the breadth first search algorithm can
guarantee find a circle of any length in O(|R|?) time if such a
circle exists. Here |R| is the number of lightpaths. Fig. 3 shows
the breadth first search algorithm to find a circle that starts from
a given lightpath. The algorithm takes the lightpath as a pa-
rameter and determines if there is a circle that can be formed
starting from that lightpath. This algorithm can easily be mod-
ified to find a circle that contains a given number of lightpaths.
The worst case time complexity of the algorithm is O(|R|). To
determine whether there is a circle starting from any lightpath,
O(|R|?) time is needed.

New_Wavelength_Assignment_Heuristic

1) For ¢ = 2 to ring_size do

2) While (there exists a circle of 7 lightpaths) do
?3) Merge the 4 lightpaths into a circle.

(4) End While

5) End For

(6) While (there exist more merging opportunities) do
(@) Find all potential merging pairs of segments
(8) Compute the weight for each pair

9) Merge the pair with the largest weight

(10) End While

Fig. 4. The new wavelength assignment algorithm

After circles are found by the breadth first search algorithm,
our algorithm also uses the least interference heuristic to deter-
mine the order of further lightpath mergings. The least interfer-
ence heuristic evaluates each merging opportunity and carefully
chooses the order to merge segments so as to find more ADM
sharing opportunities. The least interference heuristic works as
follows. Given a set of segments, the heuristic finds all pairs of
segments that can be merged. Each of such pairs can lead to a
merging of segments (1 shared ADM). The heuristic will then
compute a weight for each of the pairs. The weight of a pair p is
equal to the number of pairs that can be merged assuming that
the p has been merged. Hence, the weight of a pair p is the num-
ber of potential merging opportunities after p is merged. The
heuristic will then merge the pair with the maximum weight.
Thus, the heuristic always selects to merge the pair that will
have the least interference with the rest of the merging opportu-
nities. This is why the heuristic is called the least interference
heuristic. By merging the least interference pair first, it is likely
that the heuristic will find more lightpaths that can share ADMs.

Fig. 4 shows the new heuristic. The first 5 lines use the greedy
breath first search algorithm to find circles. Since circles with a
smaller number of lightpaths share ADMs more effectively, the
algorithm tries to find circles with fewer number of lightpaths
first, that is, it first finds circles with 2 lightpaths, and then cir-
cles with 3 lightpaths, and so on until no more circles can be
found. Lines (6) to (10) realize the least interference heuristic.
Since a circle can be found in O(|R|?) time, the time complex-
ity for lines (1) to (5) is O(|R|?). The while loop in line (6)
executes at most | R| times since in each iteration, at least one
shared ADM is found. Lines (7) and (8) have the worst case
time complexity of O(|R|3). Thus, the time complexity of the
whole algorithm is O(| R|*).

V. PERFORMANCE STUDY

In this section, we evaluate the performance of the iterative
merging heuristic, the existing most effective heuristic, and our
newly proposed heuristic and compare their performance to the
optimal solutions. The underlying ring network consists of 16
nodes (16 is recommended to be the maximal number of nodes
for SONET rings).

Table Il compare the performance of the heuristics with the
optimal solutions. The optimal solutions are obtained by first
reducing the problem size by finding all 2-lightpath circles and
then solving the ILP formation for the rest of the lightpaths us-

max # of | lterative merging Our algorithm
# of shared shared shared
lightpaths ADMs ADMS ratio ADMS ratio
40 16.96 16.24 | 95.8% 16.88 | 99.5%
50 24.23 2314 | 95.5% | 24.02 | 99.1%
60 31.67 3012 | 95.1% | 31.46 | 99.3%
70 36.62 3488 | 95.2% | 36.36 | 99.3%
80 44.77 4218 | 94.2% | 4437 | 99.1%
TABLE Il

PERFORMANCE OF THE HEURISTICS



ing Ip_solve [6]. For a given number of lightpaths, we randomly
generate all the lightpaths (random sources and random desti-
nations) to form a wavelength assignment problem. The results
reported in the table are the average of 100 randomly generated
problems for each given number of lightpaths. The first column
shows the number of lightpaths in the experiments. The second
column shows the average of the maximum number of shared
ADMs found using the ILP formation (optimal solutions). The
third and the fourth columns show the performance of the itera-
tive merging algorithm. The third column contains the number
of shared ADMs found using the iterative merging algorithm.
The fourth column shows the average competitive ratio of the it-
erative merging algorithm, that is, the ratio of the average num-
ber of shared ADMs found using the iterative merging algorithm
and the average of the maximum number of shared ADMs. The
fifth and the sixth columns show the performance of our heuris-
tic. As shown in the table, both the iterative merging algorithm
and our heuristic yield fairly good performance. In particular,
for all these cases, the competitive ratio of our heuristic (versus
the optimal solution) is more than 99%, which indicates that our
heuristic is very effective.

Percentage

o
80 85 90 95 100
Competitive ratio (%)

(a) The iterative merging heuristic

Percentage
IS
5
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o —
80 85 90 9% 100
Competitive ratio(%)

(b) Our heuristic

Fig. 5. The competitive ratio distribution

Fig. 5 shows the distribution of the competitive ratio for the
iterative merging heuristic and our heuristic. The statistic is ob-
tained for 100 experiments with 70 lightpaths in a 16-node ring.
As can be seen in the figure, our heuristic finds optimal solutions
for about 77% of all cases. In the cases when our heuristic does
not find optimal solutions, the results found by our heuristic are
close to optimal. The iterative merging heuristic find the opti-
mal solutions for only about 21% of all cases and its competitive
ratio is widely distributed. This demonstrates that our heuris-

tic is more effective and more robust than the iterative merging
heuristic.

(ub) # of | Iterative merging Our algorithm
# of shared shared shared

lightpaths | ADMs | ADMs ratio | ADMs ratio
50 24.46 2273 | 92.9% | 23.64 | 96.6%
75 43.26 39.79 | 92.0% | 41.64 | 96.3%
100 62.15 57.16 | 92.0% | 59.47 | 95.7%
125 82.70 76.01 | 91.9% | 79.04 | 95.6%
150 102.9 95.38 | 92.7% | 9854 | 95.7%

TABLE Il

PERFORMANCE OF THE HEURISTICS FOR LARGER PROBLEMS

Table 111 shows the performance of the heuristics for larger
problems. Due to the large problem size, the ILP formation can-
not be solved efficiently and the optimal solution cannot be ob-
tained. Here, we compute the upper bound for the maximum
number of shared ADMs by relaxing the constraints to obtain
integer solutions and transferring the problem into a linear pro-
gramming problem that allows real solutions. This gives us an
upper bound of the maximum number of shared ADMs. The
results are the average of 100 randomly generated problems for
each given number of lightpaths. The format of this table is the
same as that of Table Il. The table shows that for larger problem
sizes, the proposed heuristic also is very effective. The average
number of shared ADMs found by the heuristic is within 95%
of the upper bound.

V1. CONCLUSION

When a physical optical WDM ring is used to support mul-
tiple SONET/SDH self-healing rings, effective wavelength as-
signment algorithms must be developed to minimize the number
of SONET ADMs in order to minimize the system cost. In this
paper, we develop an integer linear programming formation for
this problem, propose a new wavelength assignment heuristic,
and evaluate the existing heuristic and our heuristic with the ILP
formation. The results show that the newly proposed heuristic is
more effective and more robust than the existing most effective
heuristic, the iterative merging heuristic, and the performance of
our heuristic is very close to that of the optimal algorithm.
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