
COP5621 Compiler Construction
Part I: Lexical Analyzer

Lexical Analyzer

In this assignment, you will write a lexical analyzer for the PASC language. The analyzer will consist of a
scanner, written in Lex, and the routines to manage a lexical table.

Token Specification

In PASC, not all keywords are reserved words. The table in Page 3 defines the tokens that must be recognized,
with their associated symbolic names. All multi-symbol tokens are separated by blanks, tabs, newlines,
comments or delimiters.

Comments are enclosed in (* ... *), and cannot be nested. An identifier is a sequence of (upper or lower
case) letters or digits, beginning with a letter. Upper and lower case are not distinguished (i.e. the identifier
ABC is the same as Abc). There is no limit on the length of identifiers. However, you may impose limits
on the total number of distinct identifiers and string lexemes and on the total number of characters in all
distinct identifiers and string taken together. There should be no other limitation on the number of lexemes
that the lexical analyzer will process.

An integer constant is an unsigned sequence of digits representing a 10-based number. A character constant
is a character enclosed in single quotes (e.g., ’a’ is a character constant a). A string constant is a sequence
of characters surrounded by single quotes (e.g. ’Hello, world’). The internal representations of character
constant and string constant are different in PASC. Hard-to-type or invisible characters can be represented
in character and string constants by escape sequences; these sequences look like two characters, but represent
only one. The escape sequences supported by the PASC language are \n for newline, \t for tab, \’ for the
single quote and \\ for the backslash itself. Any other character follows backslash is not treated as an escape
sequence.

Token attributes

A unique identification of each token (integer aliased with the symbolic token name) must be returned by
the lexical analyzer. In addition, the lexical analyzer must pass extra information about some token to the
parser. This extra information is passed to the parser as a single value, namely an integer, through a global
variable as described below. For integer constants, the numeric value of the constant is passed. For character
constants, the numeric value of the character in the local set is passed. In order to allow other phases of the
compiler to access the original identifier lexeme, the lexical analyzer passes an integer uniquely identifying
an identifier (other than reserved words). String constants are treated in the same way, with a unique
identifying number being passed. The unique identifying number, for both identifiers and string constants,
should be an index (pointer) into a string table created by the lexical analyzer to record the lexemes.

Implementation

The central routine of the scanner is yylex, an integer function that returns a token number, indicating the
type (identifier, integer constant, semicolon, etc.), of the next token in the input stream. In addition to
the token type, yylex must set the global variables yyline and yycolumn to the line and column number at
which that token appears, and – in the case of identifiers and constants –, put the extra information needed,
as described above, into the global integer variable yyval.semantic value. Lex will write yylex for you, using
the patterns and rules defined in your lex input file (which should be called lexer.l). Your rules must include
the code to maintain yyline, yycolumn and yyval.

Reserved words may be handled as regular expressions or stored as part of the id table. For example, reserve
words may be pre-stored in the string table so your program can determine a reserve word from an identifier

1

by the section of the table in which the lexeme is found. Keywords that are not reserved have to be part of
the id table. Efficiency should be a factor in the management of id table and the string table.

You are to write a routine Lex error that takes a message and line and column numbers and reports an
error, printing the message and indicating the position of the error. You need only print the line and column
number to indicate the position.

The #define mechanism should be use to allow the lexical analyzer to return token numbers symbolically.
In order to avoid using token names that are reserved or significant in C or in the parser, the token names
have been specified for you in the subsequent table. The parser and the lexical analyzer must agree on the
token numbers to ensure correct communication between them. The token number can be chosen by you, as
the compiler writer, or, by default, by Yacc. Regardless of how token numbers are chosen, the end-marker
must have token number 0 or negative, and thus, your lexical analyzer must return a 0 (or a negative) as
token number upon reaching the end of input.

Error Handling

Your lexical analyzer should recover from all malformed lexemes, as well as such things as string constants
that extended across a line boundary or comments that are never terminated.

Due date and materials to be handed in

The assignment is due Tuesday, Jan 29. You will do a demo at the due day. Test cases named hello.pasc,
sieve.pasc, hist.pasc, error.pasc and lexerror.pasc can be found the class web page. A driver file, driver.c,
that calls yylex and prints each token with its value as the input is scanned, can also be the class web page.
Please use the driver to test your lex program.

Grading policy:

• Recognizing all tokens (in the right order) (60).

• Correct implementation of Id table and string table (10)

• Conversion of the special characters (5)

• Report errors with line and column numbers (10).

• non-recognizable characters error (5)

• non-closed comment error (5)

• string constant over the line boundary error (5)

2

Table 1: Token numbers to be returned by yylex
Token Symbolic name Token Symbolic name

end of file EOFnumber else ELSEnumber
; SEMInumber elsif ELSIFnumber
: COLONnumber end ENDnumber
, COMMMAnumber endif ENDIFnumber
. DOTnumber endloop ENDLOOPnumber
(LPARENnumber endrec ENDRECnumber
) RPARENnumber exit EXITnumber
< LTnumber for FORnumber
> GTnumber forward FORWARDnumber
= EQnumber function FUNCTIONnumber
− MINUSnumber if IFnumber
+ PLUSnumber is ISnumber
∗ TIMESnumber loop LOOPnumber
.. DOTDOTnumber not NOTnumber
:= COLEQnumber of OFnumber
<= LEnumber or ORnumber
>= GEnumber procedure PROCEDUREnumber
<> NEnumber program PROGRAMnumber

identifier IDnumber record RECORDnumber
integer constant ICONSTnumber repeat REPEATnumber
char constant CCONSTnumber return RETURNnumber

string constant SCONSTnumber then THENnumber
and ANDnumber to TOnumber

array ARRAYnumber type TYPEnumber
begin BEGINnumber until UNTILnumber

constant CONSTnumber var VARnumber
div DIVnumber while WHILEnumber

downto DOWNTOnumber

3

