COP5611 programming assignment NO. 3
A distributed application and a simplified application
specific distributed checkpoint and recovery scheme

OBJECTIVES

e Experience with the development of distributed applications

e Experience with checkpoint and recovery schemes

DESCRIPTION

In this project, you first develop a distributed implementation of the Jacobi method, and then
add a checkpoint and error recovery mechanism to the application. The Jacobi method is
a commonly used iterative method to solve partial differential equations. It begins with an
initial estimate for the solution and successively improves it until the solution is as accurate
as desired. For example, applying the Jacobi method to solve the Laplace equation on the unit
square

o o
ox? 0y

with boundary conditions shown in the following figure, we get

(k) (k) (k) (k)
(k1) _ i1y U5y U U

irj 1
y
y . 1
o [J [] [J
0 0 0 0
[) [) [J [)
e e
0 X 0 X

Figure 1: Boundary conditions (left) and mesh(right) for Laplace equation

In this project, you will implement a multi-process solution for the generalized Jacobi method,
where

(k) (%) (k)

(k+1) (k)
U; ; +a2>kum;1+a3*ui+1,j+a4*uiyj+1.

ij T 0 F Ui

The parameters a1, a9, ag and a4, as well as three other parameters, as, ag and a7, will be given
in a file proj3.input. The parameters a5 and ag specify the boundary condition. Assuming that

the problem domain is given by Mesh[0..N+1][0..N+1], where Mesh[1..N][1..N] are the interior
grid points of our interest. The boundary condition will be specified as Mesh[i][0] = a5 * ¢,
Mesh[i][N + 1] = ag * i, Mesh[0][¢] = 0, Mesh[N + 1][i] = 0. The interior grid points
should be initialized to be 0 at the beginning. The parameter a; specifies the error that
is allowed in the solution. The program should perform the Jacobi computation iteratively

until]ugﬁjﬂ) — uglj)] < a7, for any i and j, in which case, the program should stop and write
the following two vectors Mesh[N/2, 0..N+1] and Mesh[0..N+1, N/2] (as binary data) to file
proj3.output. Proj3.output will contain Mesh[N/2, 0], Mesh[N/2, 1],, Mesh[N/2, N+1],
Mesh|[0, N/2], Mesh[1, N/2|,, Mesh[N+1, N/2]. The data type for all the variables we

discussed should be float.

The program should take a command line parameter which specifies the number of processes
to be used to solve the problem. When M processes are used to solve the problem, the size
of the two dimensional mesh should be Mesh[0..N+1, 0..N/M+1] and the domain should be
evenly distributed among the processes. Examples of domain partitioning are shown in the
following figure. The maximum value for M is 4.

PO P1 PO P1 P2 P3

OFRLNWMOUUITO N OO
OFRLNWAOUUILO N OO

0123456789 012(3456/789

Figure 2: Examples for domain partitioning

A checkpoint and recovery mechanism is to be added to this application. The mechanism
should be added in such a way that if one process failed, the user can kill all other processes,
and restart the program. However, after the program is restarted, the computation continues
not from scratch, but from the last checkpoint. This mechanism can be realized with two
routines: recovery(char *filename) and checkpoint(char *filename). The checkpoint routine
stores all the critical data in the application (in the Jacobi application, the meshes and other
scalars such as the iteration number), into file filename. The recovery routine restores the data
from the file if the file is there. Usually, the recovery routine is placed before the main loop
while the checkpoint routine is placed within the main loop to perform checkpoint every N
iterations.

Note: The computation part of this program is simple. However, the inter—process
communication for this program is fairly difficult. Even the initialization can be
complicated. Start the project at your earliest time!!!!

DEADLINES AND MATERIALS TO BE HANDED IN

This project consists of two phases. Phase one is the development of the distributed Jacobi
method. This phase is due on March 28. The second phase is the development of the check-
point and recovery mechanism. This phase is due on April 11. At the due date, you need
to do a demo with Amit Karwande and send your program with all the supporting files to
karwande@cs.fsu.edu. You should have a README file describing how to compile and run
your program and the known bugs in your code. Students on the Panama city campus will
not do the demo, so the README file will carry a very high weight.

GRADING POLICY

e Demo, README file, etc (30)
e Program works for one process (10)
e Program works for two processes (10)

e Program works for any number of processes (10)

Checkpoint and Recovery (40)

Extra 25 for a checkpoint/recovery mechanism that does not require all processes to be
restarted. (25)

MISCELLANEOUS

Cheating policy will be strictly enforced.

