
Recursion review

 Thinking recursion: if I know the solution of the problem of
size N-1, can I use that to solve the problem of size N.

 Writing recursive routines:
 Decide the prototype

 Can formulate both original and sub-problems
 Solution to a sub-problem is just one recursive routine call.

 Base case
 Recursive case.

 Execution of a recursive routine:
 Keep calling the recursive routines to solve problems of smaller

sizes until the base case is reached. Then from the solutions of
smaller problems to construct solutions of larger problems until
the original problems is solved.

Recursion review

 Determine a word is a palindrome?

bool ispalindrome(string word, int front, int back)

{

…

}

• Search if a number is in an array

bool search(int A[], int beg, int end, int value)

// return true if value is in A[beg..end]

// false otherwise

 The number puzzle …

•Copy constructor and assignment

operator

Automatically Generated Functions

We have learned of two member functions sometimes

automatically generated by the compiler

 Constructor – An empty default (ie. no params) constructor is

created if no constructor is defined.

 Destructor – An empty destructor is created if no destructor is

defined.

 Today we will discuss two other sometimes

automatically generated member functions

 Copy Constructor

 Assignment Operator

Copy Constructor

A copy constructor IS a constructor and therefore:

 has the same name as the class

 has no return type (although, it seems to return a class object

when called explicitly)

 Like the conversion constructor, there are situations when the

copy constructor is called implicitly. They are:

 when an object is declared to have the same value as another

object

Example: Fraction f1(1,2);

 Fraction f2 = f1; //new object f2 is initialized as a COPY of f1

 when an object is passed by value into a function

 when an object is returned by value from a function

Copy Constructor Declaration

Since the purpose of a copy constructor is to initialize a

new object to be a copy of another object, it accepts a

single object as a parameter

Format: classname(const classname&)

The argument is const because the copy constructor

should not alter the original (not required)

The argument MUST be passed by reference.

Examples

 Fraction(const Fraction& f)

 Mixed(const Mixed& m)

Copy Constructor internal

What should be done in a copy constructor: copy the

data member from the parameter to the newly created

object.

 Should be straight-forward – can be produced

automatically.

Fraction(const Fraction& f) {

 numer = f.numer;

 denom = f. denom;

}

 The automatically generated copy constructor

(default copy constructor) does exactly this.

 This works in many cases, but not always.

Issues with the default: shallow copy

Suppose we want to copy a playlist object:

-ORIGINAL PLAYLIST-

(Functions)

...
 Song *Plist : 0xFFA08

 int array_size : 5

 int NumSongs : 2

S

1

S

2 E E E

 Shallow copy (default) – All member data is copied

EXACTLY from the old object into the new one.

The default: Shallow Copy

-ORIGINAL PLAYLIST-

(Functions)

...
 Song *Plist : 0xFFA08

 int array_size : 5

 int NumSongs : 2

S

1

S

2 E E E

-COPY-

(Functions)

...
 Song *Plist : -

 int array_size : -

 int NumSongs : -

We start in the copy constructor of COPY with the

original as a parameter

Shallow Copy

-ORIGINAL PLAYLIST-

(Functions)

...
 Song *Plist : 0xFFA08

 int array_size : 5

 int NumSongs : 2

S

1

S

2 E E E

-COPY-

(Functions)

...
 Song *Plist : 0xFFA08

 int array_size : 5

 int NumSongs : 2

Set data in copy equal to that of the original... DONE.

What is bad about this: the new object shares the Plist with the old object
The copy is not a real copy, which should produce two independent copies
of the object. Hence, the name “shallow copy”

Deep Copy – must be implemented

as a customized copy constructor

-ORIGINAL PLAYLIST-

(Functions)

...
 Song *Plist : 0xFFA08

 int array_size : 5

 int NumSongs : 2

S

1

S

2 E E E

-COPY-

(Functions)

...
 Song *Plist : -

 int array_size : -

 int NumSongs : -

We start in the copy constructor of COPY with the

original as a parameter

Deep copy – New dynamic memory is

created for pointers

Deep Copy – customized copy

constructor

-ORIGINAL PLAYLIST-

(Functions)

...
 Song *Plist : 0xFFA08

 int array_size : 5

 int NumSongs : 2

S

1

S

2 E E E

-COPY-

(Functions)

...
 Song *Plist : -

 int array_size : 5

 int NumSongs : 2

Set NON-POINTER data in the copy equal to the

original

Deep Copy – customized copy

constructor

-ORIGINAL PLAYLIST-

(Functions)

...
 Song *Plist : 0xFFA08

 int array_size : 5

 int NumSongs : 2

S

1

S

2 E E E

-COPY-

(Functions)

...
 Song *Plist : 0xFFB74

 int array_size : 5

 int NumSongs : 2

Allocate new memory for data pointer points to.

Deep Copy

-ORIGINAL PLAYLIST-

(Functions)

...
 Song *Plist : 0xFFA08

 int array_size : 5

 int NumSongs : 2

S

1

S

2 E E E

-COPY-

(Functions)

...
 Song *Plist : 0xFFB74

 int array_size : 5

 int NumSongs : 2

Copy data from old dynamic memory to new... DONE.

S

1

S

2 E E E

Assignment operator

The assignment operator (=) is called when one object

is assigned to another

The assignment operator is similar to the copy

constructor, but there are some key differences

 The assignment operator is a normal member function not a

constructor, this means 2 objects already exist and have been

initialized

 The assignment operator returns the value it was assigned

(allows cascading calls)

 Fraction f1(1,2),f2,f3,f4;

 f4 = f3 = (f2 = f1);

 f4 = (f3 = (f2))

 (f4 = (f3))

 (f4)

Assignment operator

Format: classname& operator=(const classname&);

Ex. Fraction lhs(1,2), rhs(2,5);

 lhs = rhs;

lhs is the calling object, rhs is the parameter, the

assignment function alters lhs to be a copy of rhs and

returns a reference to lhs.

If lhs is the calling object, how can we return a

reference to it?

The this pointer

Inside every object is a pointer named 'this'

It's like having 'classname *this;' in the member data of

an object

The 'this' pointer is set to point to the object itself

You can actually call another member function with the

statement this->memberFunction()

We can use the this pointer to return a reference to the

object itself in the assignment operator

 Should we return this or *this ? (this pointer or

whats at this pointer?)

Deep Copy (Assignment)

Suppose we are assigning playlist LHS to RHS

(LHS=RHS;)

The automatically generated copy constructor

performs a shallow copy

Lets see what we would have to do in order to do an

overload of the assignment operator that performs a

deep copy

Deep Copy (Assignment)

LHS is the calling object and already has its own

member data that we want to match RHS

-LHS-

(Functions)

...
 Song *Plist : 0xFFA08

 int array_size : 10

 int NumSongs : 7

S

1

S

2 E E E

-RHS-

(Functions)

...
 Song *Plist : 0xFFB74

 int array_size : 5

 int NumSongs : 2

S

1

S

2

s

3

s

4

s

5

S

6

S

7 E E E

Deep Copy (Assignment)

Since LHS's array is the wrong size, we must

deallocate it and reallocate the correct size

-LHS-

(Functions)

...
 Song *Plist : 0xFFA08

 int array_size : 10

 int NumSongs : 7

S

1

S

2 E E E

-RHS-

(Functions)

...
 Song *Plist : 0xFFB74

 int array_size : 5

 int NumSongs : 2

S

1

S

2

s

3

s

4

s

5

S

6

S

7 E E E

Deep Copy (Assignment)

Since LHS's array is the wrong size, we must

deallocate it and reallocate the correct size

-LHS-

(Functions)

...
 Song *Plist : 0xFFA08

 int array_size : 10

 int NumSongs : 7

S

1

S

2 E E E

-RHS-

(Functions)

...
 Song *Plist : 0xFFB74

 int array_size : 5

 int NumSongs : 2

Deep Copy (Assignment)

Since LHS's array is the wrong size, we must

deallocate it and reallocate the correct size

-LHS-

(Functions)

...
 Song *Plist : 0xFBCC2

 int array_size : 10

 int NumSongs : 7

S

1

S

2 E E E

-RHS-

(Functions)

...
 Song *Plist : 0xFFB74

 int array_size : 5

 int NumSongs : 2

Deep Copy (Assignment)

We can now copy the elements of RHS to LHS and

copy the other member data...DONE.

-LHS-

(Functions)

...
 Song *Plist : 0xFBCC2

 int array_size : 5

 int NumSongs : 2

S

1

S

2 E E E

-RHS-

(Functions)

...
 Song *Plist : 0xFFB74

 int array_size : 5

 int NumSongs : 2

S

1

S

2 E E E

Everything else

Assignment operator must always be a member

function (can't be friend)

Assignment operator implementation always ends with:

return *this;

If you define a copy constructor, but no other

constructor, an empty default constructor WILL NOT be

generated by the compiler

