
Linked lists 



Data structures to store a 
collection of items 
 Data structures to store a collection of items are commonly 

used 
 Typical operations on such data structures: insert, remove, 

find_max, update, etc 
 

 What are our choices so far to design such a data structure? 



Data structures to store a 
collection of items 
 What are the choices so far? 
 Arrays 
 Limitations 

 fixed capacity, memory may not be fully utilized. 
 Insert and remove can be expensive (a lot of copies) if we don’t want 

to leave holes in the middle of the array. 
 Continuous memory for easy index 

 Dynamic arrays 
 Limitations: 

 Capacity is dynamic, memory still may not be fully utilized, but better 
than static arrays. 

 Insert and remove can be expensive, especially when the capacity 
changes.  

 Continuous memory for easy index 
 



Data structures to store a 
collection of items 
 
 Linked list is another choice. 
 A true dynamic data structure in that each item in the list is dynamically 

allocated using a new operator. 
 

 Capacity is always the same as memory used (with tax) 
 Insert and remove operations are cheap 
 Memory are not continuous 
 Limitations: no (or expensive) [] operator. 

 
 Linked list is one of the “linked data structures”. 

 
 



Linked list and array 
 An array of string: 
 S[0] = “abc”;  
 S[1]=“white”;  
 S[2] = “black”; 

 A linked list of strings 
 Each item has two fields 
 A string field 
 A pointer pointing to the next 

item. 
 

class listofstring { 
public: 
    string item; 
     listofstring *next; 
}; 

0    “abc” 
1     “white” 
2     “black” 
3      
4 

“abc” 
 

“white” 
 

“black” 
  NULL 

head 



Linked list 
 No waste of memory (except 

for pointers). 
 Each box is dynamically 

allocated by a new operation. 
 Several variations 
 Singly linked list 
 Doubly linked lists 
 

“abc” 
 

“white” 
 

“black” 
  NULL 

head 
NULL 
“abc” 
 

 
“white” 
 

 
“black” 
NULL 

prev 
item 
next 

head 



A doubly linked list 
 Let us assume that we store two data fields in each node: a 

string and a count. The node data structure is: 
 

class listnode 
{ 
public: 
    string s; 
    int count; 
    listnode *next; 
    listnode *prev; 
    listnode(): s(“”), count(0), next(NULL), prev(NULL) {};  
    listnode(const string & ss, const int &c): s(ss), count( c), next(NULL), prev(NULL) 
{}; 
}; 

 
 
 

s 
count 
prev 
next 



The doubly linked list private data 
 Protect data: 
 head: pointer to the head of the list: head->prev == NULL 
 tail: pointer to the tail of the list: tail->next == NULL 
 size: number of nodes in the list 

class mylist { 
 … 
Private: 
    listnode * head; 
    listnode *tail; 
    int size; 
} 

 

 
head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
NULL 

tail 



mylist public interface 
 

mylist(); 
  ~mylist(); 
  void print(); 
  mylist(const mylist & l); 
  mylist& operator=(const mylist  &l); 
 
  void insertfront(const string &s, const int & c); 
  void insertback(const string &s, const int & c); 
  void insertbefore(listnode *ptr, const string &s, const int &c); 
  void insertafter(listnode *ptr, const string &s, const int &c); 
  void insertpos(const int & pos, const string &s, const int &c); 



mylist public interface 
 
  void removefront(); 
  void removeback(); 
  void remove(listnode * ptr); 
  void removepos(const int & pos); 
 
  listnode front() const; 
  listnode back() const; 
  int length() const; 
  listnode *search(const string &s); 
  listnode *findmaxcount(); 
  void removemaxcount(); 
  bool searchandinc (const string &s); 

 



Mylist implementation 
 Constructors and destructor 
 Making an empty list (default constructor): head=tail=NULL, 

size = 0; (See mylist.cpp) 
 Destructor: must use a loop to delete every single node in the 

list (all nodes are allocated with a new). See mylist.cpp 
 Copy constructor and = operator: Similar logic to destructor: 

use a loop to walk through each node in the existing list, and 
insert (just insertback) the same node to the new list. 

 The print function (see mylist.cpp) 
 

 The main routines are different versions of insert, remove, 
and search. 



Insert 
 Insertback 
 Two cases:  
 Insert to the empty list 
 Insert to list with items. 

 Insert to empty list 
 Create a new node (prev=NULL, next=NULL), both head and tail 

should point to the new node. 
listnode *t = new listnode(s, c); 
  if (head == NULL) { // list is currently empty, both head and tail 
                      // should point to the new node 
    head = t; 
    tail = t; 
    size++; 
} 



Insertback 
 Insertback to a list with items 
 Step 1: create the new node 
 Listnode *t = new listnode(s, c) 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
NULL 

tail 

NULL 
“xxx”, 0 
NULL 



Insertback 
 Insertback to a list with items 
 Step 2: link new node to the tail of the list (next pointer) 
 tail->next = t; 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 

NULL 
“xxx”, 0 
NULL 



Insertback 
 Insertback to a list with items 
 Step 3: link new node to the list (prev pointer) 
 t->prev = tail; 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 

 
“xxx”, 0 
NULL 



Insertback 
 Insertback to a list with items 
 Step 4: tail point to the new node 
 tail = t 

 See complete code in mylist.cpp 
 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 

 
“xxx”, 0 
NULL 



Insertbefore 
 Insert before the head is equal to insertfront, which is similar 

to insertback 
 Insertbefore into the middle of the list before ptr 
 A new node is to be added between ptr->prev, and ptr. 
 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 



Insertbefore 
 Insertbefore into the middle of the list before ptr 
 A new node is to be added between ptr->prev, and ptr. 

 Step 1: create the new node: listnode* t = new listnode(s,c); 
 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 

NULL 
“yyy”, 0 
NULL 



Insertbefore 
 Insertbefore into the middle of the list before ptr 
 A new node is to be added between ptr->prev, and ptr. 

 Step 1: try to chain the new node to the list 
 t->next = ptr; t->prev = ptr->prev; 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 

 
“yyy”, 0 
 



Insertbefore 
 Insertbefore into the middle of the list before ptr 
 A new node is to be added between ptr->prev, and ptr. 

 Step 2: change ptr->prev’s next pointer 
 ptr->prev->next = t; 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 

 
“yyy”, 0 
 



Insertbefore 
 Insertbefore into the middle of the list before ptr 
 A new node is to be added between ptr->prev, and ptr. 

 Step 3: change ptr’s prev pointer (see mylist.cpp) 
 ptr->prev = t;  

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 

 
“yyy”, 0 
 



Insertbefore 
 Can step 2 and step 3 change order? 

ptr->prev = t; 
ptr-prev->next = t; 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 

 
“yyy”, 0 
 



Remove 
 Removefront: 
 Two cases:  
 the list has only one element need to make empty list out of it. 
   delete head; 
    head = tail = NULL; 
    size = 0; 
    return; 
 The list has more than on elements 

 
 

 



Remove 
 Removefront: 

 The list has more than on elements 
 Step 1: listnode *t = head; 

 

 
 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

t 



Remove 
 Removefront: 

 The list has more than on elements 
 Step 2: Advance head: head = head->next; 

 

 
 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

t 



Remove 
 Removefront: 

 The list has more than on elements 
 Step 3: delink the prev of head: head->prev = NULL; 

 

 
 

 

head 

NULL 
“abc”, 0 
 

NULL 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

t 



Remove 
 Removefront: 

 The list has more than on elements (see mylist.cpp) 
 Step 4: delete t; 

 

 
 

 

head 

NULL 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

t 



Removemiddle 
 Remove an item pointed to by ptr 
 Step 1: change ptr->prev’s next pointer 

ptr->prev->next = ptr->next; 

 
 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 



Removemiddle 
 Remove an item pointed to by ptr 
 Step 2: change ptr->next’s prev pointer 

ptr->next->prev = ptr->prev; 

 
 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 



Removemiddle 
 Remove an item pointed to by ptr 
 Step 3: delete ptr; 
 

 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 



Search 
 Use the while loop to walk through every nodes in the list 

(see mylist.cpp) 
 

listnode *t = head; 
 
  while ((t!=NULL) && (t->s != s)) t = t->next; 
  return t; 

 
 

 


	Linked lists
	Data structures to store a collection of items
	Data structures to store a collection of items
	Data structures to store a collection of items
	Linked list and array
	Linked list
	A doubly linked list
	The doubly linked list private data
	mylist public interface
	mylist public interface
	Mylist implementation
	Insert
	Insertback
	Insertback
	Insertback
	Insertback
	Insertbefore
	Insertbefore
	Insertbefore
	Insertbefore
	Insertbefore
	Insertbefore
	Remove
	Remove
	Remove
	Remove
	Remove
	Removemiddle
	Removemiddle
	Removemiddle
	Search

