
Review

● What is operator overloading

● How to overload operator + in your class?

● Name three limitations of operator overloading

● List two potential methods to overload the + operator

Protection Levels and Constructors
Composition

Object as member data

● Objects are a combination of member data, member functions and an

interface.

● Objects can also be member data (objects within objects). For example

Class Glass {

 int size;

 Fraction Empty;

 Fraction Full;

}

Composition

 The relationship of “an object within an object” is called composition.

 Can be implemented by declaring an object or an object pointer/reference within

the member data of a class.

 Often described as the “has-a” relationship

– Glass has-a Fraction

– Car “has a” Engine (object Engine is member data within Car class)

– Deck object has 52 Card objects

 Composition allows code to be more modularized

 We can create smaller classes and combine them to realize larger functionality.

 See PokerHand Example

Member Data Object Constructor

● When an object is created, its constructor runs, it must also invoke the constructor for any

embedded objects

Class small_class {

 public:

 small_class(int);

 private:

 int data;

 }

 small_class::small_class(int d) { data = d;}

Class large_class {

 public:

 large_class();

 private:

 small_class sc; /* cannot call constructor here */

}

● If nothing else is done, the default construct for the member function will be called.

● Which constructor is called earlier? See ph2.cpp

● What if we want to use a (non-default) constructor for the member data?

Member Data Object Constructor

● How the object within an object is initialized?

Class small_class {

 public:

 small_class(int);

 private:

 int data;

 }

 small_class::small_class(int d) { data = d;}

Class large_class {

 public:

 large_class();

 private:

 small_class sc; /* cannot call constructor here */

}

● What if we want to use a (non-default) constructor for the member data?

● Use initialization list: large_class::large_class(): small_class(1000) { }, see ph3.cpp, ph4.cpp

● This has limitations. May need to just call the constructor inside the constructor for the

large class.

Extending the dot operator

 If and object that is member data of another object has public

members (data or functions), we can access it using the dot operator.

 See sample1.cpp

