
Pointers

Memory
Computer memory is used to
store programs and variables in
the programs
The memory can be considered
as a giant array
Each byte in the memory can
be indexed by the “address” --
in a 32-bit computer, the number
of bits in each “address” is 32
bits.

Memory

Memory

0x0000000
0x0000001
0x0000002
…

0xffffffff

Memory
 Each variable is stored somewhere in
the memory – each variable is associated
with an address that allows for access to
the variable.
Different types of variables may have
different memory size
int – 4 bytes
char 1 byte
float – 4 bytes
double – 8 bytes.
you can use sizeof() function in C++ to
check the size of each variable. See
sizeof.cpp.

Memory

Memory

0x0000000
0x0000001
0x0000002
…

0xffffffff

Memory
The data members of a class
are also stored in the memory.

main()
{
 int y;
 Fraction f;
 ……
}

 The memory is partitioned into different regions

 different variables are stored in different regions
 static memory – global variables
 stack memory – local variables
 heap memory – dynamically allocated memory.

Memory

Memory

0x0000000
0x0000001
0x0000002
…

0xffffffff

y
y

y

y

f.numer
f.numer
f.numer
f.numer

f.denom

f.denom
f.denom

f.denom

Pointers
Every variable (object, data member, etc) is stored
at a location in memory
Every location in memory has a unique number
assigned to it called it’s address – index into the
memory array.
A pointer is a variable that holds a memory
address
A pointer can be used to store an object or
variable’s location in memory
We can later “dereference” a pointer to have direct
access to the object or variable the pointer points
to.

Pointers
Each memory address refers to the location of a single byte of data and
consecutive memory addresses refer to contiguous bytes (i.e. bytes 100 and
101 are next to each other). Another way to think of memory is like a giant char
array.

void foo() {

}//return

Memory

100

Memory

101
102

103
104
105
106
107
108

109

110
111
112

113

Pointers
A pointer is allocated space in memory just like any other variable.
Since a pointer holds an address, 32-bit systems use 32 bit addresses and
therefore need 4 bytes to represent an address (32 bits * 1byte/8bits = 4 bytes).
**Note that all pointers are allocated the same amount of memory independent
of type (char*,int*,double*).

ValPtr

Memory

Val

100

Memory

101
102

103
104
105
106
107
108

109

110
111
112

113

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

}//return

Pointers
A pointer pointer holds the address of a pointer of that same type and
therefore is allocated the same space as a pointer. An int* holds the address of
an int, and int** holds the address of an int*, an int*** holds the address of an
int** etc.

Memo
ry
 Val

ValPtr

ValPtrPtr

Memory

100

Memory

101
102

103
104
105
106
107
108

109

110
111
112

113

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

}//return

Pointers
When the compiler performs assignment, it goes to the address of a variable
and updates the value. More generally, when a programmer writes the name
of a variable “X” it can be interpreted as “the value in the memory reserved for
X.”

16

Memory

Val

ValPtr

Memory

100

Memory

101
102

103
104
105
106
107
108

109

110
111
112

113

ValPtrPtr

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

 Val = 16;
 ValPtr = &Val;
 *ValPtr = 5;

 ValPtrPtr = &ValPtr;
 *ValPtrPtr = NULL;

}//return

Pointers
By placing the ‘&’ operator in front of a variable name, it is possible to refer to
the address of that variable rather than its value. In other words, “&X” is
interpreted as “the address of the memory reserved for X.” The address of a
variable is the address of the first byte it occupies in memory.

100

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

 Val = 16;
 ValPtr = &Val;
 *ValPtr = 5;

 ValPtrPtr = &ValPtr;
 *ValPtrPtr = NULL;

}//return

16

Memory

Val

ValPtr

Memory

100

Memory

101
102

103
104
105
106
107
108

109

110
111
112

113

ValPtrPtr

Pointers
For variables that are pointers, the ‘*’ operator allows a programmer access to
the value at the address stored in the pointer. This is called dereferencing a
pointer and the process is known as indirection. Indirection is one reason
pointers have types, although all pointers hold addresses, the compiler must
know what type is stored at an address to access the value.

5

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

 Val = 16;
 ValPtr = &Val;
 *ValPtr = 5;

 ValPtrPtr = &ValPtr;
 *ValPtrPtr = NULL;

}//return

100

Memory

Val

ValPtr

Memory

100

Memory

101
102

103
104
105
106
107
108

109

110
111
112

113

ValPtrPtr

Pointers
Since a pointer pointer holds an address, it can be used almost exactly as a
pointer. The extra “pointer” just says that the value at the address is an int*
rather than an int.

104

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

 Val = 16;
 ValPtr = &Val;
 *ValPtr = 5;

 ValPtrPtr = &ValPtr;
 *ValPtrPtr = NULL;

}//return

5

100

Memory

Val

ValPtr

Memory

100

Memory

101
102

103
104
105
106
107
108

109

110
111
112

113

ValPtrPtr

Pointers
Since a pointer pointer holds an address, it can be used almost exactly as a
pointer. The extra “pointer” just says that the value at the address is an int*
rather than an int.

A special memory NULL (0x00000000) is reserved for the not usable memory (invalid
memory) – should be used to initialize any pointer.

0

sample1.cpp

void foo() {
 int Val;
 int *ValPtr;
 int **ValPtrPtr;

 Val = 16;
 ValPtr = &Val;
 *ValPtr = 5;

 ValPtrPtr = &ValPtr;
 *ValPtrPtr = NULL;

}//return

104

5

Memory

Val

ValPtr

Memory

100

Memory

101
102

103
104
105
106
107
108

109

110
111
112

113

ValPtrPtr

Life of a local variable
 Local variables are allocated on the stack.
 The life span of a local variable is within the subroutine
 The variable is created when the routine is called.
 When the routine is returned, all local variables do not
exist anymore (the memory for these variables is
released to the system).
Implication to the use of pointers?
 Never return a pointer to a local variable.

Look at sample2.cpp and sample2_1.cpp.

Arrays and Pointer Arithmetic
When an array is declared the compiler allocates enough space for all the
elements of that array in memory. The array name now acts like a pointer to
the first element in the array although this is just an abstraction because there
is actually no address (pointer) stored in memory.

void foo() {
char MyArray[3] ={‘a’,’b’,’c’};
char *Ptr;

Ptr = MyArray;

}

Memo
ry
 MyArray ‘b’

‘c’
‘a’ 100

101
102

103
104
105
106
107
108

109

110
111
112

113

Arrays and Pointer Arithmetic
An “actual” pointer will reserve memory to hold an address value.

void foo() {
char MyArray[3] ={‘a’,’b’,’c’};
char *Ptr;

Ptr = MyArray;

}

Memo
ry
 MyArray ‘b’

‘c’
‘a’

Ptr

100
101
102

103
104
105
106
107
108

109

110
111
112

113

Arrays and Pointer Arithmetic
When an array is referenced in a program without an index [] the compiler
“pretends” the name refers to a pointer that stores the address of the first
element of the array. This allows us to assign a pointer to the value of
MyArray.

void foo() {
char MyArray[3] ={‘a’,’b’,’c’};
char *Ptr;

Ptr = MyArray;

}

Memo
ry
 MyArray ‘b’

‘c’
‘a’

100 Ptr

100
101
102

103
104
105
106
107
108

109

110
111
112

113

Arrays and Pointer Arithmetic
In C++, pointers can be modified with +,-,++, and -- operators. A key
difference between a pointer and an integer is that the statement Ptr = Ptr +
Num, is translated to Ptr = Ptr + Num*(the size of the element the pointer points
to). In this case, the pointer points to a char that is only allocated a single byte
in memory.

void foo() {
char MyArray[3] ={‘a’,’b’,’c’};
char *Ptr;

Ptr = MyArray;

Ptr = Ptr + 1;
*Ptr = *MyArray
*(Ptr+1) = ‘d’;
Ptr[1] = ‘a’;

}

Memo
ry
 MyArray ‘b’

‘c’
‘a’

101 Ptr

100
101
102

103
104
105
106
107
108

109

110
111
112

113

Arrays and Pointer Arithmetic
Changing the value of a pointer with arithmetic operations is known as pointer
arithmetic. Among other things, it can be useful for traversing an array.

void foo() {
char MyArray[3] ={‘a’,’b’,’c’};
char *Ptr;

Ptr = MyArray;

Ptr = Ptr + 1;
*Ptr = *MyArray
*(Ptr+1) = ‘d’;
Ptr[1] = ‘a’;

}

Memo
ry
 MyArray ‘a’

‘c’
‘a’

101 Ptr

100
101
102

103
104
105
106
107
108

109

110
111
112

113

Arrays and Pointer Arithmetic
Pointer arithmetic and dereference can be combined into one statement to
access offsets of an array. When the compiler encounters an indexed array,
the statement is translated from array[index] into *(array+index).

void foo() {
char MyArray[3] ={‘a’,’b’,’c’};
char *Ptr;

Ptr = MyArray;

Ptr = Ptr + 1;
*Ptr = *MyArray
*(Ptr+1) = ‘d’;
Ptr[1] = ‘a’;

}

Memo
ry
 MyArray ‘a’

‘d’
‘a’

101 Ptr

100
101
102

103
104
105
106
107
108

109

110
111
112

113

Arrays and Pointer Arithmetic
The left hand side of the last two statements are equivalent.

void foo() {
char MyArray[3] ={‘a’,’b’,’c’};
char *Ptr;

Ptr = MyArray;

Ptr = Ptr + 1;
*Ptr = *MyArray
*(Ptr+1) = ‘d’;
Ptr[1] = ‘a’;

}

Memo
ry
 MyArray ‘a’

‘a’
‘a’

101 Ptr

sample3.cpp
sample4.cpp

100
101
102

103
104
105
106
107
108

109

110
111
112

113

More about Pointers
One pointer can be assigned to another if they are
the same type or a typecast is used
Any pointer type may be assigned to a void* type
pointer
Dereferencing an uninitialized pointer or a NULL
(0) pointer will cause a segmentation fault

sample5.cpp

References
A subclass of pointers specific to C++
Basically a restricted pointer that only points to one
object or variable
Declared using ‘&’ operator instead of ‘*’ (int& IntRef)
Only 1 dimensional (no int&&)
Must be initialized (int& IntRef; will cause compiler
error)
Once initialized, a reference cannot be “reseated” to
another object or variable
No arithmetic operations allowed
Automatically dereferenced so that only the value of
the variable referenced is accessible

sample6.cpp

References
Another way to think of a reference is giving a particular object or
variable another name or alias (sample7.cpp)
C++ automatically creates a reference for function calls that
specify a reference in their parameter list
 pass by reference (sample8.cpp)

(sample9.cpp)

Using the declaration, what is the size of p1, p2, and p3?

int *p1;
char *p2;
fraction *p3;

	Pointers
	Memory
	Memory
	Memory
	Pointers
	Pointers
	Pointers
	Pointers
	Pointers
	Pointers
	Pointers
	Pointers
	Pointers
	Life of a local variable
	Arrays and Pointer Arithmetic
	Arrays and Pointer Arithmetic
	Arrays and Pointer Arithmetic
	Arrays and Pointer Arithmetic
	Arrays and Pointer Arithmetic
	Arrays and Pointer Arithmetic
	Arrays and Pointer Arithmetic
	More about Pointers
	References
	References

