
Review

 C++ exception handling mechanism

 Try-throw-catch block

 How does it work

 What is exception specification?

 What if a exception is not caught?

Some useful C++ concepts and

introduction to data structures

C++ programs with command line

arguments
 int main(int argc, char* argv[]) {}

 argc is the count of command line arguments. argc >=1. Command line

arguments are separated by spaces.

 argv is an array of pointers to character strings that contain the actual

command-line arguments.

 See sample1.c for the use of command line arguments.

C++ header files
 Source files use the #include directive to include the header

files.

 Sometimes using header files can cause problems, see

sample2.cpp.

 Including a header file multiple times may cause “duplicate declaration”

errors.

 Why including stdio.h two times does not have any problem?

 Look at /usr/include/stdio.h, this file is protected.

C++ header files
 The following mechanism prevents the body of a header file

from being included multiple times.

#ifndef MYHEADER

#define MYHEADER

….

/* the body of the header file */

#endif

C++ macros with parameters
 Macros with parameters look/work like functions:

 #define max(a, b) (a>b)?a:b

 Macros with parameters need to be defined carefully, otherwise
weird things can happen.
 What is wrong with the following macro?

 #define sum(a, b) a+b

C++ macros with parameters

 What is wrong with the following macro?

 #define sum(a, b) a +b

 Checkout sample3.c

 How to fix the problem?

C++ bitwise operations
 Memory is made up of bits and bytes.

 A bit is the smallest unit of storage in a computer, it stores a 0 or
1.

 A bytes consists of 8 bits – it is the smallest item that we can
create a variable (char c);

 We can make use of every single bit by using bits wise operations:

 Bitwise AND &: 0xff & 0x00 == 0

 Bitwise OR |: 0xff | 0x00 == 0xff

 Bitwise exclusive OR ^: 0xff ^ 0x00 == 0xff

 Left shift <<

 Right shift >>

 Bitwise complement ~: ~0xf0 = 0x0f

Bitwise operation

 Unsigned char X = 8 (00001000)

 Unsigned Char Y = 192 (11000000)

 X = 00001000 00001000

 Y = 11000000 11000000

 X&Y = 00000000 X | Y = 11001000

 Test whether the second bit in X is 1?

If (X & 0x04 != 0)

 This allows logic based on bits in a variable.

Data structures
 Data structures help us write programs easier

 Program = data structures + algorithms

 Data structures focus on organizing the data in a certain way such
that operations on it can be efficient.
 Picking the right way to store your data is very important for an

efficient program.

 In Computer Science, many common data structures are used in
many different applications – mastering data structures is essential
for one to become a good programmer.
 COP4530 systematically goes through most common data structures.
 Most common data structures have been implemented in the C++

standard template library.
 You are one of us AFTER you pass COP4530.

Data structure – an example
 For the word count program, what is the most important

operations for the efficiency of the code?
 Given a word, where is the word stored?

 Search operation.

 Your solution?
 Array, or link list?

 You have to go through the whole array to find the index that store the word.
We call this an O(N) operation.

 The ideal data structure for this assignment:
 A hash table.

 Give a word “abc”, it is stored at Table[hashfunction(“abc”)].

 The search is an O(1) operation.

 For processing large files, using hashtable to replace the array can
easily speedup the code by a factor of 100.

Data structure – another example
 Consider the problem of scheduling programs to run on CPU

 This is a core function in operating systems. It happens very often
(e.g. 50 times every second) and thus needs to be implemented in the
most effective way.

 You have an array that stores the program information with
priority.

 You want to pick the highest priority program to run

 The operation needs to be supported are
 Insert a new program

 Remove the program with the highest priority

 How can we do both operations efficiently?
 Array (sorted or not) is not efficient.

 We have a data structure called priority queue that is ideal for this.

COP4530
 The class goes through many data structures

 You will understand how to use them and implement them

 Given a practical requirement, you will then know how to
pick the right way to store the data to achieve efficiency.

 This gives you a lot of tools to use in programming – with the
tools, you will be able to write bigger and more efficient
programs.

Abstract data types
 Data structures are usually implemented as abstract data types –

stacks, Queues, Vectors, linked list, trees

 Stacks

 First In Last Out (FILO). Insertions and removals from "top"
position only

 Analgoy - a stack of cafeteria trays. New trays placed on top. Trays
picked up from the top.

 A stack class will have two primary operations:
 push -- adds an item onto the top of the stack

 pop -- removes the top item from the stack

 Typical application areas include compilers, operating systems,
handling of program memory (nested function calls)

Queues

 First In First Out (FIFO). Insertions at the "end" of the

queue, and removals from the "front" of the queue.

 Analogy - waiting in line for a ride at an amusement

park. Get in line at the end. First come, first serve.

 A queue class will have two primary operations:

 enqueue -- adds an item into the queue (i.e. at the back of the

line)

 dequeue -- removes an item from the queue (i.e. from the

front of the line).

 Typical application areas include print job scheduling,

operating systems (process scheduling).

Vector
 A data structure that stores items of the same type, and is based on

storage in an array

 By encapsulating an array into a class (a vector class), we can

 use dynamic allocation to allow the internal array to be flexible in size

 handle boundary issues of the array (error checking for out-of-bounds

indices).

 Advantages: Random access - i.e. quick locating of data if the

index is known.

 Disadvantages: Inserts and Deletes are typically slow, since they

may require shifting many elements to consecutive array slots

Linked list
 A collection of data items linked together with pointers, lined up "in a row". Typically a

list of data of the same type, like an array, but storage is arranged differently.

 Made up of a collection of "nodes", which are created from a self-referential class (or
struct).
 Self-referential class: a class whose member data contains at least one pointer that

points to an object of the same class type.

 Each node contains a piece of data, and a pointer to the next node.

 Nodes can be anywhere in memory (not restricted to consecutive slots, like in an array).

 Nodes generally allocated dynamically, so a linked list can grow to any size, theoretically
(within the boundaries of the program's memory).

 An alternative to array-based storage.

 Advantages: Inserts and Deletes are typically fast. Require only creation of a new node,
and changing of a few pointers.

 Disadvantage: No random access. Possible to build indexing into a linked list class, but
locating an element requires walking through the list.

 Notice that the advantages of the array (vector) are generally the disadvantages of the
linked list, and vice versa

Tree
 A non-linear collection of data items, also linked together

with pointers (like a linked list).

 Made up of self-referential nodes. In this case, each node
may contain 2 or more pointers to other nodes.

 Typical example: a binary tree

 Each node contains a data element, and two pointers, each of
which points to another node.

 Very useful for fast searching and sorting of data, assuming the
data is to be kept in some kind of order.

 Binary search - finds a path through the tree, starting at the
"root", and each chosen path (left or right node) eliminates half
of the stored values.

