
Linked lists 



Data structures to store a 
collection of items 
 Data structures to store a collection of items are commonly 

used 
 Typical operations on such data structures: insert, remove, 

find_max, update, etc 
 

 What are our choices so far to design such a data structure? 



Data structures to store a 
collection of items 
 What are the choices so far? 
 Arrays 
 Limitations 

 fixed capacity, memory may not be fully utilized. 
 Insert and remove can be expensive (a lot of copies) if we don’t want 

to leave holes in the middle of the array. 
 Continuous memory for easy index 

 Dynamic arrays 
 Limitations: 

 Capacity is dynamic, memory still may not be fully utilized, but better 
than static arrays. 

 Insert and remove can be expensive, especially when the capacity 
changes.  

 Continuous memory for easy index 
 



Data structures to store a 
collection of items 
 
 Linked list is another choice. 
 A true dynamic data structure in that each item in the list is dynamically 

allocated using a new operator. 
 

 Capacity is always the same as memory used (with tax) 
 Insert and remove operations are cheap 
 Memory are not continuous 
 Limitations: no (or expensive) [] operator. 

 
 Linked list is one of the “linked data structures”. 

 
 



Linked list and array 
 An array of string: 
 S[0] = “abc”;  
 S[1]=“white”;  
 S[2] = “black”; 

 A linked list of strings 
 Each item has two fields 
 A string field 
 A pointer pointing to the next 

item. 
 

class listofstring { 
public: 
    string item; 
     listofstring *next; 
}; 

0    “abc” 
1     “white” 
2     “black” 
3      
4 

“abc” 
 

“white” 
 

“black” 
  NULL 

head 



Linked list 
 No waste of memory (except 

for pointers). 
 Each box is dynamically 

allocated by a new operation. 
 Several variations 
 Singly linked list 
 Doubly linked lists 
 

“abc” 
 

“white” 
 

“black” 
  NULL 

head 
NULL 
“abc” 
 

 
“white” 
 

 
“black” 
NULL 

prev 
item 
next 

head 



A doubly linked list 
 Let us assume that we store two data fields in each node: a 

string and a count. The node data structure is: 
 

class listnode 
{ 
public: 
    string s; 
    int count; 
    listnode *next; 
    listnode *prev; 
    listnode(): s(“”), count(0), next(NULL), prev(NULL) {};  
    listnode(const string & ss, const int &c): s(ss), count( c), next(NULL), prev(NULL) 
{}; 
}; 

 
 
 

s 
count 
prev 
next 



The doubly linked list private data 
 Protect data: 
 head: pointer to the head of the list: head->prev == NULL 
 tail: pointer to the tail of the list: tail->next == NULL 
 size: number of nodes in the list 

class mylist { 
 … 
Private: 
    listnode * head; 
    listnode *tail; 
    int size; 
} 

 

 
head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
NULL 

tail 



mylist public interface 
 

mylist(); 
  ~mylist(); 
  void print(); 
  mylist(const mylist & l); 
  mylist& operator=(const mylist  &l); 
 
  void insertfront(const string &s, const int & c); 
  void insertback(const string &s, const int & c); 
  void insertbefore(listnode *ptr, const string &s, const int &c); 
  void insertafter(listnode *ptr, const string &s, const int &c); 
  void insertpos(const int & pos, const string &s, const int &c); 



mylist public interface 
 
  void removefront(); 
  void removeback(); 
  void remove(listnode * ptr); 
  void removepos(const int & pos); 
 
  listnode front() const; 
  listnode back() const; 
  int length() const; 
  listnode *search(const string &s); 
  listnode *findmaxcount(); 
  void removemaxcount(); 
  bool searchandinc (const string &s); 

 



Mylist implementation 
 Constructors and destructor 
 Making an empty list (default constructor): head=tail=NULL, 

size = 0; (See mylist.cpp) 
 Destructor: must use a loop to delete every single node in the 

list (all nodes are allocated with a new). See mylist.cpp 
 Copy constructor and = operator: Similar logic to destructor: 

use a loop to walk through each node in the existing list, and 
insert (just insertback) the same node to the new list. 

 The print function (see mylist.cpp) 
 

 The main routines are different versions of insert, remove, 
and search. 



Insert 
 Insertback 
 Two cases:  
 Insert to the empty list 
 Insert to list with items. 

 Insert to empty list 
 Create a new node (prev=NULL, next=NULL), both head and tail 

should point to the new node. 
listnode *t = new listnode(s, c); 
  if (head == NULL) { // list is currently empty, both head and tail 
                      // should point to the new node 
    head = t; 
    tail = t; 
    size++; 
} 



Insertback 
 Insertback to a list with items 
 Step 1: create the new node 
 Listnode *t = new listnode(s, c) 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
NULL 

tail 

NULL 
“xxx”, 0 
NULL 



Insertback 
 Insertback to a list with items 
 Step 2: link new node to the tail of the list (next pointer) 
 tail->next = t; 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 

NULL 
“xxx”, 0 
NULL 



Insertback 
 Insertback to a list with items 
 Step 3: link new node to the list (prev pointer) 
 t->prev = tail; 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 

 
“xxx”, 0 
NULL 



Insertback 
 Insertback to a list with items 
 Step 4: tail point to the new node 
 tail = t 

 See complete code in mylist.cpp 
 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 

 
“xxx”, 0 
NULL 



Insertbefore 
 Insert before the head is equal to insertfront, which is similar 

to insertback 
 Insertbefore into the middle of the list before ptr 
 A new node is to be added between ptr->prev, and ptr. 
 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 



Insertbefore 
 Insertbefore into the middle of the list before ptr 
 A new node is to be added between ptr->prev, and ptr. 

 Step 1: create the new node: listnode* t = new listnode(s,c); 
 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 

NULL 
“yyy”, 0 
NULL 



Insertbefore 
 Insertbefore into the middle of the list before ptr 
 A new node is to be added between ptr->prev, and ptr. 

 Step 1: try to chain the new node to the list 
 t->next = ptr; t->prev = ptr->prev; 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 

 
“yyy”, 0 
 



Insertbefore 
 Insertbefore into the middle of the list before ptr 
 A new node is to be added between ptr->prev, and ptr. 

 Step 2: change ptr->prev’s next pointer 
 ptr->prev->next = t; 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 

 
“yyy”, 0 
 



Insertbefore 
 Insertbefore into the middle of the list before ptr 
 A new node is to be added between ptr->prev, and ptr. 

 Step 3: change ptr’s prev pointer (see mylist.cpp) 
 ptr->prev = t;  

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 

 
“yyy”, 0 
 



Insertbefore 
 Can step 2 and step 3 change order? 

ptr->prev = t; 
ptr-prev->next = t; 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 

 
“yyy”, 0 
 



Remove 
 Removefront: 
 Two cases:  
 the list has only one element need to make empty list out of it. 
   delete head; 
    head = tail = NULL; 
    size = 0; 
    return; 
 The list has more than on elements 

 
 

 



Remove 
 Removefront: 

 The list has more than on elements 
 Step 1: listnode *t = head; 

 

 
 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

t 



Remove 
 Removefront: 

 The list has more than on elements 
 Step 2: Advance head: head = head->next; 

 

 
 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

t 



Remove 
 Removefront: 

 The list has more than on elements 
 Step 3: delink the prev of head: head->prev = NULL; 

 

 
 

 

head 

NULL 
“abc”, 0 
 

NULL 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

t 



Remove 
 Removefront: 

 The list has more than on elements (see mylist.cpp) 
 Step 4: delete t; 

 

 
 

 

head 

NULL 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

t 



Removemiddle 
 Remove an item pointed to by ptr 
 Step 1: change ptr->prev’s next pointer 

ptr->prev->next = ptr->next; 

 
 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 



Removemiddle 
 Remove an item pointed to by ptr 
 Step 2: change ptr->next’s prev pointer 

ptr->next->prev = ptr->prev; 

 
 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

 
“bla”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 



Removemiddle 
 Remove an item pointed to by ptr 
 Step 3: delete ptr; 
 

 

 

head 

NULL 
“abc”, 0 
 

 
“whi”, 0 
 

tail 
 
“xxx”, 0 
NULL 

ptr 



Search 
 Use the while loop to walk through every nodes in the list 

(see mylist.cpp) 
 

listnode *t = head; 
 
  while ((t!=NULL) && (t->s != s)) t = t->next; 
  return t; 
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